您好,欢迎来到尚车旅游网。
搜索
您的当前位置:首页2006 - Rabinovich et al. - Dynamical principles in neuroscience - Review of Modern Physics

2006 - Rabinovich et al. - Dynamical principles in neuroscience - Review of Modern Physics

来源:尚车旅游网
REVIEWSOFMODERNPHYSICS,VOLUME78,OCTOBER–DECEMBER2006

Dynamicalprinciplesinneuroscience

MikhailI.Rabinovich*

InstituteforNonlinearScience,UniversityofCalifornia,SanDiego,9500GilmanDrive0402,LaJolla,California92093-0402,USA

PabloVarona

GNB,DepartamentodeIngenieríaInformática,UniversidadAutónomadeMadrid,28049Madrid,SpainandInstituteforNonlinearScience,UniversityofCalifornia,SanDiego,9500GilmanDrive0402,LaJolla,California92093-0402,USA

AllenI.Selverston

InstituteforNonlinearScience,UniversityofCalifornia,SanDiego,9500GilmanDrive0402,LaJolla,California92093-0402,USA

HenryD.I.Abarbanel

DepartmentofPhysicsandMarinePhysicalLaboratory(ScrippsInstitutionofOceanography)andInstituteforNonlinearScience,UniversityofCalifornia,SanDiego,9500GilmanDrive0402,LaJolla,California92093-0402,USA

͑Published14November2006͒

Dynamicalmodelingofneuralsystemsandbrainfunctionshasahistoryofsuccessoverthelasthalfcentury.Thisincludes,forexample,theexplanationandpredictionofsomefeaturesofneuralrhythmicbehaviors.Manyinterestingdynamicalmodelsoflearningandmemorybasedonphysiologicalexperimentshavebeensuggestedoverthelasttwodecades.Dynamicalmodelsevenofconsciousnessnowexist.Usuallythesemodelsandresultsarebasedontraditionalapproachesandparadigmsofnonlineardynamicsincludingdynamicalchaos.Neuralsystemsare,however,anunusualsubjectfornonlineardynamicsforseveralreasons:͑i͒Eventhesimplestneuralnetwork,withonlyafewneuronsandsynapticconnections,hasanenormousnumberofvariablesandcontrolparameters.Thesemakeneuralsystemsadaptiveandflexible,andarecriticaltotheirbiologicalfunction.͑ii͒Incontrasttotraditionalphysicalsystemsdescribedbywell-knownbasicprinciples,firstprinciplesgoverningthedynamicsofneuralsystemsareunknown.͑iii͒Manydifferentneuralsystemsexhibitsimilardynamicsdespitehavingdifferentarchitecturesanddifferentlevelsofcomplexity.͑iv͒Thenetworkarchitectureandconnectionstrengthsareusuallynotknownindetailandthereforethedynamicalanalysismust,insomesense,beprobabilistic.͑v͒Sincenervoussystemsareabletoorganizebehaviorbasedonsensoryinputs,thedynamicalmodelingofthesesystemshastoexplainthetransformationoftemporalinformationintocombinatorialorcombinatorial-temporalcodes,andviceversa,formemoryandrecognition.Inthisreviewtheseproblemsarediscussedinthecontextofaddressingthestimulatingquestions:Whatcanneurosciencelearnfromnonlineardynamics,andwhatcannonlineardynamicslearnfromneuroscience?DOI:10.1103/RevModPhys.78.1213

PACSnumber͑s͒:87.19.La,05.45.Ϫa,84.35.ϩi,87.18.Sn

CONTENTS

I.WhatarethePrinciples?A.Introduction

B.Classicalnonlineardynamicsapproachforneural

systems

C.Newparadigmsforcontradictoryissues

II.DynamicalFeaturesofMicrocircuits:Adaptabilityand

Robustness

A.Dynamicalpropertiesofindividualneuronsand

synapses

1.Neuronmodels

2.Neuronadaptabilityandmultistability

12181218121912181215121712141214

3.Synapticplasticity

4.Examplesofthecooperativedynamicsof

individualneuronsandsynapses

B.RobustnessandadaptabilityinsmallmicrocircuitsC.IntercircuitcoordinationD.ChaosandadaptabilityIII.InformationalNeurodynamics

A.Timeandneuralcodes

1.Temporalcodes

2.Spatiotemporalcodes3.Coexistenceofcodes

4.Temporal-to-temporalinformation

transformation:Workingmemory

B.Informationproductionandchaos

1.Stimulus-dependentmotordynamics2.Chaosandinformationtransmission

C.Synapticdynamicsandinformationprocessing

122212231224122812291231123112311232123312341237123712391240

*Electronicaddress:mrabinovich@ucsd.edu

0034-6861/2006/78͑4͒/1213͑53͒

1213

©2006TheAmericanPhysicalSociety

1214

Rabinovichetal.:Dynamicalprinciplesinneuroscience

D.Bindingandsynchronization1242IV.TransientDynamics:Generation

andProcessingofSequences1244A.Whysequences?

1244B.Spatiallyorderednetworks

12441.Stimulus-dependentmodes12442.Localizedsynfirewaves

1247C.Winnerlesscompetitionprinciple

12481.Stimulus-dependentcompetition12482.Self-organizedWLCnetworks12493.Stableheteroclinicsequence12504.Relationtoexperiments1251D.Sequencelearning

1252E.Sequencesincomplexsystemswithrandom

connections

12F.Coordinationofsequentialactivity1256V.Conclusion1258Acknowledgments1259Glossary1259References

1260

“Williteverhappenthatmathematicianswillknowenoughaboutthephysiologyofthebrain,andneuro-physiologistsenoughofmathematicaldiscovery,foreffi-cientcooperationtobepossible?”

—JacquesHadamard

I.WHATARETHEPRINCIPLES?A.Introduction

Buildingdynamicalmodelstostudytheneuralbasisofbehaviorhasalongtradition͑Ashby,1960;Block,1962;Rosenblatt,1962;Freeman,1972,2000͒.Theun-derlyingideagoverningneuralcontrolofbehavioristhethree-stepstructureofnervoussystemsthathaveevolvedoverbillionsofyears,whichcanbestatedinitssimplestformasfollows:Specializedneuronstransformenvironmentalstimuliintoaneuralcode.Thisencodedinformationtravelsalongspecificpathwaystothebrainorcentralnervoussystemcomposedofbillionsofnervecells,whereitiscombinedwithotherinformation.Adecisiontoactontheincominginformationthenre-quiresthegenerationofadifferentmotorinstructionsettoproducetheproperlytimedmuscleactivitywerecog-nizeasbehavior.Successinthesestepsistheessenceofsurvival.

Giventhepresentstateofknowledgeaboutthebrain,itisimpossibletoapplyarigorousmathematicalanalysistoitsfunctionssuchasonecanapplytootherphysicalsystemslikeelectroniccircuits,forexample.Wecan,however,constructmathematicalmodelsofthephenom-enainwhichweareinterested,takingaccountofwhatisknownaboutthenervoussystemandusingthisinforma-tiontoinformandconstrainthemodel.Currentknowl-edgeallowsustomakemanyassumptionsandputthemintoamathematicalform.Alargepartofthisreviewwilldiscussnonlineardynamicalmodelingasaparticu-larlyappropriateandusefulmathematicalframeworkthatcanbeappliedtotheseassumptionsinorderto

Rev.Mod.Phys.,Vol.78,No.4,October–December2006

FIG.1.͑Coloronline͒Illustrationofthefunctionalpartsandelectricalpropertiesofneurons.͑a͒Theneuronreceivesinputsthroughsynapsesonitsdendritictree.Theseinputsmayormaynotleadtothegenerationofaspikeatthespikegenera-tionzoneofthecellbodythattravelsdowntheaxonandtrig-gerschemicaltransmitterreleaseinthesynapsesoftheaxonaltree.Ifthereisaspike,itleadstotransmitterreleaseandactivatesthesynapsesofapostsynapticneuronandtheprocessisrepeated.͑b͒Simplifiedelectricalcircuitforamembranepatchofaneuron.Thenonlinearionicconductancesarevolt-agedependentandcorrespondtodifferentionchannels.Thistypeofelectricalcircuitcanbeusedtomodelisopotentialsingleneurons.Detailedmodelsthatdescribethemorphologyofthecellsuseseveralisopotentialcompartmentsimple-mentedbythesecircuitscoupledbyalongitudinalresistance;thesearecalledcompartmentalmodels.͑c͒Atypicalspikeeventisoftheorderof100mVinamplitudeand1–2msinduration,andisfollowedbyalongerafter-hyperpolarizationperiodduringwhichtheneuronislesslikelytogeneratean-otherspike;thisiscalledarefractoryperiod.

simulatethefunctioningofthedifferentcomponentsofthenervoussystem,tocomparesimulationswithexperi-mentalresults,andtoshowhowtheycanbeusedforpredictivepurposes.

