This article cites 83 articles, 43 of which can be accessed free at:
http://jap.physiology.org/content/104/3/579.full.html#ref-list-1
This article has been cited by 22 other HighWire hosted articles, the first 5 are:
A TGFfusion during tongue development
β-Smad4-Fgf6 signaling cascade controls myogenic differentiation and myoblastDong Han, Hu Zhao, Carolina Parada, Joseph G. Hacia, Pablo Bringas, Jr and Yang ChaiDevelopment[Abstract]
[Full Text], May 1, 2012; 139 (9): 1640-1650. [PDF] Rheb, an activator of target of rapamycin, in the blackback land crab, cloning and effects of molting and unweighting on expression in skeletal muscle
Gecarcinus lateralis:Kyle S. MacLea, Ali M. Abuhagr, Natalie L. Pitts, Joseph A. Covi, Brandon D. Bader, Ernest S.Chang and Donald L. Mykles
J Exp Biol[Abstract]
, February 15, 2012; 215 (4): 590-604.[Full Text] [PDF] MSTNracehorses
genotype (g.66493737C/T) association with speed indices in ThoroughbredEmmeline W. Hill, Rita G. Fonseca, Beatrice A. McGivney, Jingjing Gu, David E. MacHughand Lisa M. Katz
J Appl Physiol[Abstract]
[Full Text], January 1, 2012; 112 (1): 86-90. [PDF] MicroRNA expression profiling in patients with lamin A/C-associated muscular dystrophyNicolas Sylvius, Gisèle Bonne, Kees Straatman, Thimma Reddy, Timothy W. Gant and SueShackleton
FASEB J[Abstract], November , 2011; 25 (11): 3966-3978.
[Full Text] [PDF] Skeletal Muscle Regeneration in Mice Is Stimulated by Local Overexpression ofV1a-Vasopressin Receptor
Angelica Toschi, Annalisa Severi, Dario Coletti, Angela Catizone, Antonio Musarò, MarioMolinaro, Clara Nervi, Sergio Adamo and Bianca Maria ScicchitanoMolecular Endocrinology[Abstract] [Full Text] [PDF], September , 2011; 25 (9): 1661-1673. Updated information and services including high resolution figures, can be found at:
http://jap.physiology.org/content/104/3/579.full.html Additional material and information about Journal of Applied Physiology can be found at:
http://www.the-aps.org/publications/jappl
This information is current as of April 6, 2012.
Journal of Applied Physiology publishes original papers that deal with diverse areas of research in applied physiology, especiallythose papers emphasizing adaptive and integrative mechanisms. It is published 12 times a year (monthly) by the American
Physiological Society, 9650 Rockville Pike, Bethesda MD 20814-3991. Copyright © 2008 by the American Physiological Society.ISSN: 0363-6143, ESSN: 1522-1563. Visit our website at http://www.the-aps.org/.
Downloaded from jap.physiology.org on April 6, 2012JApplPhysiol104:579–587,2008;doi:10.1152/japplphysiol.01091.2007.
InvitedReview
Transforminggrowthfactor-andmyostatinsignalinginskeletalmuscle
HelenD.Kollias1andJohnC.McDermott21DepartmentofNeurology,JohnsHopkinsHospital,Baltimore,Maryland;and2DepartmentofBiology,YorkUniversity,Toronto,Ontario,Canada
KolliasHD,McDermottJC.Transforminggrowthfactor-andmyostatinsignalinginskeletalmuscle.JApplPhysiol104:579–587,2008;doi:10.1152/japplphysiol.01091.2007.—Thesuperfamilyoftransforminggrowthfactor-(TGF-)cytokineshasbeenshowntohaveprofoundeffectson
深度cellularproliferation,differentiation,andgrowth.Recently,therehavebeenmajor生长advancesinourunderstandingofthesignalingpathway(s)conveyingTGF-
运送了解signalstothenucleustoultimatelycontrolgeneexpression.Onetissuethatis
最终potentlyinfluencedbyTGF-superfamilysignalingisskeletalmuscle.Skeletalmuscleontogenyandpostnatalphysiologyhaveproventobeexquisitelysensitive
个体发育totheTGF-superfamilycytokinemilieuinvariousanimalsystemsfrommicetohumans.Recently,majorstrideshavebeenmadeinunderstandingtheroleofTGF-anditscloselyrelatedfamilymember,myostatin,intheseprocesses.Inthisoverview,wewillreviewrecentadvancesinourunderstandingoftheTGF-andmyostatinsignalingpathwaysand,inparticular,focusontheimplicationsofthissignalingpathwayforskeletalmuscledevelopment,physiology,andpathology.myogenesis;Smad;MyoD
hasaremarkablemorphogenicabilitytoANOVERVIEWOFTGF-SIGNALING
原型regenerateandadapttoenvironmentalstimuli.Fundamen-TGF-1ligandisrecognizedastheprototypeofaclassof
tally,skeletalmuscleregenerationistherecapitulationof
multifunctionalgrowthfactorsthatregulatekeyeventsof更新摘要skeletalmuscledevelopmentinapostnatalcontext.Thusanmetazoandevelopment,disease,andrepair(44,45).In1981,understandingoftheregulationofdevelopmentandregen-多细胞动物TGF-effectswerefirstreportedbyRobertsandcolleagues
erationaremutuallyreinforcing.Bothregenerationand(65),whofoundthatTGF-inducedratkidneyfibroblaststodevelopmentofskeletalmuscleareprofoundlysensitivetoproliferate.Sincethen,TGF-hasbeen肾脏foundtohavea
theextracellularmilieu.Inparticular,signaltransductionplethoraofeffects,suchasregulationofcellgrowth,prolifer-pathwaysinitiatedbygrowthfactorssuchasinsulin-likeation,differentiation,adhesion,migration,andapoptosis(re-growthfactor(IGF-1),fibroblastgrowthfactor(FGF),andviewedinRefs.44,46,48).Theseeffectsarehighlycomplextransforminggrowthfactor-(TGF-)exertapotentlevelandsometimesdifficulttoreconcile;however,oneunifying
发挥ofcontrolovermusclegeneexpression.TheroleofthefeatureofTGF-signalingisthatitseffectsareprofoundlyTGF-superfamilyofgrowthfactorsisofconsiderabledependentonthecellcontext.Forexample,TGF-causesinterestsincemanyfacetsofmuscleontogenyandphysiol-increasedproliferationinfibroblasts(65)butinhibitsprolifer-ogyareregulatedbysomeoftheligandsbelongingtothisationinepithelialcells,causesdifferentiationofneuronalcells,
配体细胞活素cytokinesuperfamily.Inparticular,myostatinisofgrowingbutblocks上皮的differentiationinmesenchymalcells(2,18,19,66,
interestsinceithasbeenshowntoexertprofoundeffectson73).Inskeletalmuscle,TGF-superfamilymembershavemuscularityinmice,cattle,andhumans(seeFig.1;Refs.beenshowntohavepotenteffectsonbothmuscledevelopment52,54,68),aswellasotheranimals.TGF-superfamilyandpostnatalskeletalmusclemass.signalingreliesonarelativelyparsimoniouscanonicalpath-TheTGF-superfamilyconsistsofover50structurally
waythatinterdigitateswithparticularaspectsofthehostrelatedligands,manyofwhichfallintothreemajorsubfami-cellmachinerythroughcell-specificprotein:proteininterac-lies:TGF-,bonemorphogenicprotein(BMP),andactivin活化素机制tionsthatallowprecisecellcontext-dependentresponsesto(reviewedinRef.17).Exhaustiveworkonthemolecular
全面theligand.ThisreviewwillfocusonsalientaspectsofcharacterizationoftheTGF-signaltransductionpathwayhas
显著影响TGF-superfamilysignalingthatpertainspecificallytoledtothedelineationofacanonicalsignalingpathwayforall
勾画skeletalmuscle.Informationfromavarietyofstudiesof-TGF-superfamilymembersconsistingofthreemaincompo-feringinsightsintothemoleculareventsofTGF-signalnents(74):1)theligand;2)thereceptors(serine/threonine
transduction,thefunctionofTGF-inculturedmusclekinases);and3)theintracellularmediators(Smads;seeFig.2).cells,andtheeffectsofTGF-inpostnatalskeletalmuscleFortheTGF-,Activin,andBMPsubfamiliessignaltransduc-physiology,willprovidethefoundationofthisreview.tionbeginswiththeligandbindingtoitstypeIIreceptor.The
typeIIreceptorassociateswithitscorrespondingtypeIrecep-tor,forminganactivatedheterotetramericreceptorcomplex,Addressforreprintrequestsandothercorrespondence:J.McDermott,327
Farquharson,4700KeeleSt.,Toronto,Ontario,CanadaM3J1P3(e-mail:whichtransphosphorylatesthetypeIreceptoractivatingthe
latentkinaseactivityofthereceptorcomplex.Theactivatedjmcderm@yorku.ca).
