2017年12月
Journal of Shanghai University of Electric Power
上海电力学院学报
Vol.33,No.6Dec. 2017
DOI: 10. 3969/j. issn. 1006 -4729.2017. 06. 014
影响IEEE 1588时钟同步精度的关键因素
赵勇,高彦杰
(上海电力学院电子与信息工程学院,上海200090)
摘要:针对
IEE 1588精确时钟同步协议及系统仿真模型进行了深人的研究.研究结果表明,主时钟或从时
钟的晶振漂移对同步精度误差产生相同程度的影响,仅主时钟(或从时钟)晶振漂移参数变化与同步精度误 差变化关系近似为线性,其变化率约为4. 0 0 10 _5,同步周期时间对同步精度误差影响可分为两个部分,当同 步周期小于1.6 s时,对精度误差影响相对较小;而当同步周期大于1.8 s时,同步精度误差随同步周期增加 呈现急剧上升的趋势.
关键词:晶振漂移;IEE 1588协议;同步周期中图分类号:TN919.34;TP73.5
文献标志码:A
文章编号:1006 -4729(2017)06 -0581 -05
Analysis of Key Factors Affecting the Accuracy of
IEEE 1588 Clock Synchronization
(School of Electronics and Information Engineering,Shanghai University of Electric Power,Shanghai
ZHAO Yong,GAO Yanjie
200090,China)Abstract : The effects of crystal clock frequency drift and synchronization on synchronizationaccuracy of IEEE 1588 master and slave clocks through simulations ae studied. Results show that frequency drift on the master or slave side has the same impact on synchronization accuracy. Given the changes of frequency drift parameter on only one side,synchronization accuracy curve changes linearly at the rate of 4. 0 x 10_5. The impact by synchronization interval can be regions. When the interval is less than 1.6 seconds,synchronization accuracy changes at a relatively slow rate. When the interval is larger than 1.8 seconds,synchronization accuracy deteriorates dramaticaly.Key words: crystal frequency drift; IEEE 1588 protocol; synchronization interval
随着电力自动化系统的发展和分布式网络 的广泛应用,对于系统的时间同步精度要求越 来越高.比如在线路行波故障测距中要求时间 同步误差小于1 us. IEEE 1588是关于网络测量 和控制系统的精确时间协议[1],可实现高精度
收稿日期:2016 -03 -16
通讯作者简介:赵勇(1991 -),男,在读硕士,安徽宣城人.主要研究方向为IEE 1588协议及其电力系统应用.
divided in
的时间同步.IEEE 1588协议规定了主从时钟通 过周期性地交换带有时间戳的报文,根据这些 报文,从时钟计算出其与主时钟的时间和频率 偏差,通过对从时钟自身进行调整,以达到时钟
同步的目的.目前对IEEE 1588时间同步精度的
E-mail :824752152@ qq. com.
582
上海电力学院学报
2017 年
研究大都以硬件开发平台为主[2],关于
IEEE 时钟晶振精度、同步周期等因素对IEEE 1588同 步系统的时间同步效果的影响,由此提出在实 际应用中可以用来提高同步精度的措施.