Generallytherearetwomainmodelingapproachestakeninneuroscience:bottom-upandtop-downmodels.•Bottom-updynamicalmodelsstartfromadescrip-tionofindividualneuronsandtheirsynapticconnec-tions,thatis,fromacknowledgedfactsaboutthede-tailsresultingfromexperimentaldatathatareessentiallyreductionistic͑Fig.1͒.Usingtheseana-tomicalandphysiologicaldata,theparticularpatternofconnectivityinacircuitisreconstructed,takingintoaccountthestrengthandpolarity͑excitatoryorinhibitory͒ofthesynapticaction.Usingthewiringdiagramthusobtainedalongwiththedynamicalfea-turesoftheneuronsandsynapses,bottom-upmodelshavebeenabletopredictfunctionalpropertiesof

Rabinovichetal.:Dynamicalprinciplesinneuroscience

1215

neuralcircuitsandtheirroleinanimalbehavior.•Top-downdynamicalmodelsstartwiththeanalysisofthoseaspectsofananimal’sbehaviorthatarero-bust,reproducible,andimportantforsurvival.Thetop-downapproachisamorespeculativebig-pictureviewthathashistoricallyledtodifferentlevelsofanalysisinbrainresearch.Whilethishierarchicaldi-visionhasputthedifferentlevelsonanequalfoot-ing,theuncertaintyimplicitinthetop-downap-proachshouldnotbeminimized.Thefirststepinbuildingsuchlarge-scalemodelsistodeterminethetypeofstimulithatelicitspecificbehaviors;thisknowledgeisthenusedtoconstructhypothesesaboutthedynamicalprinciplesthatmightberespon-siblefortheirorganization.Themodelshouldpre-dicthowthebehaviorevolveswithachangingenvi-ronmentrepresentedbychangingstimuli.Itispossibletobuildasufficientlyrealisticneuralcir-cuitmodelthatexpressesdynamicalprinciplesevenwithoutknowledgeofthedetailsoftheneuroanatomyandneurophysiologyofthecorrespondingneuralsys-tem.Thesuccessofsuchmodelsdependsontheuniver-salityoftheunderlyingdynamicalprinciples.Fortu-nately,thereisasurprisinglylargeamountofsimilarityinthebasicdynamicalmechanismsusedbyneuralsys-tems,fromsensorytocentralandmotorprocessing.Neuralsystemsutilizephenomenasuchassynchroni-zation,competition,intermittency,andresonanceinquitenontraditionalwayswithregardtoclassicalnonlin-eardynamicstheory.Onereasonisthatthenonlineardynamicsofneuralmodulesormicrocircuitsisusuallynotautonomous.Thesecircuitsarecontinuouslyorspo-radicallyforcedbydifferentkindsofsignals,suchassen-soryinputsfromthechangingenvironmentorsignalsfromotherpartsofthebrain.Thismeansthatwhenwedealwithneuralsystemswehavetoconsiderstimulus-dependentsynchronization,stimulus-dependentcompe-tition,etc.Thisisadeparturefromtheconsiderationsofclassicalnonlineardynamics.Anotherveryimportantfeatureofneuronaldynamicsisthecoordinationofneu-ralactivitieswithverydifferenttimescales,forexample,thetarhythms͑4–8Hz͒andgammarhythms͑40–80Hz͒inthebrain.

Oneofourgoalsinthisreviewistounderstandwhyneuralsystemsareveryspecificfromthenonlineardy-namicspointofviewandtodiscusstheimportanceofsuchspecificitiesforthefunctionalityofneuralcircuits.Wewilltalkabouttherelationshipbetweenneuro-scienceandnonlineardynamicsusingspecificsubjectsasexamples.Wedonotintendtoreviewherethemethodsorthenonlineardynamicaltoolsthatareimportantfortheanalysisofneuralsystemsastheyhavebeendis-cussedextensivelyinmanyreviewsandbooks͑e.g.,GuckenheimerandHolmes,1986;Crawford,1991;Abarbaneletal.,1993;Ott,1993;KaplanandGlass,1995;Abarbanel,1997;Kuznetsov,1998;Arnoldetal.,1999;Strogatz,2001;Izhikevich,2006͒.

Rev.Mod.Phys.,Vol.78,No.4,October–December2006

B.Classicalnonlineardynamicsapproachforneuralsystems

Letussayafewwordsabouttheroleofclassicaldy-namicaltheory.Itmightseematfirstsightthattheap-parentlyinfinitediversityofneuralactivitymakesitsdy-namicaldescriptionahopeless,evenmeaningless,task.However,hereonecanexploittheknowledgeaccumu-latedinclassicaldynamicaltheory,inparticular,theideasputforthbyAndronovin1931concerningthestructuralstabilityofdynamicalmodelsandtheinvesti-gationoftheirbifurcations͑Andronov,1933;AndronovandPontryagin,1937;Andronovetal.,1949͒.Theessen-tialpointsoftheseideascanbetracedbacktoPoincaré͑Poincaré,12;Goroff,1992͒.InhisbookLaValeurdelaScience,Poincaré͑1905͒wrotethat“themainthingforustodowiththeequationsofmathematicalphysicsistoinvestigatewhatmayandshouldbechangedinthem.”Andronov’sremarkableapproachtowardunder-standingdynamicalsystemscontainedthreekeypoints:•Onlymodelsexhibitingactivitythatdoesnotvarywithsmallchangesofparameterscanberegardedasreallysuitabletodescribeexperiments.Hereferredtothemasmodelsordynamicalsystemsthatarestructurallystable.•Toobtaininsightintothedynamicsofasystemitisnecessarytocharacterizeallitsprincipaltypesofbe-haviorunderallpossibleinitialconditions.ThisledtoAndronov’sfondnessforthemethodsofphase-space͑state-space͒analysis.•Consideringthebehaviorofthesystemasawholeallowsonetointroducetheconceptoftopologicalequivalenceofdynamicalsystemsandrequiresanunderstandingoflocalandglobalchangesofthedy-namics,forexample,bifurcations,ascontrolparam-etersarevaried.Conservingthetopologyofaphaseportraitforady-namicalsystemcorrespondstoastablemotionofthesystemwithsmallvariationofthegoverningparameters.Partitioningparameterspaceforthedynamicalsystemintoregionswithdifferentphase-spacebehavior,i.e.,findingthebifurcationboundaries,thenfurnishesacom-pletepictureofthepotentialbehaviorsofadynamicalmodel.Isitpossibletoapplysuchabeautifulapproachtobiologicalneuralnetworkanalysis?Theanswerisyes,atleastforsmall,autonomousneuralsystems.However,eveninthesesimplecaseswefacesomeimportantre-strictions.

Neuraldynamicsisstronglydissipative.Energyde-rivedfrombiochemicalsourcesisusedtodriveneuralactivitywithsubstantialenergylossinaction-potentialgenerationandpropagation.Nearlyalltrajectoriesinthephasespaceofadissipativesystemareattractedbysometrajectoriesorsetsoftrajectoriescalledattractors.Thesecanbefixedpoints͑correspondingtosteady-stateactivity͒,limitcycles͑periodicactivity͒,orstrangeat-tractors͑chaoticdynamics͒.Thebehaviorofdynamicalsystemswithattractorsisusuallystructurallystable.Strictlyspeakingastrangeattractorisitselfstructurally

1216

Rabinovichetal.:Dynamicalprinciplesinneuroscience

FIG.2.Sixexamplesoflimitcyclebifurcationsobservedinlivingandmodelneuralsystems͓seeChay͑1985͒;Canavieretal.͑1990͒;Guckenheimeretal.͑1993͒;Huertaetal.͑1997͒;Cre-vierandMeister͑1998͒;Maedaetal.͑1998͒;CoombesandOs-baldestin͑2000͒;Feudeletal.͑2000͒;GavrilovandShilnikov͑2000͒;MaedaandMakino͑2000͒;Mandelblatetal.͑2001͒;Bondarenkoetal.͑2003͒;Guetal.͑2003͒;ShilnikovandCym-balyuk͑2005͒;Soto-Trevinoetal.͑2005͔͒.

unstable,butitsexistenceinthesystemstatespaceisastructurallystablephenomenon.ThisisaveryimportantpointfortheimplementationofAndronov’sideas.

Thestudyofbifurcationsinneuralmodelsandininvitroexperimentsisakeystoneforunderstandingthedynamicaloriginofmanysingle-neuronandcircuitphe-nomenainvolvedinneuralinformationprocessingandtheorganizationofbehavior.Figure2illustratessometypicallocalbifurcations͓theirsupportconsistsofanequilibriumpointoraperiodictrajectory—seethede-taileddefinitionbyArnoldetal.͑1999͔͒andsomeglobalbifurcations͑theirsupportcontainsaninfinitesetofor-bits͒ofperiodicregimesobservedinneuralsystems.Manyofthesebifurcationsareobservedbothinexperi-mentsandinmodels,inparticularintheconductance-basedHodgkin-Huxley–typeequations͑HodgkinandHuxley,1952͒,consideredthetraditionalframeworkformodelingneurons,andintheanalysisofnetworkstabil-ityandplasticity.