SKELETALMUSCLE
Downloaded from jap.physiology.org on April 6, 2012http://www.jap.org8750-7587/08$8.00Copyright©2008theAmericanPhysiologicalSociety579
InvitedReview580
TGF-ANDMYOSTATINSIGNALINGINSKELETALMUSCLE
Fig.1.Phenotypeofmysotatinnullvertebrates.A:upperforelimbmusclesofwild-typemouse;B:upperforelimbofmousethatismyostatinnull(52);C:bovinewithmyostatinmutation(54);DandE:humanwithmyostatinmutationasaneonate(D)andat7moofage(E;Ref.68).Copyrightpermissions:copyright1997NationalAcademyofSciencesUSA(AandB);reprintedwithpermissionfromMacmillanPublishers(C):Nature;copyright1997(D)and2004(E)MassachusettsMedicalSociety.Allrightsreserved.
receptorcomplexthenphosphorylatesareceptor-regulatedgationofmesodermalprecursorsintheparaxialregionoftheSmadproteinthatoligomerizeswithacommonSmadorembryo,whichformsomites.Thesomitesarecomposedofco-SmadtermedSmad4.TheSmadoligomertranslocatesintothenucleuswhereitinteractswithSmadbindingpartnerstopluripotentcells,ofwhichsomewillbecomemuscleprogen-regulatetranscription(27).TheseSmadbindingpartnersreg-itorcells(33).Thesemyogenicprogenitorcellsgiverisetoulate,inacelltype-specificmanner,subsetsofgenesthatareproliferatingcellsthatarecommittedtothemyogeniclineagetargetgenesofTGF-signaling.AnothergroupofSmads,termedmyoblastsandarederivedfromthemyotomecompart-inhibitorSmads(Smad6andSmad7)servetoabrogateTGF-mentofthesomite(33).Proliferatingmyoblastssubsequentlysignalingbyestablishinganautoinhibitoryfeedbackloop.
undergodifferentiation,aprocessthatincludeswithdrawalfromthecellcycle,expressionofmuscle-specificgenes,andSKELETALMUSCLEDEVELOPMENTANDREGENERATION
fusionresultingintheformationofmultinucleatedmyotubes.MyotubeseventuallygiverisetothevastarrayofmusclefibersBriefly,skeletalmuscleontogenyiscomprisedofthreethatareusedtoconstructthecomplexskeletalmusclearchi-developmentalstages:1)determination,2)differentiation,andtectureoftheanimal.Therearetwotypesofmyoblasts,3)maturation(Fig.3).Determinationbeginswiththeaggre-
embryonicandfetal.Mostembryonicmyoblastsdifferentiate
Fig.2.Overviewofthecanonicaltransforminggrowthfactor(TGF)-pathway.TheTGFsuper-familymember(ligand)bindstothetypeIIandtypeIreceptors.ThetypeIIreceptorthentransphosphorylatesandactivatesthetypeIrecep-tor.ThetypeIreceptorphosphorylatesreceptor-boundSmads(R-Smads),allowingthemtointer-actwithSmad4,andthiscomplextranslocatesintothenucleus.TheternarySmadcomplex(R-SmadsandSmad4)thencontributestohigherordercomplexeswithtranscriptionfactorsandcofactorsthatregulatetargetgenetranscriptions.AdaptedfromRef.44.
JApplPhysiol•VOL
104•MARCH2008•
www.jap.org
Downloaded from jap.physiology.org on April 6, 2012InvitedReview
TGF-ANDMYOSTATINSIGNALINGINSKELETALMUSCLE
581
Fig.3.Schematicdiagramdepictingthestatesofskeletalmuscledevelopmentinthemouse.Stagesofskeletalmuscledevelop-ment:1)determination;2)differentiation(embryonicandfetal);and3)maturation.Determinationendswiththeformationofthemyotomefromthedermomyotome.Embry-onicmyoblastsdifferentiateandfusetoformprimarymusclefibers.Fetalmyoblaststhenundergodifferentiationtoformsecondaryfibersthatsurroundtheprimaryfibers(13,33).Dpc,dayspostconceptioninthemouse.
andfusetoformprimarymusclefibers,butsomecontinuetorestrictedroleinskeletalmuscledevelopment,musclemassproliferateandbecomefetalmyoblasts.Thesefetalmyoblastsregulation,andadiposetissue.Theelucidationoftheroleofformsecondaryfibers,smallerthantheprimaryfibers,whichTGF-surroundtheprimaryfibers(13).Fetalmyogenesisismore1inskeletalmusclebeganinexperimentsusingculturedmusclecellsinvitro,whiletheunderstandingoftheroleofsimilartopostnatalmuscleregenerationthanembryonicmyo-myostatinbeganinvivothroughgenetargetingexperimentsingenesis.Postnatally,myotubesmatureintomusclefibers.Intheadult,skeletalmuscleregenerationbeginswithquiescentmice.Thesetwodifferentstartingpointsledtodifferentsatellitecells,locatedbetweenthebasallaminaandthesarco-insightsintotheroleoftheseinterrelatedpathways.TGF-1islemmaofthemusclefiber,thatbecomeactivatedbytrauma,bethearchetypalcytokineofthissuperfamilyandmuchoftheitmechanicalorbiological(e.g.,disease).RecentworkhasunderstandingofthecomponentsoftheTGF-signalingclassifiedsatellitecellsasaheterogeneouspopulationofcellspathwayhavebeendelineatedbythestudyofTGF-1.Con-comprisedofstemcellsandcommittedprogenitorsbasedonversely,becauseofthepervasivehypermuscularphenotypeofthecombinedPax7andMyf5statusofthecells(32).Oncemyostatinnullmice,myostatinresearchhasfocusedmoreonactivated,satellitecellsproliferate,undergodifferentiation,clinicalapplicationsinskeletalmuscleandlessonthedetailedandthenfusetoanexistingmusclefiberoralternatelycreatebiochemicaldissectionofitscognatesignalingpathway.
fibersdenovo(seereview,Refs.9,26).
Inthelate1980s,severalgroupsmadethreekeyobserva-Twofamiliesoftranscriptionalregulatoryproteinsarecrit-tionsthatenabledtheidentificationofanimportantinvivoroleicalinregulatingdevelopmentalmyogenesis:themusclereg-forTGF-inskeletalmuscledevelopment.First,TGF-isulatoryfactors(MRFs)andthemyocyteenhancerfactor2presentinlargeamountsinthelimbbud,isproducedinthe(MEF2)proteins.MRFmembersareconsideredtheprototypicectoderm,andaffectstheadjacentmesenchymalcells.Second,masterregulatorygenesinskeletalmusclebasedontheirTGF-inhibitsdifferentiationoffetal,butnotembryonic,capacitytoconvertsomenonmyogenicfibroblastcellsintoamyoblasts(80).Last,thetreatmentoflimbbudorganculturesmyogeniccellphenotype(61).MEF2familymembersfunctionwithTGF-neutralizingantibodiesresultsintheprematureasnecessarycoactivatorsfortheMRFsinanevolutionarilyappearanceoflargemyotubes(secondary;Ref.14).TheseconservedancientcodetospecifyskeletalmuscleontogenyobservationssuggestthatTGF-preventsprematuredifferen-(7).BothMRFsandMEF2membershavefunctionalcis-tiationinmigratingmyoblasts,allowingforpropermuscleelementswithinmanyskeletalmuscle-specificpromotersandformationinthedevelopingembryoniclimb.
enhancers(7).