1588时间同步的软件仿真平台相对较少,并且 一般都是针对 时钟同步系统仿真模型 IEEE 1588时钟同步系统模型如图1所示. 从功能上可将其分为3个模块,即:晶振模块&协 议模块&从时钟伺服控制模块.晶振模块产生标准 晶振频率和晶振噪声,然后输入到协议模块进行 相应的处理后产生主从时钟时间戳,从时钟伺服 控制模块得到主从时钟时间戳后,进行主从时钟 同步运算,得到从时钟误差调整量,再对从时钟进 行调整,以完成主从时钟同步. 晶振 s[n]+A[n]+y[n] 从时钟 晶振 图1 IEEE 1588时钟同步系统 在幂率谱晶振模型中,5 )的功率谱密度可 表示为: 11晶振模块 现有IEEE 1588协议研究中的晶振模型一 般简化为高斯噪声模型[6].为了更加贴合实际 情况,本文采用了公认的幂率谱晶振模型[7].对 于一个晶振频率源,设标称频率为/〇,瞬时频率 为/,定义瞬时相对频率偏差(晶振噪声)为 5),则 / -/〇 5\")= - sy\"f) = h_J & Gh_J & G 由式(1)可以看出,晶振噪声由5种噪声组 成:h _2项为随机游走调频噪声& h _ 1项为闪变调频 噪声〇项为白色调频噪声项为闪变调相噪 声&h#项为白色调相噪声.在晶振仿真中可以用 高斯白噪声通过不同的整形滤波器得到上述5种 晶振噪声.其幂律谱系数分别为:h_2 i 1. 24e - 赵勇,等!影响IEEE 1588时钟同步精度的关键因素 583 17,#_% i 5. 925e - 16, #$ i 3. 216e - 15, #% i 6.85e-16,#2 =2.18e-17[8]. 1.2 协议模块 IEEE 1588协议的消息传递过程如图2所 示.需要注意的是,该模块有3个时间参考,分 别为主时钟晶振频率、从时钟晶振频率和理想 时钟频率. 图2 IEEE 1588协议从时钟、主时钟和 理想时间之间的关系 图2中,主时钟以VP4为周期发送同步报文, VP4是以主时钟频率为参考的量,相对应,以 时钟频率(/s)为参考时间的量为!-+],以理想频率(/R)为参考时间的量为!)[ + ].它们之间的 关系为: =s^ rVck A- + ] R + ] 一/ M[+]p4⑵ 图2中,主时钟发送SYNC报文时间戳为V ' +],相应的,从时钟计数器时间为8 ' + ],从 时钟接收SYNC报文时间戳为V [ + ],从时钟发 送DELAY_REQDELAY_REQ报文时间戳为V ' + ],主时钟接 收报文时间戳为V' +] •根据 V[+] =V[+ -!] 8+Vck ' + ( =8 [+-1] + A-' + (V[+] =8[+] +%[+] (3) V[+] =V[+] +&s[+]= 8[+] +%s [+] +&s [+] V[+] =V[+] +%M [+] +&M[+] + yM[+] (&) 式中:% [+]—— 从时钟测量的正向延迟,表示报 文由主时钟发送至从时钟所需 &s要的时间; [+]—— 从时钟测量的处理延迟,表示从 时DELAY_DEQ钟接收SYNC报文到发送 报文所需要的时 间; 'M [ + ]—— 主DELAY_DEQ时钟测量的反向延迟,表示 报文从从时钟发 送到主时钟所需要的时间,并且 在V[+]中需要将正向延迟和 处理延迟变换成主时钟时间. 正向延迟、处理延迟和反向延迟的理想时间 量与相应主从时间量之间的换算公式为: (,S[+] =&&^)[+] (') 式中:(^ [ + ]—— 经换算得到的相应主从时间 量; )[+]—— 正向、反向和处理延迟的理想时 间量. 通过上面的分析得到IEEE 1588协议主时钟 和从时钟simulink仿真模型如图3所示. 1.3 从时钟伺服控制模块 从时钟伺服控制系统[9_1()]如图1虚线部分 所示.它首先对协议模块中得到的4个时间戳 (乃,12,13,&)进行如下计算.由主(从)时钟发 送(接受)SYNC报文时间戳得到主从时钟延迟 (/m2DELAY_DEQS):/@2s = V _ V;由从(主)时钟发送(接 受)报文时间得到从主时钟延迟 (/2m):/〇m = V _ V.计算中假设传播延迟是对 称的,这样就产生了消息传播延迟(/p$p )及从时 钟偏移量(/\"ffset): ^prop =— (V -V) \" +(V - V) 从时钟偏移量/\"ff〇t通过零阶保持器和PI控 制器两个模块后产生从时钟的矫正量,再对从 时钟进行调整,使其达到与主时钟同步. 584 上海电力学院学报 2017 年 2 IEEE 1588仿真实验分析 2.1 晶振准确度对同步精度的影响 图4中,当主(从)时钟准确度固定,从(主) 时钟由0到2.0 X 10变化时,时钟同步精度值 不断变大,由此得到主从时钟的晶振准确度越 高,相应的时钟同步系统的收敛精度也越高.因 此,在实际应用中可以尽量提高主从时钟的晶 振精度.因准确度越高成本也越高,故在实际应 用中要根据不同的应用环境选择不同的晶振. 在IEEE 1588时间同步系统中,主从时钟的时钟频率由晶振产生,而对于不同的晶振有着不同的 频率准确度.表1是常见频率标准的准确度. 表1类别 普通型 石英晶体频率标准 温度补偿型单层恒温型双层恒温型 常见频率标准的准确度 频率准确度10 e-510e -6 ~ 10e -810e-7 ~10e-910e-8 ~10e-1010 e-10 ~10 e-1110 e-1210 e-12 ~10 e-13 2.2 同步周期对同步精度的影响 在 IEEE 1588协议中,主时钟周期性地向从 时钟发送同步报文,并通过报文交换,得到完成时 钟同步的数据.