Themoststrikingresultsinneurosciencebasedonclassicaldynamicalsystemtheoryhavecomefrombottom-upmodels.Theseresultsincludethedescription

Rev.Mod.Phys.,Vol.78,No.4,October–December2006

ofthediversityofdynamicsinsingleneuronsandsynapses͑Koch,1999;Vogelsetal.,2005͒,thespatiotem-poralcooperativedynamicsofsmallgroupsofneuronswithdifferenttypesofconnections͑Selverstonetal.,2000;Selverston,2005͒,andtheprinciplesofsynchroni-zationinnetworkswithdynamicalsynapses͑LoebelandTsodyks,2002;Elhilalietal.,2004;Persietal.,2004͒.Sometop-downmodelsalsohaveattemptedaclassi-calnonlineardynamicsapproach.Manyofthesemodelsarerelatedtotheunderstandinganddescriptionofcog-nitivefunctions.Nearlyhalfacenturyago,Ashbyhy-pothesizedthatcognitioncouldbemodeledasady-namicalprocess͑Ashby,1960͒.Neuroscientistshavespentconsiderableeffortimplementingthedynamicalapproachinapracticalway.Themostwidelystudiedexamplesofcognitive-typedynamicalmodelsaremulti-attractornetworks:modelsofassociativememorythatarebasedontheconceptofanenergyfunctionorLyapunovfunctionforadynamicalsystemwithmanyattractors͑Hopfield,1982͓͒seealsoCohenandGross-berg͑1983͒;Waughetal.͑1990͒;Dobolietal.͑2000͔͒.Thedynamicalprocessinsuchnetworksisoftencalled

Rabinovichetal.:Dynamicalprinciplesinneuroscience

1217

“computationwithattractors.”Theideaistodesigndur-ingthelearningstage,inamemorynetworkphasespace,asetofattractors,eachofwhichcorrespondstoaspecificoutput.Neuralcomputationwithattractorsin-volvesthetransformationofagiveninputstimulus,whichdefinesaninitialstateinsidethebasinofattrac-tionofoneattractor,leadingtoafixeddesiredoutput.Theideathatcomputationorinformationprocessinginneuralsystemsisadynamicalprocessisbroadlyacceptedtoday.Manydynamicalmodelsofbothbottom-upandtop-downtypethataddresstheencodinganddecodingofneuralinformationastheinput-dependentdynamicsofanonautonomousnetworkhavebeenpublishedinthelastfewyears.However,therearestillhugegapsinourknowledgeoftheactualbiologicalprocessesunderlyinglearningandmemory,makingac-curatemodelingofthesemechanismsadistantgoal.ForreviewsseeArbibetal.͑1997͒andWilson͑1999͒.

Classicalnonlineardynamicshasprovidedsomebasisfortheanalysisofneuralensemblesevenwithlargenumbersofneuronsinnetworksorganizedaslayersofnearlyidenticalneurons.Oneoftheelementsofthisformulationisthediscoveryofstablelow-dimensionalmanifoldsinaveryhigh-dimensionalphasespace.Thesemanifoldsaremathematicalimagesofcooperativemodesofactivity,forexample,propagatingwavesinnonequilibriummedia͑Rinzeletal.,1998͒.Modelsofthissortarealsointerestingfortheanalysisofspiralwavesincorticalactivityasexperimentallyobservedinvivoandinvitro͑Huangetal.,2004͒.Manyinterestingquestionshavebeenapproachedbyusingthephasepor-traitandbifurcationanalysisofmodelsandbyconsider-ingattractorsandotherasymptoticsolutions.Neverthe-less,newdirectionsmayberequiredtoaddresstheimportantcomplexityofnervoussystemfunctions.

C.Newparadigmsforcontradictoryissues

Thehumanbraincontainsapproximately1011neuronsandatypicalneuronconnectswithϷ104otherneurons.Neuronsshowawidediversityintermsoftheirmor-phologyandphysiology͑seeFig.3͒.Awidevarietyofintracellularandnetworkmechanismsinfluencetheac-tivityoflivingneuralcircuits.Ifwetakeintoaccountthatevenasingleneuronoftenbehaveschaotically,wemightarguethatsuchacomplexsystemmostlikelybe-havesasifitwereaturbulenthydrodynamicflow.How-ever,thisisnotwhatisobserved.Braindynamicsaremoreorlessregularandstabledespitethepresenceofintrinsicandexternalnoise.Whatprinciplesdoesnatureusetoorganizesuchbehavior,andwhatmathematicalapproachescanbeutilizedfortheirdescription?Thesearetheverydifficultquestionsweneedtoaddress.

Severalimportantfeaturesdifferentiatethenervoussystemfromtraditionaldynamicalsystems:

•Thearchitectureofthesystem,theindividualneuralunits,thedetailsofthedynamicsofspecificneurons,aswellastheconnectionsamongneuronsarenot

Rev.Mod.Phys.,Vol.78,No.4,October–December2006

FIG.3.Examplesof͑a͒theanatomicaldiversityofneurons,and͑b͒thesingle-neuronmembranevoltageactivityassoci-atedwiththem.͑1͒Lobsterpyloricneuron;͑2͒neuroninratmidbrain;͑3͒catthalamocorticalrelayneuron;͑4͒guineapiginferiorolivaryneuron;͑5͒aplysiaR15neuron;͑6͒cattha-lamicreticularneuron;͑7͒sepiagiantaxon;͑8͒ratthalamicreticularneuron;͑9͒mouseneocorticalpyramidalneuron;͑10͒ratpituitarygonadotropin-releasingcell.Inmanycases,thebehaviordependsonthelevelofcurrentinjectedintothecellasshownin͑b͒.ModifiedfromWangandRinzel,1995.

usuallyknownindetail,sowecandescribethemonlyinaprobabilisticmanner.

•Despitethefactthatmanyunitswithinacomplexneuralsystemworkinparallel,manyofthemhavedifferenttimescalesandreactdifferentlytothesamenonstationaryeventsfromoutside.However,forthewholesystem,timeisunifiedandcoherent.Thismeansthattheneuralsystemisorganizedhierarchi-cally,notonlyinspace͑architecture͒butalsointime:eachbehavioraleventistheinitialconditionforthenextwindowoftime.Themostinterestingphenom-enonforaneuralsystemisthepresencenotofat-

1218

Rabinovichetal.:Dynamicalprinciplesinneuroscience

tractordynamicsbutofnonstationarybehavior.At-tractordynamicsassumeslong-timeevolutionfrominitialconditions;wemustconsidertransientre-sponsesinstead.

•Thestructureofneuralcircuitsis—inprinciple—geneticallydetermined;however,itisneverthelessnotfixedandcanchangewithexperience͑learning͒andthroughneuromodulation.

Wecouldexpandthislist,butthefactsmentionedal-readymakethepointthatthenervoussystemisaveryspecialfieldfortheapplicationofclassicalnonlineardy-namics,anditisclearnowwhyneurodynamicsneedsnewapproachesandafreshview.

Weusethefollowingargumentstosupportanopti-misticviewaboutfindingdynamicalprinciplesinneuro-science:

•Complexneuralsystemsaretheresultofevolution,andthustheircomplexityisnotarbitrarybutfollowssomeuniversalrules.Onesuchruleisthattheorga-nizationofthecentralnervoussystem͑CNS͒ishier-archicalandbasedonneuralmodules.

•Itisimportanttonotethatmanymodulesareorga-nizedinaverysimilarwayacrossdifferentspecies.Suchunitscanbesmall,likecentralpatterngenera-tors͑CPGs͒,ormuchmorecomplex,likesensorysystems.Inparticular,thestructureofoneoftheold-estsensorysystems,theolfactorysystem,ismoreorlessthesameininvertebratesandvertebratesandcanbedescribedbysimilardynamicalmodels.•Thepossibilityofconsideringthenervoussystemasanensembleofinterconnectedunitsisaresultofthehighlevelofautonomyofitssubsystems.Thelevelofautonomydependsonthedegreeofself-regulation.Self-regulationofneuralunitsoneachlevelofthenervoussystem,includingindividualneu-rons,isakeyprincipledetermininghierarchicalneu-ralnetworkdynamics.•Thefollowingconjectureseemsreasonable:Eachspecificdynamicalbehaviorofthenetwork͑e.g.,travelingwaves͒iscontrolledbyonlyafewofthemanyparametersofasystem͑likeneuromodulators,forexample͒,andtheserelevantparametersinflu-encethespecificcellornetworkdynamicsindependently—atleastinafirstapproximation.Thisideacanbeusefulforthemathematicalanalysisofnetworkdynamicsandcanhelptobuildanapproxi-matebifurcationtheory.Thegoalofthistheoryistopredictthetransformationofspecificdynamicsbasedonbifurcationanalysisinalow-dimensionalcontrolsubspaceofparameters.•Fortheunderstandingofthemainprinciplesofneu-rodynamics,phenomenologicaltop-downmodelsareveryusefulbecauseevendifferentneuralsystemswithdifferentarchitecturesanddifferentlevelsofcomplexitydemonstratesimilardynamicsiftheyex-ecutesimilarfunctions.