Myostatinwasdiscoveredduringascreenfornovelmam-malianmembersoftheTGF-superfamily(54).ExpressionofROLEOFTGF-ANDMYOSTATININSKELETALmyostatinmRNAisfirstseenatembryonicday9.5postMUSCLEDEVELOPMENT
conceptioninthemyotomeofdevelopingsomitesandcontin-uesthroughoutmuscledevelopment.ThemyostatingeneisSinceitwouldbeuntenabletoconsiderallTGF-ligands,expressedinadultskeletalmuscle,heart,andadiposetissuewewillfocusontheprotypicalTGF-1andmyostatinligands(69).Inadditiontoitsrestrictedpatternofexpression,micebecauseoftheirpotentroleinskeletalmuscle(35,37,38,47).homozygousnullforthemyostatingenearetwotothreetimesTGF-1andmyostatinsignalinginskeletalmuscleinvolvetwolargerinmassthanthewildtypeduetoanenhancedmassofstrikinglysimilarpathways,whichmediatesomeoverlappingthemusculature(Fig.1,AandB).Theincreaseinskeletalandalsomutuallyexclusiveeffects.TGF-1playsanimpor-musclemassisattributedtobothhyperplasia(increaseintantroleinskeletalmuscledevelopmentbutalsoinfluencesmusclefibernumber)andhypertrophy(increaseinmusclefiberdifferenttissuesproducingaplethoraofoutcomes.TGF-1size).Myostatinhomozygousnullmicealsohavereducedactivityisveryspecifictothecellularcontext,thatis,itsstoresofadiposetissue(53,54).Furthermore,heterozygoussignalingoutcomeisdeterminedbytheintracellularmilieuof(ϩ/Ϫ)myostatinmicehavea25%increaseinbodyweight,thecell.ThisduplicitousnatureofTGF-1provestobewhichisalessereffectthanthatseeninthehomozygousnecessaryforitsinvivofunctionsinceitregulatesmanytissues(Ϫ/Ϫ)mice,suggestingadose-dependenteffectofmyostatinandprocesses.Conversely,myostatinplaysamuchmore
proteinlevelsonskeletalmusclemass.Naturallyoccurring
JApplPhysiol•VOL
104•MARCH2008•
www.jap.org
Downloaded from jap.physiology.org on April 6, 2012InvitedReview582
TGF-ANDMYOSTATINSIGNALINGINSKELETALMUSCLE
myostatinmutationsincattle(BelgianBlue,Piedmontese,andleagues(8)showedthatTGF-inhibitedthetranscriptionalMarchigiana)andinhumanshavesubsequentlybeenshownactivityofmyogeninwithoutaffectingitsDNAbindingaffin-alsotoleadtopronouncedhypermuscularity(28,42,54,68;ity.Furthermore,ithasbeenshownthatTGF-Fig.1,C-E).Theconsistencyofthehypermuscularphenotype1targetsthecorrespondingtomyostatinnullmutationacrossspeciesisbasichelix-loop-helix(bHLH)regionofallMRFs,decreasingconsistentwiththeevolutionaryconservationofthemyostatintheirDNAtranscriptionalactivitywithoutaffectingtheirbind-geneandproteinproductbetweenhumans,mice,rats,pigs,ingproperties(43).NotonlydoesTGF-1inhibitthetran-cows,chickens,andturkeys.
scriptionalactivityoftheMyoDproteinitalsoinhibitstheSincebothTGF-transcriptionoftheMyoDgene,thusreducingbothlevelsand1andmyostatinhavebeenshowntoregulatemyogenesisandpostnatalmusclephysiology,acom-activity(76).
parativeanalysisofthetwomayprovideusefulinsightsintoHowdoesTGF-1inhibitmyogenesis?WhatroledoSmad2thecommonanddivergentaspectsoftheintracellularsignalingandSmad3haveinmyogenesis?Inrecentyearsseveralstudiesofthesepathways.TGF-havebeguntoelucidatetheroleofSmad2andSmad3during1signaltransductionbeginswiththeactiveligandbindingtotheTGF-typeIIreceptor(TRII)TGF-1-mediatedmyogenicinhibitionandin“normal”differ-andeitherALK-1(activinlikekinase-1)orTRI/ALK-5entiation(39,62).IthasbeenshownthatSmad3isthekey(TGF-typeIreceptor)receptors.MyostatinsignalingbeginsmediatorofTGF-inhibitionofmyogenesis.Liuandcol-withtheactivemyostatinligandbindingtoeitheractivinleagues(39)showedthatSmad3alone,andnotSmad2,viareceptortypeIIA(ActR-IIA)orActR-IIBandeitherTRI/MyoDinhibitioniscriticalinTGF-signalinginmyoblasts.ALK-5orALK-4,typeIreceptors(63).ThemyostatinligandSmad3wasfoundtophysicallyinteractwithMyoD,inhibitinghasahigheraffinityforActR-IIBinvitro(36,63).BoththetransactivationpropertiesofMyoD.Furthermore,Smad3pathwaysconvergeintheactivationofSmad2andSmad3wasalsoshowntophysicallyinteractwithMEF2Candde-followedbyoligomerizationwithSmad4.Next,theSmadcreaseitstranscriptionalactivity(40).However,therelevancecomplextranslocatesintothenucleus,whereitregulatestran-ofthisbiochemicalinteractioninvivoiscontroversialbecausescriptionofgenessuchasMyoD(39,64).Additionalnon-theMEF2CgeneisnotexpressedinmyoblastsendogenouslySmad-dependentsignalinghasalsobeenimplicatedinTGF-(50),althoughMEF2Cdoesplayaroleinthelatestagesof1effects,althoughthisissofarlesswellcharacterized(51).TodifferentiationandconditionaldeletioninskeletalmusclecounteractTGF-affectssarcomereintegrity(60).
1/myostatinsignaling,repressionofthesig-nalcanbeachievedbytheI-Smads,Smad6andSmad7,oraTheroleofSmad2inTGF-inhibitionofmyogenesisislessubiquitin-mediatedproteasomaldegradationpathwaymediatedclear.UsingmyoblastsDeAngelisetal.(15)reportedthatMEF2,bytheSmad-ubiquitinregulatoryfactors(SMURFS;Ref.5).normallyfoundinthenucleus,translocatestothecytoplasmuponSmad7hasbeenpreviouslyshowntoinhibitbothTGF-TGF-treatment.ForcedexpressionofMEF2CrescuedTGF-1andmyostatinsignaling(31,82).Furthermore,Smad7mayhaveinhibitionbymaintainingapoolofMEF2Cinthenucleus.additionalpro-myogenicfunctions.ArecentstudyfromourFurthermore,endogenousSmad2andMEF2arecomplexedgroup(31)hasshownadramaticenhancementofskeletaltogetherinthenucleiofdifferentiatingmyotubes,butnotinmuscledifferentiationandgrowthbythemyostatinsignalingmyoblasts,whereSmad2iscytoplasmicandwhereMEF2AinhibitorSmad7,whichinteractswithandpotentiatesMyoDand2Carenothighlyexpressed(62).Thusthelinkbetweentranscriptionalactivity.However,althoughSmad7isabletoMEF2andSmad2proteiniscomplexandmaydependontheinhibitTGF-1signaling,asassessedbyaTGF-responsivedifferentiationstatusofthecells.Together,thesedatasuggestpromoter(3TP-lux),itwasnotabletorescueTGF--mediatedthatSmad2isanimportantcomponentofTGF--mediatedinhibitionofmyogenesis.Therefore,considerationofhowtherepressionofdifferentiationinmyoblasts,althoughthepreciseTGF-1/myostatindownstreameffectorsintegratewithmechanismmediatingthiseffectstillrequiresfurthercharac-skeletalmuscle-specifictranscriptionalregulatorstocontrolterization(60).
geneexpressionwillbeparamountinunderstandinghowTGF-inskeletalmuscle:aroleinvivo.Recently,aninthesegrowthfactorsmodulatethemusclephenotypeduringvivoroleforTGF-1inskeletalmuscleregenerationwasdevelopmentandregeneration.