这个发送同步报文的周期也就是 主从时钟的同步周期.同步周期是可以人为设定 和调控的.本文通过对同步周期的调整来研究同 步精度的变化情况.其中,同步周期为0.05〜2 s 变化,主从时钟均是50 MHz,±5.0 X10—5晶振, 为了简化,将正向、反向和处理延迟时间均设定为 常数,分别为20e -6 s,1e -6 s,25e -6 s.最终得 到的仿真结果如图5所示. 铷原子频率标准 原子频率 氢原子频率标准 标准 商品型铯原子频率标准 晶振的准确度是分析IEEE 1588时间同步必 须考虑的因素.本仿真将主从时钟晶振的准确度 范围为0〜2.0 X 10 _4,主从时钟标准频率均是50 MHz,同步周期为125 ms.为了简化,将正向、反 向和处理延迟时间均设定为常数,分别为:20e -6 s,1e-6 s,25e-6 s.仿真得到不同准确度的主从 时钟晶振的时钟同步精度三维图如图4所示. 0 0.2 0.4 0.6 0.8 1.0 1.2 1.4 1.6 1.8 2.0 同步周期/ s 图4主从时钟晶振准确度变化 图5同步周期变化对同步精度的影响 赵勇,等:影响IEEE 1588时钟同步精度的关键因素 585 图5中,当时钟同步周期从0.05 ~2 0变化 时,收敛精度值增大,并且时钟同步周期在0.05 / 1.6 s期间,收敛精度以较小增幅增长;当时钟同 步周期在1.6 ~2 S期间,收敛精度突然成指数式 增长.由此可知,同步周期越长,整个时钟同步系 统的收敛效果越差,且在某一个同步时间会发生 指数式的变化.因此,在实际应用中我们要控制同 步周期在一个合理的范围内,尽量控制同步周期 在一个较小的值内. 3 结语 本文引用了一个相对完整并且经过验证的 IEEE 1588时钟同步仿真平台,该平台采用了公 认的晶振模型.以此平台为基础,研究分析了主从 时钟晶振的晶振准确度变化对同步精度效果的影 响,结果表明,主时钟或从时钟的晶振漂移对同步 精度误差产生的影响程度相同,主时钟(或从时 钟)晶振漂移参数变化与同步精度误差变化关系 近似为线性,其变化率约为4.0 0 10 _5.此外,同 步周期时间对同步精度误差影响可分为两个部 分,当同步周期小于1.6 0时,对精度误差影响相 对较小;而当同步周期大于1.8 0时,同步精度误 差随同步时间增加,呈现急剧上升的趋势.下一步 的工作主要是对时钟伺服控制模块中的PI控制 器的参数优化,以及运用滤波器等手段对时钟伺 服控制模块进行优化和改进. 参考文献: '1 ( EIDSON J,KANGL. 1588—2008cision— od and control systems'J] • Irnprirnerie Nouvelle,7 Berth- ,2008(2):98-105.'2]黄健,刘鹏,杨瑞民.IEEE 1588精确时钟同步协议从时钟 设计'!].电子技术应用,2010,36(7):91-97. [3]张城,陈隆道,文昊翔.基于IEEE 1588协议的从时钟同步 控制算法研究'!].工业控制计算机,2012,25(12):83-85.[4 ] VDENEK cientpacketandChaloupka,NAYEF Alsindi,JAMES Aweya. Effi precise simulation model of synchronization clocks in networks'】]. IEEE CAMAD,2013,39(10A):79-83.[5 ] 赵勇,高彦杰• Investigations on simulation platform for IEEE 1588 precision time synchronization[C]//CST,2016.[6 ] FONTANELLI stateD,MACII D,WOLFROM P,( A clock mental estimator for PTP time synchronization in harsh environ conditions[C]//IEEEISPCS,2011:99-104.[7 ] YUANLisong,simulationCHEN generatingXiaolong,WANG Jiali. A practical method for phase noise of oscillators [J]. ICMIC,2013(1) : 132-136. [8 ] 尚红娟.时间频率同步的优化控制方法研究[D].西安:西 安科技大学,2010. [9 ]林永君,李境达,李通,等.基于IEEE 1588协议的从时钟设 计及其控制研究[!].电力科学与工程,2014,30(9):53-58. [10]刘见,靳绍平,李敏,等.基于IEE 1588协议的高精度时 钟对时设计[!].电子技术应用,2014,40(4):48-51. (编辑胡小萍) 因篇幅问题不能全部显示,请点此查看更多更全内容