Rev.Mod.Phys.,Vol.78,No.4,October–December2006

Inthemainpartofthisreviewwediscusstwocriticalfunctionalpropertiesofneuralsystemsthatatfirstglanceappearincompatible:robustnessandsensitivity.Findingsolutionstosuchapparentcontradictionswillhelpusformulatesomegeneraldynamicalprinciplesofbiologicalneuralnetworkorganization.Wenotetwoex-amples.

Manyneuralsystems,especiallysensorysystems,mustberobustagainstnoiseandatthesametimemustbeverysensitivetoincominginputs.Anewparadigmthatcandealwiththeexistenceofthisfundamentalcontra-diction͑neuralRabinovichisthenetworketwinnerlessal.competition͑WLC͒principlewith,2001nonsymmetric͒.Accordingtoinhibitorythisprinciple,connec-ationsisabletoexhibitstructurallystabledynamicsifthestimulusisfixed,andqualitativelychangeitsdynamicsifthestimulusischanged.Thisabilityisbasedondifferentfeaturesofthesignalandthenoise,andthedifferentwaystheyinfluencethedynamicsofthesystem.

Anotherexampleistheremarkablereproducibilityoftransientbehavior.Becausetransientbehavior,incon-trasttothelong-termstablestationaryactivityofattrac-tors,dependsoninitialconditions,itisdifficulttoimag-inehowsuchbehaviorcanbereproduciblefromexperimenttoexperiment.Thesolutiontothisparadoxisrelatedtothespecialroleofglobalandlocalinhibi-tion,whichsetsuptheinitialconditions.

Thelogicofthisreviewisrelatedtothespecificityofneuralsystemsfromthedynamicalpointofview.InSec.IIweconsiderthepossibledynamicaloriginofrobust-nessandsensitivityinneuralmicrocircuits.Thedynam-icsofinformationprocessinginneuralsystemsisconsid-eredinSec.III.InSec.IV,togetherwithotherdynamicalconcepts,wefocusonanewparadigmofneu-rodynamics:thewinnerlesscompetitionprincipleinthecontextofsequencegeneration,sensorycoding,andlearning.

II.DYNAMICALFEATURESOFMICROCIRCUITS:ADAPTABILITYANDROBUSTNESS

A.Dynamicalpropertiesofindividualneuronsandsynapses1.Neuronmodels

Neuronsreceivepatternedsynapticinputandcom-puteandcommunicatebytransformingthesesynapticinputpatternsintoanoutputsequenceofspikes.Whyspikes?Asspikewaveformsaresimilar,informationen-codedinspiketrainsmainlyreliesontheinterspikein-tervals.Relyingontimingratherthanonthedetailsofaction-potentialwaveformsincreasesthereliabilityandreproducibilityininterneuralcommunication.Disper-sionandattenuationintransmissionofneuralsignalsfromoneneurontootherschangesthewaveformoftheactionpotentialsbutpreservestheirtiminginformation,againallowingforreliabilitywhendependingoninter-spikeintervals.

Thenatureofspiketraingenerationandtransforma-tiondependscruciallyonthepropertiesofmanyvoltage-gatedionicchannelsinneuroncellmembranes.

Rabinovichetal.:Dynamicalprinciplesinneuroscience

1219

Thecellbody͑orsoma͒oftheneurongivesrisetotwokindsofprocesses:shortdendritesandoneormorelong,tubularaxons.Dendritesbranchoutliketreesandreceiveincomingsignalsfromotherneurons.Insomecasesthesynapticinputsitesareondendriticspines,thousandsofwhichcancoverthedendriticarbor.Theoutputprocess,theaxon,transmitsthesignalsgeneratedbytheneurontootherneuronsinthenetworkortoaneffectororgan.Thespikesarerapid,transient,all-or-none͑binary͒impulses,withadurationofabout1ms͑izedseeFig.region1͒.Inatmostthecases,origintheyoftheareaxoninitiatedandatpropagateaspecial-alongtheaxonwithoutdistortion.Nearitsend,thetu-bularaxondividesintobranchesthatconnecttootherneuronsthroughsynapses.

Whenthespikeemittedbyapresynapticneuronreachestheterminalofitsaxon,ittriggerstheemissionofchemicaltransmittersinthesynapticcleft͑thesmallgap,oforderafewtensofnanometers,separatingthetwoneuronsatasynapse͒.Thesetransmittersbindtoreceptorsinthepostsynapticneuron,causingadepolar-izationorhyperpolarizationinitsmembrane,excitingorinhibitingthepostsynapticneuron,respectively.Thesechangesinthepolarizationofthemembranerelativetotheextracellularspacespreadpassivelyfromthesyn-apsesonthedendritesacrossthecellbody.Theireffectsareintegrated,and,whenthereisalargeenoughdepo-larization,anewactionpotentialisgenerated͑Kandeletal.,2000͒.OthertypesofsynapsescalledgapjunctionsfunctionasOhmicelectricalconnectionsbetweenthemembranesoftwocells.Aspikeistypicallyfollowedbyabriefrefractoryperiod,duringwhichnofurtherspikescanbefiredbythesameneuron.

Neuronsarequitecomplexbiophysicalandbiochemi-calentities.Inordertounderstandthedynamicsofneu-ronsandneuralnetworks,phenomenologicalmodelshavetobedeveloped.TheHodgkin-Huxleymodelisforemostamongsuchphenomenologicaldescriptionsofneuralactivity.Thereareseveralclassesofneuralmod-elspossessingvariousdegreesofsophistication.Wesum-marizetheneuralmodelsmostoftenconsideredinbio-logicalnetworkdevelopmentinTableI.Foramoredetaileddescriptionofthesemodelssee,forexample,Koch͑2004͑1999͒,GerstnerandKistler͑2002͒,andDetailed͒.

Izhikevichconductance-basedneuronmodelstakeintoaccount͑typesKoch,of1994ionicvoltage-dependent͒.Thecurrentsneuralflowingmembraneacrossthemembranesodium,maypotassium,containandseveralcal-ciumchannels.Thedynamicsofthesechannelscanalsodependontheconcentrationofspecificions.Inaddi-tion,thereisaleakagecurrentofchlorideions.Theflowofthesecurrentsresultsinchangesinthevoltageacrossthemembrane.Theprobabilitythatatypeofionicchan-nelisopendependsnonlinearlyonthemembranevolt-ageandthecurrentstateofthechannel.Thesedepen-denciesresultinasetofseveralcouplednonlineardifferentialequationsdescribingtheelectricalactivityofthecell.Theintrinsicmembraneconductancescanen-ableneuronstogeneratedifferentspikepatterns,in-Rev.Mod.Phys.,Vol.78,No.4,October–December2006

cludinghigh-frequencyburstsofdifferentdurationswhicharecommonlyobservedinavarietyofmotorneu-ralcircuitsandbrainregions͓seeFig.3͑b2͔͒.Thebio-physicalmechanismsofspikegenerationenableindi-vidualneuronstoencodedifferentstimulusfeaturesintodistinctspikepatterns.Spikes,andburstsofspikesofdifferentdurations,codefordifferentstimulusfeatures,whichcanbequantifiedwithoutaprioriassumptionsaboutthosefeatures͑KepecsandLisman,2003͒.

Howdetaileddoesthedescriptionofneuronsorsyn-apseshavetobetomakeamodelofneuraldynamicsbiologicallyrealisticwhilestillremainingcomputation-allytractable?Itisreasonabletoseparateneuronmod-elsintotwoclassesdependingonthegeneralgoalofthemodeling.Ifwewishtounderstand,forexample,howtheratioofinhibitorytoexcitatorysynapsesinaneuralensemblewithrandomconnectionsinfluencestheactiv-ityofthewholenetwork,itisreasonabletouseasimplemodelthatkeepsonlythemainfeaturesofneuronbe-havior.Theexistenceofaspikethresholdandthein-creaseoftheoutputspikeratewithanincreaseintheinputmaybesufficient.Ontheotherhand,ifourgoalistoexplaintheflexibilityandadaptabilityofasmallnet-worklikeaCPGtoachangingenvironment,thedetailsoftheionicchanneldynamicscanbeofcriticalimpor-tance͑Prinzetal.,2004b͒.Inmanycasesneuralmodelsbuiltonsimplifiedparadigmsleadtomoredetailedconductance-basedmodelsbasedonthesamedynamicalprinciplesbutimplementedwithmorebiophysicallyre-alisticmechanisms.Agoodindicationthatthelevelofthedescriptionwaschosenwiselycomesifthemodelcanreproducewiththesameparametersthemainbifur-cationsobservedintheexperiments.