confirmed.Micedeficientinfibrillin-1haveincreasedTGF-signalingactivitythatcausesafailureofskeletalmuscletoTGF-SIGNALINGINSKELETALMUSCLE
regenerate(11).ThesemiceareusedasamodelfortheMarfansyndrome(MFS)inhumans,whichiscausedbyamutationofTGF-repressesskeletalmusclespecificgeneexpressiontheFBN1genethatencodesfibrillin-1(anextracellularmatrixandhasalsobeenreportedtomodulateproliferationinsatelliteprotein).MFSsymptomsincludeboneovergrowth,ocularlenscells(3,12,19,24,47,59).Takentogether,thesestudiesdislocation,emphysema,cardiaccomplications,andaninabil-indicatethatTGF-reprogramsgeneexpressioninmuscleitytoincreaseskeletalmusclemassinresponsetoexerciseandcellsresultinginanalterationofproliferativecontrolandaotherphysiologicalsignals(16).AntagonizingTGF-signal-potentinhibitionoftheprogramofgeneexpressionunderlyingingwithaTGF-neutralizingantibodyorbylosartantreat-myogenicdifferentiation.Askeyorchestratorsofmusclegenementrescuesskeletalmuscleregenerationinthefibrillin-1-expression,theMRFswereshowntobetargetedbyTGF-deficientmice.IncreasedTGF-signalingwasalsofoundinsignaling.Therefore,logicaltargetsofTGF-1arethemyo-theskeletalmuscleofdystrophin-deficientmice,amodelofgenictranscriptionfactors,theMRFsandtheMEF2s,astheDuchennemusculardystrophy,andantagonizingTGF-sig-quintessentialregulatorsofmyogenesis.TheMRFsarecom-nalingrestoredtheregenerationprograminthesemice(11).prisedofMyoD,Myf5,myogenin,andMRF4,whereastheFurthermore,thefibrillin-1-deficientmiceexhibitedincreasedMEF2sincludeMEF2A-D.Tothatend,Brennanandcol-satellitecellnumberswhenTGF-wasantagonized.Thus
JApplPhysiol•VOL
104•MARCH2008•
www.jap.org
Downloaded from jap.physiology.org on April 6, 2012InvitedReview
TGF-ANDMYOSTATINSIGNALINGINSKELETALMUSCLE
583
inhibitionofTGF-signalingresultsinanimprovedskeletalincreases,thusdecreasingthetransmissionofforce,aphenom-muscleprofileinseveralgeneticallyinvokedmyopathies.enonpreviouslydescribedbyMaxwelletal.(49).WhiletheInvivostudieshavealsodocumentedthepresenceofTGF-lackofanydifferenceinthesPoofthesoleusmuscleismoreduringmuscleinjury.Muscleinjurycausedbyeccentriccon-difficulttoexplain,onetractions(6),cardiotoxininjection(22),andmusclestrain/ϪpossibilityisthatPointhesoleusmuscleoftheMstnϪcomparedwiththewildtypewasnotinjury(72)resultedinincreasedTGF-transcriptandproteinlargeenoughtoaffectthesPo.Interestingly,followingtwolevelswithin48hofinjury.However,increasesinTGF-1andlengtheningcontractions,theEDLmusclefromtheMstnϪ/ϪTGF-2precursorsdidnotcorrespondinglyleadtoanincreasemicehadagreaterforcedeficiencythanthewildtype.How-inTGF-activityfollowingmusclestrain,suggestingadelayever,nodifferenceinforceproductionwasfoundinthesoleusinTGF-activationafterinjury(72).Furthermore,TGF-muscle.MolecularanalysisrevealedthatthelevelsofActRIIBtypeIreceptorexpressionisregulatedbymyotubeexcitability.intheEDLmuscleweretwiceashighasthoseinthesoleusTRIwasdownregulatedwhenprimaryratmyotubesweremusclesuggestingthatthehigherlevelsofActRIIBintheEDLelectricallystimulatedandupregulatedinadultratmuscle72hmusclecouldprimeitforgreatersensitivitytotheligandafterdenervation(75).Thuscarefuldissectionoftheroleofcomparedwiththesoleusmuscle.
TGF-signalingintheseinvivocontextsiswarrantedtoWhileMendiasetal.(55)havefurtherunderstandtheroleplayedbytheendogenouscytokine./ϪreportedanincreaseinstrengthoftheEDLofMstnϪnullmice,thereissomeNearlythreedecadeshavepassedsincethepotenteffectsofconflictinthisareasinceanotherstudyreportedthatMstnϪ/ϪTGF-onmyogenesiswerefirstreportedandonlyrecentlyhasnullmicedonothaveincreasedPogenerationintheirEDLaninvivoroleforTGF-beguntobeelucidated.Futuremusclecomparedwithwild-typemicedespitetheirlargerstudiesusingtissue-specificgenetargetingandthediscoveryofmusclemass(4).However,consistentwithotherstudies,thenewTGF-pathwaymediatorsmayfurtherelucidatetherolesPointhemyostatin-nullstatewasreducedcomparedwiththatofTGF-inskeletalmuscle.
oftheirwild-typelittermates.Aswell,thePowasslightlyhigherintheEDLmuscleoftheMstnϪ/ϪmicecomparedwithMYOSTATINSIGNALINGINSKELETALMUSCLE
thewild-typemice.FurthercomparisonofthecontractileWhiletherelevanceofTGF-propertiesoftheEDLmusclefromMstnϪ/Ϫandwild-type1invivohasjustbeguntobeunderstood,theinvivoimportanceofmyostatinwasobviousmiceexhibiteddifferencesϪinsingletwitchcharacteristics.fromtheearlyphaseofitsdiscovery.However,characteriza-EDLmusclefromMstnϪ/micecontractedandrelaxedfastertionoftheintracellularsignalingpathwayformyostatinisstillduringasingletwitch(4).
initsinfancy.MuchofwhatisknownhasbeeninferredbyAgreaterproportionoftypeIIbfibersintheMstnϪ/ϪmiceknowledgeoftheTGF-signalingpathwaybuttheremaystillcanexplaintheshortercontractionandrelaxationtimesre-besomesurprisestounfoldsincestudiesarenowidentifyingported.AssessedϪ/byϪmyosinheavychain(MHC)isoformdifferencesinTGF-expression,MstnmicehadlessIIaandIIxfibersinEDL,1andmyostatinsignaling(31).
Myostatin:aroleinvivo.Myostatinnullmice(MstnϪ/Ϫ)buthadmoreIIbfibersthanthewild-typemice(4,21).Inthehaveprovedtobeanexcellentmodelforunderstandingthesoleusmuscle,MstnϪ/ϪmicehadlessIIamRNA,butmoreIIxgeneticroleofmyostatinduringbothmuscledevelopmentandandIIbmRNAthanthewildtype,althoughthischangeatthepostnatalmusclephysiology(52).InadditiontoalterationsinmRNAlevelneedstobeconfirmedattheproteinlevel.musclemass,changesinfibercontractileproperties,fibertype,However,functionalassessmentusingATPasestainingandandfiberrecoveryhavenowbeenreportedinthisgeneticsuccinatedehydrogenase(SDH)activitydidconfirmashiftmodel(4,55,79).