2.Neuronadaptabilityandmultistability

Multistabilityinadynamicalsystemmeansthecoex-istenceofmultipleattractorsseparatedinphasespaceatthesamevalueofthesystem’sparameters.Insuchasystemqualitativechangesindynamicscanresultfromchangesintheinitialconditions.Awell-studiedcaseisthebistabilityassociatedwithasubcriticalAndronov-Hopfbifurcation͑Kuznetsov,1998͒.Multistablemodesofoscillationcanariseindelayed-feedbacksystemswhenthedelayislargerthantheresponsetimeofthesystem.Inneuralsystemsmultistabilitycouldbeamechanismformemorystorageandtemporalpatternrecognitioninbothartificial͑SompolinskyandKanter,1986͒andliving͑Canavieretal.,1993͒neuralcircuits.Inabiologicalnervoussystemrecurrentloopsinvolvingtwoormoreneuronsarefoundquiteoftenandarepar-ticularlyprevalentincorticalregionsimportantformemory͑TraubandMiles,1991͒.Multistabilityemergeseasilyintheseloops.Forexample,theconditionsunderwhichtime-delayedrecurrentloopsofspikingneuronsexhibitmultistabilitywerederivedbyFossetal.͑1996͒.Thestudyusedbothasimpleintegrate-and-fireneuronandaHodgkin-Huxley͑HH͒neuronwhoserecurrentinputsaredelayedversionsoftheiroutputspiketrains.Theauthorsshowedthattwokindsofmultistabilitywith

1220

Rabinovichetal.:Dynamicalprinciplesinneuroscience

TABLEI.Summaryofmanyfrequentlyusedneuronalmodels.

ModelIntegrate-and-fireneurons

dv͑t͒dt

=

Example

Variablesv͑t͒istheneuron

membranepotential;␪isthethresholdforspikegeneration.Iextisanexternalstimuluscurrent;Isynisthesumofthesynapticcurrents;and␶1and␶2aretimeconstantscharacterizingthesyn-apticcurrents.ai͑t͒Ͼ0isthespikingrateoftheithneuronorcluster;␳ijistheconnectionmatrix;andF,G,Qare

polynomialfunctions.

Remarks

Aspikeoccurswhentheneuronreachesthethreshold␪inv͑t͒afterwhichthecellisresettotherestingstate.

ReferencesLapicque,1907

Ά−

v͑t͒

+Iext+Isyn͑t͒,0Ͻv͑t͒Ͻ␪␶v͑t−0͒=␪spike͒

v͑t+0͒=0,

spikes

Isyn͑t͒=g

͚f͑t−t

and

f͑t͒=A͓exp͑−t/␶1͒−exp͑−t/␶2͔͒

Ratemodels

˙i͑t͒=Fi͑ai͑t͓͒͒Gi„ai͑t͒…a

−͚j␳ijQj„aj͑t͒…͔

Thisisageneral-izationoftheLotka-Volterramodel͓seeEq.͑9͔͒.FukaiandTanaka,1997;Lotka,1925;Volterra,1931

McCullochandPitts

xi͑n+1͒=⌰͚͑jgijxj͑n͒−␪͒

1,xϾ0

⌰͑x͒=

0,xഛ0

ͭ␪isthefiring

threshold;xj͑n͒aresynapticinputsatthediscrete“time”n;xi͑n+1͒istheoutput.Inputsandoutputsarebinary͑oneorzero͒;thesynapticconnectionsgijare1,−1,or0.

v͑t͒isthemembranepotential,m͑t͒,andh͑t͒,andn͑t͒

representempiricalvariablesdescribingtheactivationandinactivationoftheionicconductances;Iisanexternalcurrent.Thesteady-statevaluesofthe

conductancevariablesmϱ,hϱ,nϱhaveanonlinearvoltagedependence,typicallythroughsigmoidalorexponentialfunctions.x͑t͒isthemembranepotential,andy͑t͒describesthedynamicsoffastcurrents;Iisan

externalcurrent.Theparametervaluesa,b,andcareconstantschosentoallowspiking.

Thefirst

computationalmodelforanartificialneuron;itisalsoknownasalinearthresholddevicemodel.Thismodelneglectstherelativetimingofneuralspikes.

TheseODEsrepresentpointneurons.Thereisalargelistofmodelsderivedfromthisone,andithasbecometheprincipaltoolincomputational

neuroscience.Otherioniccurrentscanbeaddedtothe

right-handsideofthevoltageequationtobetterreproducethedynamicsand

bifurcationsobservedintheexperiments.Areducedmodeldescribingoscillatoryspikingneural

dynamicsincludingbistability.

McCullochandPitts,1943

˙͑t͒=g͓v−v͑t͔͒Hodgkin-HuxleyCvLL

+gNam͑t͒3h͑t͓͒vNa−v͑t͔͒+gKn͑t͒4͑vK͒−v͑t͒+I,mϱ„v͑t͒…−m͑t͒m˙͑t͒=

␶m„v͑t͒…h„v͑t͒…−h͑t͒˙t͒=ϱh͑

␶h„v͑t͒…n„v͑t͒…−n͑t͒˙t͒=ϱn͑

␶n„v͑t͒…

HodgkinandHuxley,1952

FitzHugh-Nagumo

˙␮x−cx3−y+I,x˙=x+by−ay

FitzHugh,

1961;

Nagumoetal.,1962

Rev.Mod.Phys.,Vol.78,No.4,October–December2006

Rabinovichetal.:Dynamicalprinciplesinneuroscience

1221

TABLEI.͑Continued.͒

ModelWilson-Cowan

Example

Variables͕E͑x,t͒,I͑x,t͖͒arethenumberdensityofactiveexcitatoryandinhibitoryneuronsatlocationxofthecontinuousneuralmedia.„wee͑x͒,wie͑x͒,wei͑x͒,wii͑x͒…are

connectivitydistribu-tionsamongthepopu-lationsofcells.͕Le,Li͖arenonlinearre-sponsesreflectingdif-ferentpopulationsofthresholds.Theoper-ator󰀁isaconvolu-tioninvolvingthecon-nectivitydistributions.v͑t͒isthemembranepotential;n͑t͒

describestherecoveryactivityofacalciumcurrent;Iisanexternalcurrent.

Remarks

Thefirst“mean-field”model.Itisan

attempttodescribeaclusterofneurons,toavoidtheinherentnoisydynamical

behaviorofindividualneurons;byaveragingtoadistributionnoiseisreduced.

ReferencesWilsonandCowan,1973

␮ץE͑x,t͒ץtץI͑x,t͒ץt

=−E͑x,t͒+͓1−rE͑x,t͔͒ϫLe͓E͑x,t͒󰀁wee͑x͒−I͑x,t͒󰀁wei͑x͒+Ie͑x,t͔͒

␮=−I͑x,t͒+͓1−rI͑x,t͔͒ϫLi͓E͑x,t͒󰀁wie͑x͒−I͑x,t͒󰀁wii͑x͒+Ii͑x,t͔͒

Morris-Lecar

˙t͒=g͓v−v͑t͔͒+n͑t͒gv͑LLn

ϫ͓vn−v͑t͔͒

˙͑t͒…͓vm−v͑t͔͒+I,+gmmϱ„v

˙t͒=␭„v͑t͒…͓n„v͑t͒…−n͑t͔͒n͑ϱ

1v−vm

mϱ͑v͒=1+tanh0

2vm1v−vn

nϱ͑v͒=1+tanh0

2vn

v−vn

␭͑v͒=␾ncosh0

2vn

͑͑͒͒SimplifiedmodelthatreducesthenumberofdynamicalvariablesoftheHHmodel.Itdisplaysaction

potentialgenerationwhenchangingIleadstoasaddle-nodebifurcationtoalimitcycle.

MorrisandLecar,1981

˙t͒=y͑t͒+ax͑t͒2−bx͑t͒3−z͑t͒+IHindmarsh-Rosex͑

˙t͒=C−xx͑t͒2−y͑t͒y͑

˙t͒=rˆs͓x͑t͒−x͔−z͑t͒‰z͑

0

x͑t͒isthemembrane

potential;y͑t͒describesfast

currents;z͑t͒describesslowcurrents;andIisanexternalcurrent.

Simplifiedmodelthatusesapolynomialapproximationtotheright-handsideofaHodgkin-Huxleymodel.Thismodelfailstodescribethehyperpolarized

periodsafterspikingofbiologicalneurons.Firstintroducedforchemicaloscillators;goodfordescribingstronglydissipativeoscillatingsystemsinwhichtheneuronsareintrinsicperiodicoscillators.

Oneofaclassof

simplephenomenologi-calmodelsforspiking,burstingneurons.Thiskindofmodelcanbecomputationallyveryfast,buthaslittlebio-physicalfoundation.

HindmarshandRose,1984

Phaseoscillatormodels

d␪i͑t͒

=␻+dt

͚

j

Hij͑␪i͑t͒−␪j͑t͒͒

␪͑t͒isthephaseoftheithneuronwithapproximately

periodicbehavior;andHijistheconnectivityfunctiondetermininghowneuroniandjinteract.

xtrepresentsthe

spikingactivityandytrepresentsaslowvariable.Adiscretetimemap.

Cohenetal.,1982;

ErmentroutandKopell,1984;

Kuramoto,1984

Mapmodels

xt+1͑i͒=

␣+yt͑i͒

1+xt͑i͒2⑀+xt͑j͒Nj

͚

Cazellesetal.,2001;Rulkov,2002

yt+1͑i͒=yt͑i͒−␴xt͑i͒−␤Rev.Mod.Phys.,Vol.78,No.4,October–December2006

1222

Rabinovichetal.:Dynamicalprinciplesinneuroscience

respecttoinitialspikingfunctionsexist,dependingonwhethertheneuronisexcitableorrepetitivelyfiringintheabsenceoffeedback.

FollowingHebb’s͑1949͒ideasmoststudiesofthemechanismsunderlyinglearningandmemoryfocusonchangingsynapticefficacy.Learningisassociatedwithchangingconnectivityinanetwork.However,thenet-workdynamicsalsodependsoncomplexinteractionsamongintrinsicmembraneproperties,synapticstrengths,andmembrane-voltagetimevariation.Fur-thermore,neuronalactivityitselfmodifiesnotonlysyn-apticefficacybutalsotheintrinsicmembranepropertiesofneurons.PapersbyMarderetal.͑1996͒andTurri-gianoetal.͑1996͒presentexamplesshowingthatbistableneuronscanprovideshort-termmemorymechanismsthatrelysolelyonintrinsicneuronalprop-erties.Whilenotreplacingsynapticplasticityasapow-erfullearningmechanism,theseexamplessuggestthatmemoryinnetworkscouldresultfromanongoinginter-playbetweenchangesinsynapticefficacyandintrinsicneuronproperties.

Tounderstandthebiologicalbasisforsuchcomputa-tionalpropertieswemustexamineboththedynamicsoftheioniccurrentsandthegeometryofneuronalmor-phology.

3.Synapticplasticity

Synapsesaswellasneuronsaredynamicalnonlineardevices.AlthoughsynapsesthroughouttheCNSsharemanyfeatures,theyalsohavedistinctproperties.Theyoperatewiththefollowingsequencesofevents:Aspikeisinitiatedintheaxonnearthecellbody,itpropagatesdowntheaxon,andarrivesatthepresynapticterminal,wherevoltage-gatedcalciumchannelsadmitcalcium,whichtriggersvesiclefusionandneurotransmitterre-lease.Thereleasedneurotransmitterthenbindstore-ceptorsonthepostsynapticneuronandchangestheirconductance͑Nichollsetal.,1992;Kandeletal.,2000͒.Thisseriesofeventsisregulatedinmanyways,makingsynapsesadaptiveandplastic.

Inparticular,thestrengthofsynapticconductivitychangesinrealtimedependingontheiractivity,asKatzobservedmanyyearsago͑FattandKatz,1952;Katz,1969͒.Adescriptionofsuchplasticitywasmadein1949byHebb͑1949͒.Heproposedthat“WhenanaxonofcellAisnearenoughtoexciteacellBandrepeatedlyorpersistentlytakespartinfiringit,somegrowthprocessormetabolicchangetakesplaceinoneorbothcellssuchthatA’sefficiency,asoneofthecellsfiringB,isin-creased.”Thisneurophysiologicalpostulatehassincebecomeacentralconceptinneurosciencethroughase-riesofclassicexperimentsdemonstratingHebbian-likesynapticplasticity.Theseexperimentsshowthattheef-ficacyofsynaptictransmissioninthenervoussystemisactivitydependentandcontinuouslymodified.Examplesofsuchmodificationarelong-termpotentiationandde-pression͑LTPandLTD͒,whichinvolveincreasedorde-creasedconductivity,respectively,ofsynapticconnec-tionsbetweentwoneurons,leadingtoincreasedor

Rev.Mod.Phys.,Vol.78,No.4,October–December2006

decreasedactivityovertime.Long-termpotentiationanddepressionarepresumedtoproducelearningbydif-ferentiallyfacilitatingtheassociationbetweenstimulusandresponse.TheroleofLTPandLTD,ifany,inpro-ducingmorecomplexbehaviorsislesscloselytiedtospecificstimuliandmoreindicativeofcognition,andisnotwellunderstood.

Long-termpotentiationwasfirstreportedinthehip-pocampalformation͑BlissandLomo,1973͒.ChangesinducedbyLTPcanlastformanydays.Long-termpo-tentiationhaslongbeenregarded,alongwithitscoun-terpartLTD,asapotentialmechanismforshort-term-memoryformationandlearning.Infact,thehypothesisiswidelyacceptedinlearningandmemoryresearchthatactivity-dependentsynapticplasticityisinducedatap-propriatesynapsesduringmemoryformationandisbothnecessaryandsufficientfortheinformationstorageunderlyingthetypeofmemorymediatedbythebrainareainwhichthatplasticityisobserved͓seeforareviewMartinetal.͑2000͔͒.HebbdidnotanticipateLTDin1949,butalongwithLTPitisthoughttoplayacriticalrolein“rewiring”biologicalnetworks.

ThenotionofacoincidencerequirementforHebbianplasticityhasbeensupportedbyclassicstudiesofLTPandLTDusingpresynapticstimulationcoupledwithprolongedpostsynapticdepolarization͓see,forexample,MalenkaandNicoll͑1999͔͒.However,coincidencetherewaslooselydefinedwithatemporalresolutionofhun-dredsofmillisecondstotensofseconds,muchlargerthanthetimescaleoftypicalneuronalactivitycharac-terizedbyspikesthatlastforacoupleofmilliseconds.Inanaturalsetting,presynapticandpostsynapticneuronsfirespikesastheirfunctionaloutputs.Howpreciselymustsuchspikingactivitiescoincideinordertoinducesynapticmodifications?Experimentsaddressingthiscriticalissueledtothediscoveryofspike-timing-dependentsynapticplasticity͑STDP͒.Spikesinitiateasequenceofcomplexbiochemicalprocessesinthepostsynapticneuronduringtheshorttimewindowfol-lowingsynapticactivation.Identifyingdetailedmolecu-larprocessesunderlyingLTPandLTDremainsacom-plexandchallengingproblem.Thereisgoodevidencethatitconsistsofacompetitionbetweenprocessesre-moving͑LTD͒andprocessesplacing͑LTP͒phosphategroupsfromonpostsynapticreceptors,orincreasing͑LTP͒ordecreasing͑LTD͒thenumberofsuchreceptorsinadendriticspine.ItisalsowidelyacceptedthatN-methyl-D-aspartate͑NMDA͒receptorsarecrucialforthedevelopmentofLTPorLTDandthatitiscalciuminfluxontothepostsynapticcellthatiscriticalforbothLTPandLTD.

Experimentsonsynapticmodificationsofexcitatorysynapsesbetweenhippocampalglutamatergicneuronsinculture͑BiandPoo,1998,2001͒͑seeFig.4͒indicatethatifapresynapticspikearrivesattimetpreandapostsyn-apticspikeisobservedorinducedattpost,thenwhen␶=tpost−tpreispositivetheincrementalpercentagein-creaseinsynapticstrengthbehavesas

Rabinovichetal.:Dynamicalprinciplesinneuroscience

1223

FIG.4.Spike-timing-dependentsynapticplasticityobservedinhippocampalneurons.Eachdatapointrepresentstherelativechangeintheamplitudeofevokedpostsynapticcurrentafterrepetitiveapplicationofpresynapticandpostsynapticspikingpairs͑1Hzfor60s͒withfixedspiketiming⌬t,whichisde-finedasthetimeintervalbetweenpostsynapticandpresynap-ticspikingwithineachpair.Long-termpotentiation͑LTP͒anddepression͑LTD͒windowsareeachfittedwithanexponentialfunction.ModifiedfromBi,2002.

⌬g

ϷaPe−␤g

P␶,͑1͒

with␤creasePinϷsynaptic1/16.8ms.strengthWhenbehaves␶Ͻ0,theas

percentagede-⌬g

Ϸ−aDe␤D␶g

,͑2͒

with␤DϷ1/33.7ms.aPandaDareconstants.ThisisillustratedinFig.4.

ManybiochemicalfactorscontributedifferentlytoLTPandLTDindifferentsynapses.Herewediscussaphenomenologicaldynamicalmodelofsynapticplastic-ity͑Abarbaneletal.,2002͒whichisveryusefulformod-elingneuralplasticity;itspredictionsagreewithseveralexperimentalresults.Themodelintroducestwodynami-calvariablesP͑t͒andD͑t͒thatdonothaveadirectre-lationshipwiththeconcentrationofanybiochemicalcomponents.Nonlinearcompetitionbetweenthesevari-ablesimitatestheknowncompetitioninthepostsynapticcell.Thesevariablessatisfythefollowingsimplefirst-orderkineticequations:

dP͑t͒

dt

=f„Vpre͑t͒…͓1−P͑t͔͒−␤PP͑t͒,dD͑t͒

dt

=g„Vpost͑t͒…͓1−D͑t͔͒−␤DD͑t͒,͑3͒

wherethefunctionsf͑V͒andg͑V͒aretypicallogisticorsigmoidalfunctionswhichrisefromzerototheorderofunitywhentheirargumentexceedssomethreshold.Thesedrivingorinputfunctionsareasimplificationof

Rev.Mod.Phys.,Vol.78,No.4,October–December2006

thedetailedwayinwhicheachdynamicalprocessisforced.TheP͑t͒processisassociatedwithaparticulartimeconstant1/␤PwhiletheD͑t͒processisassociatedwithadifferenttimeconstant1/␤D.Experimentsshowthat␤P󰀅␤D,andthisistheprimaryembodimentofthetwodifferenttimescalesseeninmanyobservations.Thetwotimeconstantsareacoarse-grainedrepresentationofthediffusionandleakageprocesseswhichdampenandterminateactivities.PresynapticvoltageactivityservestoreleaseneurotransmittersintheusualmannerandthisinturninducesthepostsynapticactionofP͑t͒,whichhasatimecoursedeterminedbythetimeconstant␤−1P.Similarly,thepostsynapticvoltage,constantortimevarying,canbeassociatedwiththeinductionoftheD͑t͒process.