towardmorefastfibersandglycolyticfibers,respectively(21).InadditiontotheincreasedmusclemassanddecreasedfatinTheanalysisofoxidativeenzymesintheEDLmusclereportedtheMstnϪ/Ϫmicetherearealsocorrespondingincreasesinadecreaseinmitochondrialenzymes,SDH,cytochromeoxi-strengthandchangesinfibertypedistributionwithashiftdase(COX),andNADHreductase,intheMstnϪ/ϪmicetowardthetypeconsistentwiththeshifttofastglycolyticIIbfibers.Further-Ϫ/ϪIIbfibers.Furthermore,thecontractileprop-ertiesofMstnmicedifferedfromheterozygous(Mstnϩ/Ϫ)more,thenumberofmitochondriaperunitareawasreduced.andwild-typemice(55).InphysiologicalstudiesofskeletalTakentogetherthesedatasuggestthatmodificationofmusclederivedfromthemice,theextensordigitorumlongusmyostatinlevelsdoesalteradultmusclecontractileproperties.(EDL)muscleandthesoleusmuscleareoftenusedasindica-Reducedmyostatinlevelshavebeenshowntobepotentiallytorsoffasttwitchandslowtwitchmusclefibers,respectively.beneficialinagingmuscle.ComparingolderMstnϪ/ϪϪmice/Ϫ(24Invitrocontractilemo)toolderwild-typemiceitwasshownthatMstnmice/ϪanalysisofEDLandsoleusmusclesfromwild-type,Mstnϩ,andMstnϪ/Ϫmicerevealedthatthemax-hadlessIIbfibersandsizelossescomparedwithwild-typemice(70).Geneticremovalofmyostatinfromconceptionimumtetanicforce(Po)intheEDLmuscleandsoleusmuscleexhibitsprofoundeffectsonmusclemassandfibertype,butwasgreaterintheMstnϪ/Ϫthaninthewild-typeanimals(55).anotherextantquestionconcernswhetherpostnatalmyostatinAdditionally,thespecificmaximumtetanicforce(sPo;cor-repressioncanalsohavethesameeffects.ReducingmyostatinrectedϪ/forϪcrosssectionalarea,N/mm2)wasreducedintheinmicepostweaningthroughtheuseofmyostatinneutralizingMstncomparedwiththewild-typeEDLmuscle.However,antibodies,orbypostnatalconditionalgenetictargeting,alsointhe/Ϫsoleus,nodifferencewasfoundinthesPooftheleadstoincreasedmusclemass(77–79).DependingontheMstnϪcomparedwithmicewiththewild-typegenotype.Inlengthoftreatmentandtheageofthemicethereisa10–30%thecaseoftheEDLmuscle,thephenomenonofdecreasedsPoincreaseinmusclemasswithneutralizingantibodies(77).withincreasedPooccursbecauseasthewholemusclecrossWhittemoreandcolleagues(79)reportedthatmicetreatedwithsectionalareaincreasestheangleofpennationbymusclefibers
neutralizingantibodieshadincreasedskeletalmusclemassand
JApplPhysiol•VOL
104•MARCH2008•
www.jap.org
Downloaded from jap.physiology.org on April 6, 2012InvitedReview584
TGF-ANDMYOSTATINSIGNALINGINSKELETALMUSCLE
increasedgripstrength.Critically,thiswasthefirststudyinmyostatinasanegativeregulatoroffibersize.However,thepostnatalanimalstoshowthatrepressingmyostatinsignalingdecreaseinmyostatinmRNAduringrunningismoredifficultnotonlyincreasesmusclemassbutalsoenhancesfunctionaltoreconcileasonewouldexpectmyostatinlevelstoincreasemusclestrength.Recently,postnatalconditionalgenetictarget-withthisperturbation.
ingofmyostatinalsoshowedincreasemusclemass(78).OlderApossiblemechanismforexercisemodulationofmyostatinmicethathaveceasednormalmusclegrowthalsorespondtomRNAmaybethroughcalcium-dependentsignalingviacal-myostatinrepressionwithincreasedmusclemassbuttoalessercineurin.Calcineurinisacalcium-dependentphosphatasethatdegree.Additionally,short-terminhibitionofmyostatininhasbeenshowntoplayakeyroleinthecontrolofmusclegeneagedmice(14–16mo)enhancedmuscleregenerationandexpressionbyitsregulationofthenuclearfactorofactivatedactivatedsatellitecellactivation(71).Sinceoldermiceretaintranscription(NFAT)transcriptionalregulator(10).Myostatinthecapabilitytorespondtomyostatinrepressionwithin-creasedmusclemassitistantalizingtoconsiderthepossibilitymRNAwasreducedinmouseplantarismusclethatwasover-oftreatingsarcopenia,age-relatedlossofmusclemassandloaded.However,whencalcineurinisinhibitedthroughtheusestrength,byinhibitingmyostatin.ThesefindingsindicatethatofcyclosporinA,myostatinmRNAwasmaintainedatnormalrepressionofmyostatincouldprofferatreatmentforsarcope-levels,suggestingthatcalcineurinmayplayapotentiallyim-nia.Furthermore,inhibitingthemyostatinpathwayusingtheportantroleintheregulationofmyostatinlevelsduringiSmadscouldbeanotherpotentiallytherapeuticstrategyformuscleremodeling(56,57).Furthermore,expressionofmaintainingmusclemassinageinganimals.
constitutivelyactivatedcalcineurinintransgenicmicere-Inconcertwiththefunctionalconsequenceoflossofmyo-sultsinhigherlevelsofmyostatinmRNAlevels(56).Instatinsignaling,whenmyostatinsignalingisincreased,miceaddition,anumberofexperimentalmanipulationsthatresultundergoapredictedseveremuscleloss.Inexperimentsininreducedlevelsofcalcineurinactivity,suchascalmodu-whichmiceweresystemicallyadministeredmyostatin,pro-lin-bindingprotein(CaMBP)-overexpressingmice,parvalbu-nouncedskeletalmusclelosswasobserved(83).Thesemicemin-overexpressingmice,andNFATc2nullmicealsoexhib-exhibitedsymptomssimilartothoseofcachexia,whichoccursitedreducedmyostatinmRNAlevels(56).Collectively,theseinmanydiseasestatessuchascancer,heartfailure,AIDS,anddataclearlyindicateaconnectionbetweencalcineurinactivitysepsis.ThusitisnowbecomingclearthatmyostatinhastheandmyostatinmRNAlevels.
capacitytoactasaspecificandpotentnegativeregulatorofThenextand,probably,mostimportantquestiontoaddressskeletalmusclemassduringdevelopment,whichisalsopar-iswhetherthealterationinmyostatinlevelsisfundamentaltoalleledinpostnatalskeletalmuscle.
theadaptationofthemuscleinthesecontexts.ThequestionasRecently,severalstudieshaveimplicatedmodulationoftowhethermyostatinlevelsarefunctionallylinkedtomusclemyostatinmRNAlevelsinresponsetoalteredfunctionalde-performanceisindeedintriguing.Arecentstudysuggeststhatmandimposedbyexercisetraining.Itisclearthatresistanceitmaybe,basedontheobservationthatinaparticularbreedoftrainingrepressesmyostatinmRNA.Long-termresistanceracingdogs(whippets),performancecharacteristicswerecor-trainingreducesmyostatinlevelsinrodentsandhumans(20,relatedwithamutationinthemyostatingeneinthatthedogs67).Anacuteboutofresistanceexercisealsoinhibitsmyosta-withthemutationarefasterthanthosewiththewild-typealleletinmRNAexpressioninrodentsandhumans(25,29).Further-(58).Thisisthefirstreportofmyostatingenemutationleadingmore,resistancetrainingmitigatesatrophyandincreasesintoenhancedathleticperformance.Althoughincreasedmusclemyostatincausedbyskeletalmuscleunloadinginrodents(1).massandstrengthinmyostatinnullanimalsisfirmlyestab-Interestingly,hypertrophiccapabilityofanindividualhadnolished,therehasbeenlittleevidencetodatethatitnecessarilyimpactonthelevelofmyostatinreductioncausedbyresistancetranslatestoincreasedathleticperformance.Withregardtothisexercise(30).Thusbothlong-termandacuteresistancetrain-issue,whippetsheterozygousforamutantcopyofmyostatininginhibitmyostatinmRNAexpression.However,individuals(mh/ϩ)aremoremuscularthannormalwhippets,ϳ20%morewithgreaterhypertrophyinresponsetotrainingdidnotmass/heightcomparedwithnormals,andareamongthefastest,concomitantlyhavethelowestlevelsofmyostatin.