P͑t͒andD͑t͒competetoproduceachangeinsynapticstrength⌬g͑t͒as

d⌬g͑t͒

dt

=␥͓P͑t͒D␩͑t͒−D͑t͒P␩͑t͔͒,͑4͒

where␩Ͼ1and␥Ͼ0.ThisdynamicalmodelreproducessomeofthekeySTDPexperimentalresultslike,forex-ample,thoseshowninFig.4.Italsoaccountsforthecasewherethepostsynapticcellisdepolarizedwhileapresynapticspiketrainispresentedtoit.

4.Examplesofthecooperativedynamicsofindividualneuronsandsynapses

Toillustratethedynamicalsignificanceofplasticsyn-apsesweconsiderthesynchronizationoftwoneurons:alivingneuronandanelectronicmodelneuroncoupledthroughaSTDPorinverseSTDPelectronicsynapse.Usinghybridcircuitsofmodelelectronicneuronsandbiologicalneuronsisapowerfulmethodforanalyzingneuraldynamics͑Pintoetal.,2000;Szücsetal.,2000;LeMassonetal.,2002;Prinzetal.,2004a͒.Therepresen-tationofsynapticinputtoacellusingacomputertocalculatetheresponseofthesynapsetospecifiedpresynaptic͑beenRobinsonshownandinputinmodelingKawai,goesunder1993and;theSharpnameinexperimentset“dynamical.,1993͑Nowotny,͒.clamp”IthasZhigulin,etal.,2003;Zhigulinetal.,2003͒thatcouplingthroughplasticelectronicsynapsesleadstoneuralsyn-chronizationor,morecorrectly,entrainmentthatismorerapid,moreflexible,andmuchmorerobustagainstnoisethansynchronizationmediatedbyconnectionsofconstantstrength.Intheseexperimentstheneuralcir-cuitconsistsofaspecifiedpresynapticsignal,asimulatedsynapse͑viathedynamicclamp͒,andapostsynapticbio-logicalneuronfromtheAplysiaabdominalganglion.Thepresynapticneuronisaspikegeneratorproducingspikesofpredeterminedformatpredeterminedtimes.Thesynapseanditsplasticityaresimulatedbydynamicclampsoftware͑Nowotny,2003͒.Ineachupdatecycleofϳgenerator100␮sthevoltagepresynapticisupdated,voltagethesynapticisacquired,strengththespikeisde-terminedaccordingtothelearningrule,andtheresult-ingsynapticcurrentiscalculatedandinjectedintothelivingneuronthroughacurrentinjectionelectrode.As

1224

Rabinovichetal.:Dynamicalprinciplesinneuroscience

onepresentsthepresynapticsignalmanytimes,thesyn-apticconductancechangesfromonefixedvaluetoan-otherdependingonthepropertiesofthepresynapticsignal.

Thecalculatedsynapticcurrentisafunctionofthepresynapticandpostsynapticpotentialsofthespikegen-eratorVtively.Itpreis͑calculatedt͒andtheaccordingbiologicaltoneuronthefollowingVpost͑t͒,respec-model.ThesynapticcurrentdependslinearlyonthedifferencebetweenthepostsynapticpotentialVpostanditsreversalpotentialVrev,onanactivationvariableS͑t͒,andonitsmaximalconductanceg͑t͒:

Isyn͑t͒=g͑t͒S͑t͓͒Vpost͑t͒−Vrev͔.

͑5͒

TheactivationvariableS͑t͒isanonlinearfunctionofthepresynapticmembranepotentialVpercentageofneurotransmitterdockedpreandrepresentstheonthepostsyn-apticcellrelativetothemaximumthatcandock.Ithastwotimescales:adockingtimeandanundockingtime.Wetakeittosatisfythedynamicalequation

dS͑t͒Sϱ„Vpre͑t͒…−S͑t͒dt=␶S.͑6͒

syn͓S1−ϱ„V1͑t͒…͔

Sϱ͑V͒isasigmoidfunctionwhichwetaketobe

SVϱ͑V͒=

ͭtanh͓͑V−Vth͒/Vslope͔forVϾth0

otherwise.

͑7͒

Thetimescaleis␶syn͑S1−1͒forneurotransmitterdock-ingand␶synS1forundocking.ForAMPAexcitatoryre-ceptors,thedockingtimeisabout0.5ms,andtheun-dockingtimeisabout1.5ms.Themaximalconductanceg͑t͒isdeterminedbythelearningrulediscussedbelow.Intheexperiments,thesynapticcurrentisupdatedatϳ10kHz.

Todeterminethemaximalsynapticconductanceg͑t͒ofthesimulatedSTDPsynapse,anadditiveSTDPlearn-ingrulewasused.Thisisaccurateifthetimebetweenpresentedspikepairsislongcomparedtothetimebe-tweenspikesinthepair.Toavoidrunawaybehavior,theadditiverulewasappliedtoanintermediategthenfilteredthroughasigmoidfunction.Inparticu-rawthatwaslar,thechange⌬grawinsynapticstrengthisgivenby

A⌬t−␶0+

␶e

−͑⌬t−␶0͒/␶+for⌬tϾ␶0⌬g+

raw͑⌬t͒=

Ά⌬t−␶͑8͒

A0−␶e

͑⌬t−␶0͒/␶−for⌬tϽ␶0,

where⌬t=tpost−tpreisthedifferencebetweenpostsynap-ticandpresynapticspiketimes.Theparameters␶␶+and−determinethewidthsofthelearningwindowsforpo-tentiationanddepression,respectively,andtheampli-tudesA+andA−determinethemagnitudeofsynapticchangeperspikepair.Theshift␶0reflectsthefinitetimeofinformationtransportthroughthesynapse.

AsonecanseeinFig.5,thepostsynapticneuronquicklysynchronizestothepresynapticspikegeneratorwhichpresentsspikeswithaninterspikeinterval͑ISI͒of255ms͑toppanel͒.Thesynapticstrengthcontinuously

Rev.Mod.Phys.,Vol.78,No.4,October–December2006

FIG.5.Exampleofasynchronizationexperiment.Top:The

interspikeintervals͑ISIs͒ofthepostsynapticbiologicalneu-ron.Bottom:Thesynapticstrengthg͑t͒.PresynapticspikeswithISIof255mswerepresentedtoapostsynapticneuronwithperiodicoscillationsatanISIof330ms.Beforecouplingwiththepresynapticspikegenerator,thebiologicalneuronspikestonicallyatitsintrinsicISIof330ms.Couplingwasswitchedonwithg͑t=0͒=15nSattime6100s.Asonecanseethepostsynapticneuronquicklysynchronizestothepresynap-ticspikegenerator͑toppanel,dashedline͒.Thesynapticstrengthcontinuouslyadaptstothestateofthepostsynapticneuron,effectivelycounteractingadaptationandothermodu-lationsofthesystem.Thisleadstoaverypreciseandrobustsynchronizationatanonzerophaselag.TheprecisionofthesynchronizationmanifestsitselfinsmallfluctuationsofthepostsynapticISIsinthesynchronizedstate.Robustnessandphaselagcannotbeseendirectly.ModifiedfromNowotny,Zhigulin,etal.,2003.

adaptstothestateofthepostsynapticneuron,effec-tivelycounteractingadaptationandothermodulationsofthesystem͑bottompanel͒.Thisleadstoaverypre-ciseandrobustsynchronizationatanonzerophaselag.TheprecisionofthesynchronizationmanifestsitselfinsmallfluctuationsofthepostsynapticISIsinthesyn-chronizedstate.RobustnessandphaselagcannotbeseendirectlyinFig.5.Spike-timing-dependentplasticityisamechanismthatenablessynchronizationofneuronswithsignificantlydifferentintrinsicfrequenciesasonecanseeinFig.6.Thesignificantincreaseintheregimeofsynchronizationassociatedwithsynapticplasticityisawelcome,perhapssurprising,resultandaddressestheissueraisedaboveaboutrobustnessofsynchronizationinneuralcircuits.