asdeterminedbytheirracinggrade.Interestingly,whippetsTheeffectofsubmaximalintensityrunningexerciseonhomozygousforthemutantcopyofmyostatin(mh/mh)aremyostatinmRNAlevelshasalsobeenreported(41).Acuteconsiderablymoremuscular(60%moremass/height)com-boutsofbothresistanceexercise(3setsof10paredwithnormalwhippets,butwerenotasfastasthe70%1RM)andsubmaximalrunning(75%V
˙repetitionsat
heterozygousdogs.ThusitisimportanttoconsiderthattheO2maxfor30min)reducedmyostatinmRNAlevelsinyounguntrainedpartici-balancebetweenmusclemassandmuscularperformancemaypants.Postexercisetimepointscomparingthetwomodesofbemoreoptimalintheheterozygousratherthanthehomozy-acuteexerciseshowedthatresistanceexercisehasamoregousnullstate.
pronouncedandlongersuppressionofmyostatin.Resistanceexercisereducedmyostatinoversixfoldfor23h(1–24hFUTUREPERSPECTIVES
postexercise)whilesubmaximalrunningdecreasedmyostatinRepressingTGF-andmyostatinsignalinginmusclecouldoverthreefoldfor3h(8–12hpostexercise).Myostatinexpres-havepotentialtherapeuticapplicationssincebothTGF-andsionissuppressedbybothresistanceexerciseandrunning,butmyostatinactivityareelevatedinavarietyofclinicalcondi-withtheformerbeingamuchmorerobustsuppressor.Thustionsassociatedwithmuscleloss.IncreasedTGF-signalingthesedataimplicateaninversecorrelationbetweenexerciseinmicedeficientinfibrillin-1haveimpairedskeletalmuscletrainingandmyostatinmRNAlevelsinavarietyofexerciseregeneration(11).Acorrelationbetweenenhancedmyostatinregimens.DecreasesinmyostatinmRNAlevelsinresponsetolevelsandmuscleatrophyhasalsobeenobservedinAIDSresistanceexerciseareconsistentwiththeknownroleof
(23),bedrest(81),limbunloading,andexposuretomicro-JApplPhysiol•VOL
104•MARCH2008•
www.jap.org
Downloaded from jap.physiology.org on April 6, 2012InvitedReview
TGF-ANDMYOSTATINSIGNALINGINSKELETALMUSCLE
585
gravity(34).TheseobservationspositionmyostatinasastrongattenuatesTGF-beta-inducedfailureofmuscleregenerationinmultipletherapeutictargetformanipulatingphenotypicmusclemassinmyopathicstates.NatMed13:204–210,2007.
diseasestatesandthroughoutthemammalianlifespan.Con-12.
CookDR,DoumitME,MerkelRA.Transforminggrowthfactor-beta,troversially,preliminaryevidenceindogsindicatesthatmyo-basicfibroblastgrowthfactor,andplatelet-derivedgrowthfactor-BBstatininhibitionmayalsopotentiallyhaveergogenicpropertiesinteracttoaffectproliferationofclonallyderivedporcinesatellitecells.JCellPhysiol157:307–312,1993.
forathleticperformanceineventsthatrequirestrengthand13.CossuG,BiressiS.Satellitecells,myoblastsandotheroccasionalpowersuchassprinting.
myogenicprogenitors:possibleorigin,phenotypicfeaturesandroleinOnthemolecularmechanisticlevel,muchworkstillneedsmuscleregeneration.SeminCellDevBiol16:623–631,2005.
tobedonetofullyunderstandtheintracellularmechanismsof14.
Cusella-DeAngelisMG,MolinariS,LeDA,ColettaM,VivarelliE,BoucheM,MolinaroM,FerrariS,CossuG.DifferentialresponseoftheTGF-andmyostatinsignalingpathwaysinskeletalmus-embryonicandfetalmyoblaststoTGFbeta:apossibleregulatorymech-cle.Todate,veryfewTGF-ormyostatintargetgeneshaveanismofskeletalmusclehistogenesis.Development120:925–933,1994.beenannotatedandthisanalysisneedstobecarriedoutona15.
DeAngelisL,BorghiS,MelchionnaR,BerghellaL,Baccarani-Contrigenomewidelevel.ClearlythereareoverlappingbutalsoM,PariseF,FerrariS,CossuG.Inhibitionofmyogenesisbytransform-distinctfeaturesofthesignalinginitiatedbythesetwocyto-inggrowthfactorbetaisdensity-dependentandrelatedtothetranslocationoftranscriptionfactorMEF2tothecytoplasm.ProcNatlAcadSciUSAkinesthatmayresultfromcommonanddivergentmodulation95:12358–12363,1998.
ofgeneexpressionprograms.Also,theroleoftheinhibitor16.
DietzHC,CuttingGR,PyeritzRE,MaslenCL,SakaiLY,CorsonSmads,suchasSmad7,areintriguingbecauseoftheircapacityGM,PuffenbergerEG,HamoshA,NanthakumarEJ,CurristinSM.toreversethesignalinganddramaticallyimpingeonmuscleMarfansyndromecausedbyarecurrentdenovomissensemutationinthecelldifferentiationandgrowth(31).
fibrillingene.Nature352:337–339,1991.
17.FengXH,DerynckR.SpecificityandversatilityinTGF-signalingManipulationofTGF-andmyostatinsignalingthusholdsthroughSmads.AnnuRevCellDevBiol21:659–693,2005.
considerablepromiseforthemodulationofskeletalmuscle18.
FlandersKC,LudeckeG,EngelsS,CisselDS,RobertsAB,Kondaiahmassandstrength.ThismayhaveimportantimplicationsforP,LafyatisR,SpornMB,UnsickerK.Localizationandactionsofskeletalmuscleregenerationindiseaseorinjurystatesandalsotransforminggrowthfactor-sintheembryonicnervoussystem.Devel-forskeletalmusclemaintenanceintheageingpopulation.
opment113:183–191,1991.
19.
FloriniJR,RobertsAB,EwtonDZ,FalenSL,FlandersKC,SpornMB.Transforminggrowthfactor-.AverypotentinhibitorofmyoblastGRANTS
differentiation,identicaltothedifferentiationinhibitorsecretedbyBuffaloratlivercells.JBiolChem261:16509–16513,1986.
ThisworkissupportedbygrantstoJ.C.McDermottfromtheCanadian20.
GarmaT,KobayashiC,HaddadF,AdamsGR,BodellPW,BaldwinInstitutesofHealthResearch(CIHR)andtheNaturalSciencesandEngineer-KM.Similaracutemolecularresponsestoequivalentvolumesofisomet-ingResearchCouncil(NSERC)ofCanada.ric,lengthening,orshorteningmoderesistanceexercise.JApplPhysiol102:135–143,2007.
REFERENCES
21.
GirgenrathS,SongK,WhittemoreLA.Lossofmyostatinexpressionaltersfiber-typedistributionandexpressionofmyosinheavychainiso-1.AdamsGR,HaddadF,BodellPW,TranPD,BaldwinKM.Combinedformsinslow-andfast-typeskeletalmuscle.MuscleNerve31:34–40,isometric,concentric,andeccentricresistanceexercisepreventsunloading2005.
inducedmuscleatrophyinrats.JApplPhysiol103:1644–1654,2007.22.GoetschSC,HawkeTJ,GallardoTD,RichardsonJA,GarryDJ.2.AlevizopoulosA,MermodN.Transforminggrowthfactor-beta:theTranscriptionalprofilingandregulationoftheextracellularmatrixduringbreakingopenofablackbox.Bioessays19:581–591,1997.
muscleregeneration.PhysiolGenomics14:261–271,2003.
3.AllenRE,BoxhornLK.Regulationofskeletalmusclesatellitecell23.
Gonzalez-CadavidNF,TaylorWE,YarasheskiK,Sinha-HikimI,Maproliferationanddifferentiationbytransforminggrowthfactor-beta,insu-K,EzzatS,ShenR,LalaniR,AsaS,MamitaM,NairG,ArverS,lin-likegrowthfactorI,andfibroblastgrowthfactor.JCellPhysiol138:BhasinS.Organizationofthehumanmyostatingeneandexpressionin311–315,1989.
healthymenandHIV-infectedmenwithmusclewasting.ProcNatlAcad4.AmthorH,MachariaR,NavarreteR,SchuelkeM,BrownSC,OttoA,SciUSA95:14938–14943,1998.
VoitT,MuntoniF,VrbovaG,PartridgeT,ZammitP,BungerL,24.GreeneEA,AllenRE.GrowthfactorregulationofbovinesatellitecellPatelK.Lackofmyostatinresultsinexcessivemusclegrowthbutgrowthinvitro.JAnimSci69:146–152,1991.
impairedforcegeneration.ProcNatlAcadSciUSA104:1835–1840,25.HaddadF,AdamsGR.Aging-sensitivecellularandmolecularmecha-2007.
nismsassociatedwithskeletalmusclehypertrophy.JApplPhysiol100:5.AttisanoL,SilvestriC,IzziL,LabbeE.Thetranscriptionalroleof1188–1203,2006.
SmadsandFAST(FoxH1)inTGFbetaandactivinsignalling.MolCell26.HawkeTJ,GarryDJ.Myogenicsatellitecells:physiologytomolecularEndocrinol180:3–11,2001.
biology.JApplPhysiol91:534–551,2001.
6.BarashIA,MathewL,LaheyM,GreaserML,LieberRL.MuscleLIM27.JayaramanL,MassagueJ.DistinctoligomericstatesofSMADproteinsproteinplaysbothstructuralandfunctionalrolesinskeletalmuscle.AmJinthetransforminggrowthfactor-betapathway.JBiolChem275:40710–PhysiolCellPhysiol289:C1312–C1320,2005.
40717,2000.
7.BlackBL,OlsonEN.Transcriptionalcontrolofmuscledevelopmentby28.KambadurR,SharmaM,SmithTP,BassJJ.Mutationsinmyostatinmyocyteenhancerfactor-2(MEF2)proteins.AnnuRevCellDevBiol14:(GDF8)indouble-muscledBelgianBlueandPiedmontesecattle.Genome167–196,1998.
Res7:910–916,1997.
8.BrennanTJ,EdmondsonDG,LiL,OlsonEN.Transforminggrowth29.KimJS,CrossJM,BammanMM.ImpactofresistanceloadingonfactorbetarepressestheactionsofmyogeninthroughamechanismmyostatinexpressionandcellcycleregulationinyoungandoldermenandindependentofDNAbinding.ProcNatlAcadSciUSA88:3822–3826,women.AmJPhysiolEndocrinolMetab288:E1110–E1119,2005.1991.
30.
KimJS,PetrellaJK,CrossJM,BammanMM.Load-mediateddown-9.ChargeSB,RudnickiMA.CellularandmolecularregulationofmuscleregulationofmyostatinmRNAisnotsufficienttopromotemyofiberregeneration.PhysiolRev84:209–238,2004.
hypertrophyinhumans:aclusteranalysis.JApplPhysiol103:1488–10.ChinER,OlsonEN,RichardsonJA,YangQ,HumphriesC,Shelton
1495,2007.
JM,WuH,ZhuW,Bassel-DubyR,WilliamsRS.Acalcineurin-31.KolliasHD,PerryRL,MiyakeT,AzizA,McDermottJC.Smad7dependenttranscriptionalpathwaycontrolsskeletalmusclefibertype.promotesandenhancesskeletalmuscledifferentiation.MolCellBiol26:GenesDev12:2499–2509,1998.
6248–6260,2006.
11.CohnRD,vanEC,HabashiJP,SoleimaniAA,KleinEC,LisiMT,
32.
KuangS,KurodaK,LeGF,RudnickiMA.Asymmetricself-renewalGamradtM,ApRhysCM,HolmTM,LoeysBL,RamirezF,Judgeandcommitmentofsatellitestemcellsinmuscle.Cell129:999–1010,DP,WardCW,DietzHC.AngiotensinIItype1receptorblockade
2007.
JApplPhysiol•VOL
104•MARCH2008•
www.jap.org
Downloaded from jap.physiology.org on April 6, 2012InvitedReview586
TGF-ANDMYOSTATINSIGNALINGINSKELETALMUSCLE
33.KubotaT,ZhangQ,WranaJL,BerR,AubinJE,ButlerWT,Sodek
58.MosherDS,QuignonP,BustamanteCD,SutterNB,MellershCS,
J.MultipleformsofSppI(secretedphosphoprotein,osteopontin)synthe-ParkerHG,OstranderEA.Amutationinthemyostatingeneincreasessizedbynormalandtransformedratbonecellpopulations:regulationbymusclemassandenhancesracingperformanceinheterozygotedogs.PLoSTGF-beta.BiochemBiophysResCommun162:1453–1459,1989.
Genet3:e79,2007.
34.LalaniR,BhasinS,ByhowerF,TarnuzzerR,GrantM,ShenR,Asa
59.OlsonEN,SternbergE,HuJS,SpizzG,WilcoxC.Regulationof
S,EzzatS,Gonzalez-CadavidNF.Myostatinandinsulin-likegrowthmyogenicdifferentiationbytypebetatransforminggrowthfactor.JCellfactor-Iand-IIexpressioninthemuscleofratsexposedtothemicrograv-Biol103:1799–1805,1986.
ityenvironmentoftheNeuroLabspaceshuttleflight.JEndocrinol167:60.PotthoffMJ,ArnoldMA,McAnallyJ,RichardsonJA,Bassel-Duby
417–428,2000.
R,OlsonEN.Regulationofskeletalmusclesarcomereintegrityand35.LeeSJ.Regulationofmusclemassbymyostatin.AnnuRevCellDevBiol
postnatalmusclefunctionbyMef2c.MolCellBiol27:8143–8151,2007.20:61–86,2004.
61.PownallME,GustafssonMK,EmersonCPJr.Myogenicregulatory
36.LeeSJ,McPherronAC.Regulationofmyostatinactivityandmuscle
factorsandthespecificationofmuscleprogenitorsinvertebrateembryos.growth.ProcNatlAcadSciUSA98:9306–9311,2001.
AnnuRevCellDevBiol18:747–783,2002.
37.LeeSJ,McPherronAC.Myostatinandthecontrolofskeletalmuscle
62.QuinnZA,YangCC,WranaJL,McDermottJC.Smadproteins
mass.CurrOpinGenetDev9:604–607,1999.
functionasco-modulatorsforMEF2transcriptionalregulatoryproteins.38.LiY,FosterW,DeasyBM,ChanY,PriskV,TangY,CumminsJ,
NucleicAcidsRes29:732–742,2001.
HuardJ.Transforminggrowthfactor-beta1inducesthedifferentiationof63.RebbapragadaA,BenchabaneH,WranaJL,CelesteAJ,AttisanoL.
myogeniccellsintofibroticcellsininjuredskeletalmuscle:akeyeventinMyostatinsignalsthroughatransforminggrowthfactorbeta-likesignalingmusclefibrogenesis.AmJPathol164:1007–1019,2004.
pathwaytoblockadipogenesis.MolCellBiol23:7230–7242,2003.39.LiuD,BlackBL,DerynckR.TGF-betainhibitsmuscledifferentiation
64.RiosR,CarneiroI,ArceVM,DevesaJ.Myostatinisaninhibitorof
throughfunctionalrepressionofmyogenictranscriptionfactorsbySmad3.myogenicdifferentiation.AmJPhysiolCellPhysiol282:C993–C999,GenesDev15:2950–2966,2001.
2002.
40.LiuD,KangJS,DerynckR.TGF-beta-activatedSmad3represses
65.RobertsAB,AnzanoMA,LambLC,SmithJM,SpornMB.Newclass
MEF2-dependenttranscriptioninmyogenicdifferentiation.EMBOJ23:oftransforminggrowthfactorspotentiatedbyepidermalgrowthfactor:1557–1566,2004.
isolationfromnon-neoplastictissues.ProcNatlAcadSciUSA78:5339–41.LouisES,RaueU,YangY,JemioloB,TrappeSW.Timecourseof
5343,1981.
proteolytic,cytokine,andmyostatingeneexpressionafteracuteexercise66.RobertsAB,FlandersKC,HeineUI,JakowlewS,KondaiahP,Kim
inhumanskeletalmuscle.JApplPhysiol103:1744–1751,2007.
SJ,SpornMB.Transforminggrowthfactor-beta:multifunctionalregula-42.MarchitelliC,SavareseMC,CrisaA,NardoneA,MarsanPA,Val-torofdifferentiationanddevelopment.PhilosTransRSocLondBBiolScientiniA.DoublemusclinginMarchigianabeefbreediscausedbyastop327:145–154,1990.
codoninthethirdexonofmyostatingene.MammGenome14:392–395,67.RothSM,MartelGF,FerrellRE,MetterEJ,HurleyBF,RogersMA.
2003.
Myostatingeneexpressionisreducedinhumanswithheavy-resistance43.MartinJF,LiL,OlsonEN.Repressionofmyogeninfunctionby
strengthtraining:abriefcommunication.ExpBiolMed228:706–709,TGF-beta1istargetedatthebasichelix-loop-helixmotifandisindepen-2003.
dentofE2Aproducts.JBiolChem267:10956–10960,1992.
68.SchuelkeM,WagnerKR,StolzLE,HubnerC,RiebelT,KomenW,
44.MassagueJ.TGF-betasignaltransduction.AnnuRevBiochem67:753–
BraunT,TobinJF,LeeSJ.Myostatinmutationassociatedwithgross791,1998.
musclehypertrophyinachild.NEnglJMed350:2682–2688,2004.45.MassagueJ.HowcellsreadTGF-betasignals.NatRevMolCellBiol
69.SharmaM,KambadurR,MatthewsKG,SomersWG,DevlinGP,
1:169–178,2000.
ConaglenJV,FowkePJ,BassJJ.Myostatin,atransforminggrowth46.MassagueJ.Thetransforminggrowthfactor-betafamily.AnnuRevCell
factor-betasuperfamilymember,isexpressedinheartmuscleandisBiol6:597–641,1990.
upregulatedincardiomyocytesafterinfarct.JCellPhysiol180:1–9,1999.47.MassagueJ,CheifetzS,EndoT,Nadal-GinardB.Typebetatrans-70.SiriettV,PlattL,SalernoMS,LingN,KambadurR,SharmaM.
forminggrowthfactorisaninhibitorofmyogenicdifferentiation.ProcProlongedabsenceofmyostatinreducessarcopenia.JCellPhysiol209:NatlAcadSciUSA83:8206–8210,1986.
866–873,2006.
48.MassagueJ,GomisRR.ThelogicofTGFsignaling.FEBSLett580:
71.SiriettV,SalernoMS,BerryC,NicholasG,BowerR,KambadurR,
2811–2820,2006.
SharmaM.Antagonismofmyostatinenhancesmuscleregeneration49.MaxwellLC,FaulknerJA,HyattGJ.Estimationofnumberoffibersin
duringsarcopenia.MolTher15:1463–1470,2007.
guineapigskeletalmuscles.JApplPhysiol37:259–264,1974.
72.SmithCA,StauberF,WatersC,AlwaySE,StauberWT.Transform-50.McDermottJC,CardosoMC,YuYT,AndresV,LeiferD,KraincD,
inggrowthfactor-betafollowingskeletalmusclestraininjuryinrats.LiptonSA,Nadal-GinardB.hMEF2Cgeneencodesskeletalmuscle-JApplPhysiol102:755–761,2007.
andbrain-specifictranscriptionfactors.MolCellBiol13:2564–2577,73.SparksRL,ScottRE.Transforminggrowthfactortypebetaisaspecific
1993.
inhibitorof3T3Tmesenchymalstemcelldifferentiation.ExpCellRes51.McFarlaneC,PlummerE,ThomasM,HennebryA,AshbyM,Ling
165:345–352,1986.
N,SmithH,SharmaM,KambadurR.Myostatininducescachexiaby74.TenDijkeP,GoumansMJ,ItohF,ItohS.Regulationofcellprolifer-activatingtheubiquitinproteolyticsystemthroughanNF-kappaB-inde-ationbySmadproteins.JCellPhysiol191:1–16,2002.
pendent,FoxO1-dependentmechanism.JCellPhysiol209:501–514,75.UgarteG,BrandanE.Transforminggrowthfactorbeta(TGF-beta)
2006.
signalingisregulatedbyelectricalactivityinskeletalmusclecells.52.McPherronAC,LawlerAM,LeeSJ.Regulationofskeletalmuscle
TGF-betatypeIreceptoristranscriptionallyregulatedbymyotubeexcit-massinmicebyanewTGF-betasuperfamilymember.Nature387:83–90,ability.JBiolChem281:18473–18481,2006.
1997.
76.VaidyaTB,RhodesSJ,TaparowskyEJ,KoniecznySF.Fibroblast
53.McPherronAC,LeeSJ.Suppressionofbodyfataccumulationin
growthfactorandtransforminggrowthfactorbetarepresstranscriptionofmyostatin-deficientmice.JClinInvest109:595–601,2002.
themyogenicregulatorygeneMyoD1.MolCellBiol9:3576–3579,1989.54.McPherronAC,LeeSJ.Doublemusclingincattleduetomutationsin
77.WalshFS,CelesteAJ.Myostatin:amodulatorofskeletal-musclestem
themyostatingene.ProcNatlAcadSciUSA94:12457–12461,1997.cells.BiochemSocTrans33:1513–1517,2005.
55.MendiasCL,MarcinJE,CalerdonDR,FaulknerJA.Contractile
78.WelleS,BhattK,PinkertCA,TawilR,ThorntonCA.Musclegrowth
propertiesofEDLandsoleusmusclesofmyostatin-deficientmice.JApplafterpostdevelopmentalmyostatingeneknockout.AmJPhysiolEndocri-Physiol101:898–905,2006.
nolMetab292:E985–E991,2007.
56.MichelRN,ChinER,ChakkalakalJV,EiblJK,JasminBJ.Ca2ϩ/
79.WhittemoreLA,SongK,LiX,AghajanianJ,DaviesM,Girgenrath
calmodulin-basedsignallingintheregulationofthemusclefibrepheno-S,HillJJ,JalenakM,KelleyP,KnightA,MaylorR,O’HaraD,typeanditstherapeuticpotentialviamodulationofutrophinAandPearsonA,QuaziA,RyersonS,TanXY,TomkinsonKN,Veldmanmyostatinexpression.ApplPhysiolNutrMetab32:921–929,2007.
GM,WidomA,WrightJF,WudykaS,ZhaoL,WolfmanNM.57.MichelRN,DunnSE,ChinER.Calcineurinandskeletalmusclegrowth.
InhibitionofmyostatininadultmiceincreasesskeletalmusclemassandProcNutrSoc63:341–349,2004.
strength.BiochemBiophysResCommun300:965–971,2003.
JApplPhysiol•VOL
104•MARCH2008•
www.jap.org
Downloaded from jap.physiology.org on April 6, 2012InvitedReview
TGF-ANDMYOSTATINSIGNALINGINSKELETALMUSCLE
587
M,NakashimaK,TakedaK,OchiaiW,TakizawaT,
82.ZhuX,TopouzisS,LiangLF,StotishRL.Myostatinsignalingthrough
M,TakizawaM,ShibuyaH,TagaT.InhibitionofBMP2-induced,Smad2,Smad3andSmad4isregulatedbytheinhibitorySmad7byakinase-mediatedneuriteoutgrowthbySmad6andSmad7.Genesnegativefeedbackmechanism.Cytokine26:262–272,2004.
6:1091–1099,2001.
83.ZimmersTA,DaviesMV,KoniarisLG,HaynesP,EsquelaAF,
JJ,SmithSR,Sinha-HikimI,Gonzalez-CadavidN,Bhasin
TomkinsonKN,McPherronAC,WolfmanNM,LeeSJ.Inductionofmyostatin-immunoreactiveproteinisincreasedafterprolongedcachexiainmicebysystemicallyadministeredmyostatin.Science296:restwithlow-doseT3administration.JGravitPhysiol6:11–15,1999.
1486–1488,2002.
JApplPhysiol•VOL
104•MARCH2008•
www.jap.org
Downloaded from jap.physiology.org on April 6, 201280.YanagisawaUenoTAK1Cells81.ZachwiejaS.Plasmabed
因篇幅问题不能全部显示,请点此查看更多更全内容