B.Robustnessandadaptabilityinsmallmicrocircuits

Thepreciserelationshipbetweenthedynamicsofin-dividualneuronsandthemammalianbrainasawholeremainsextremelycomplexandobscure.Animportantreasonforthisisalackofknowledgeonthedetailedcell-to-cellconnectivitypatternsaswellasalackofknowledgeonthepropertiesoftheindividualcells.Al-thoughlarge-scalemodelingofthissituationisat-temptedfrequently,parameterssuchasthenumberandkindofsynapticconnectionscanonlybeestimated.By

Rabinovichetal.:Dynamicalprinciplesinneuroscience

1225

FIG.6.͑Coloronline͒Thepresynapticsignalgeneratorpre-sentsaperiodicspiketrainwithISIofT1toapostsynapticneuronwithISIofT02,beforecoupling.Whenneuronsare0

coupled,T2→T2.Weplottheratiooftheseperiodsaftercou-plingasafunctionoftheratiobeforecoupling͑a͒,forasyn-apsewithconstantgand͑b͒forasynapticconnectiong͑t͒followingtheruleinthetext.Theenlargeddomainofone-to-onesynchronizationinthelattercaseisquiteclearand,asshownbythechangeintheerrorbarsizes,thesynchronizationismuchbetter.Thisresultpersistswhennoiseisaddedtothepresynapticsignalandtothesynapticaction͑notshown͒.ModifiedfromNowotny,Zhigulin,etal.,2003.

usingthelesscomplexmicrocircuits͑MCs͒ofinverte-brates,amoredetailedunderstandingofneuralcircuitdynamicsispossible.

CentralpatterngeneratorsaresmallMCsthatcanproducestereotypedcyclicoutputswithoutrhythmicsensoryorcentralinput͑MarderandCalabrese,1996;

Steinetal.,1997͒.ThusCPGsareoscillators,andtheimageoftheiractivityinthecorrespondingsystemstatespaceisalimitcyclewhenoscillationsareperiodicandastrangeattractorinmorecomplexcases.Centralpatterngeneratorsunderlietheproductionofmostmotorcom-mandsformusclesthatexecuterhythmicanimalactivitysuchaslocomotion,breathing,heartbeat,etc.TheCPGoutputisaspatiotemporalpatternwithspecificphaselagsbetweenthetemporalsequencescorrespondingtothedifferentmotorunits͑seebelow͒.

ThenetworkarchitectureandthemainfeaturesofCPGneuronsandsynapsesareknownmuchbetterthananyotherbraincircuits.Examplesoftypicalinverte-brateCPGnetworksareshowninFig.7.CommontomanyCPGcircuitsareelectricalandinhibitoryconnec-tionsandthespiking-burstingactivityoftheirneurons.Thecharacteristicsofthespatiotemporalpatternsgener-atedbytheCPG,suchasburstfrequency,phase,length,etc.,aredeterminedbytheintrinsicpropertiesofeachindividualneuron,thepropertiesofthesynapses,andthearchitectureofthecircuit.

ThemotorpatternsproducedbyCPGsfallintotwocategories:thosethatoperatecontinuouslysuchasres-piration͑Ramirezetal.,2004͒orheartbeat͑Cymbalyuketal.,2002͒,andthosethatareproducedintermittentlysuchaslocomotion͑Getting,19͒orchewing͑Selver-ston,2005͒.AlthoughCPGsautonomouslyestablishcor-rectrhythmicfiringpatterns,theyareunderconstantsupervisionbydescendingfibersfromhighercentersandbylocalreflexpathways.Theseinputsallowtheanimaltoconstantlyadaptitsbehaviortotheimmediateenvi-ronment,whichsuggeststhatthereisconsiderableflex-ibilityinthedynamicsofmotorsystems.Inadditionthereisnowaconsiderablebodyofinformationshowingthatanatomicallydefinedsmallneuralcircuitscanbereconfiguredinamoregeneralwaybyneuromodulatorysubstancesintheblood,orreleasedsynapticallysothattheyarefunctionallyalteredtoproducedifferentstablespatiotemporalpatterns,whichmustalsobeflexibleinresponsetosensoryinputsonacycle-by-cyclebasis;see

FIG.7.ExamplesofinvertebrateCPGmicro-circuitsfromarthropod,mollusk,andannelidpreparations.Allproducerhythmicspa-tiotemporalmotorpatternswhenactivatedbynonpatternedinput.Theblackdotsrepresentchemicalinhibitorysynapses.Resistorsrepre-sentelectricalconnections.Trianglesarechemicalexcitatorysynapses,anddiodesarerectifyingsynapses͑electricalsynapsesinwhichthecurrentflowsonlyinonedirection͒.Individualneuronsareidentifiablefromonepreparationtoanother.

Rev.Mod.Phys.,Vol.78,No.4,October–December2006

1226

Rabinovichetal.:Dynamicalprinciplesinneuroscience

SimmersandMoulins͑1988͒,forexample.

CentralpatterngeneratorshavesimilaritywithneuralMCsinthebrain͑Silberbergetal.,2005;SolisandPer-kel,2005;Yusteetal.,2005͒andareoftenstudiedasmodelsofneuralnetworkfunction.Inparticular,thereareimportantsimilaritiesbetweenvertebratespinalcordCPGsandneocorticalmicrocircuitswhichhavebeenemphasizedbyYusteetal.͑2005͒:͑i͒CPGinterac-tions,whicharefundamentallyinhibitory,dynamicallyregulatetheoscillations.Furthermore,subthreshold-activatedvoltage-dependentcellularconductancesthatpromotebistabilityandoscillationsalsopromotesyn-chronizationwithspecificphaselags.Thesamecellularpropertiesarealsopresentinneocorticalneurons,andunderlietheobservedoscillatorysynchronizationinthecortex.͑ii͒NeuronsinspinalcordCPGsshowbistablemembranedynamics,whicharecommonlyreferredtoasplateaupotentials.Acorrelateofbistablemembranebe-havior,inthiscasetermed“up”and“down”states,hasalsobeendescribedinthestriatumandneocortexbothinvivoandinvitro͑Sanchez-VivesandMcCormick,2000;Cossartetal.,2003͒.Itisstillunclearwhetherthisbistabilityarisesfromintrinsicorcircuitmechanismsoracombinationofthetwo͑Egorovetal.,2002;Shuetal.,2003͒.͑iii͒BothCPGsandcorticalmicrocircuitsdemon-strateattractordynamicsandtransientdynamics͓see,forexample,Abelesetal.͑1993͒;Ikegayaetal.͑2004͔͒.͑iv͒ModulationsbysensoryinputsandneuromodulatorsarealsoacommoncharacteristicthatissharedbetweenCPGsandcorticalcircuits.ExamplesinCPGsincludethemodulationofoscillatoryfrequency,oftemporalco-ordinationamongdifferentpopulationsofneurons,oftheamplitudeofnetworkactivity,andofthegatingofCPGinputandoutput͑Grillner,2003͒.͑v͒Switchingbe-tweendifferentstatesofCPGoperation͑forexample,switchingcoordinatedmotorpatternsfordifferentmodesoflocomotion͒isundersensoryafferentandneu-rochemicalmodulatorycontrol.ThismakesCPGsmul-tifunctionalanddynamicallyplastic.Switchingbetweencorticalactivitystatesisalsoundermodulatorycontrol,asshown,forexample,bytheroleoftheneurotransmit-terdopamineinworkingmemoryinmonkeys͑Goldman-Rakic,1995͒.Thusmodulationreconfiguresmicrocircuitdynamicsandtransformsactivitystatestomodifybehavior.

TheCPGconceptwasbuiltaroundtheideathatbe-haviorallyrelevantspatiotemporalcyclicpatternsaregeneratedbygroupsofnervecellswithouttheneedforrhythmicinputsfromhighercentersorfeedbackfromstructuresthataremoving.Ifactivated,isolatedinverte-bratepreparationscangeneratesuchrhythmsformanyhoursandasaresulthavebeenextremelyimportantintryingtounderstandhowsimultaneouscooperativein-teractionsbetweenmanycellularandsynapticparam-eterscanproducerobustandstablespatiotemporalpat-terns͓seeFig.8͑d͔͒.Anexampleofathree-neuronCPGphaseportraitisshowninFigs.8͑a͒–8͑c͒.TheeffectofahyperpolarizingcurrentleadstochangesinthepatternasreflectedbythephaseportraitinFigs.8͑b͒and8͑c͒.

Rev.Mod.Phys.,Vol.78,No.4,October–December2006

FIG.8.͑Color͒PhaseportraitoftypicalCPGoutput.ThedatawererecordedinthepyloricCPGofthelobsterstomatogastricganglion.Eachaxisrepresentsthefiringrateofoneofthreepyloricneurons:LP,VD,andPD͑seeFig.7͒.͑a͒Theorbitoftheoscillatingpyloricsystemisshowninblueandtheaverageorbitisshowninred;͑b͒thesamebutwithahyperpolarizingdccurrentinjectedintothePD;͑c͒thedifferencebetweentheaveragedorbits;͑d͒timeseriesofthemembranepotentialsofthethreeneurons.FigureprovidedbyT.Nowotny,R.Levi,andA.Szücs.

Neuraloscillationsariseeitherthroughinteractionsamongneurons͑network-basedmechanism͒orthroughinteractionsamongcurrentsinindividualneurons͑pace-makermechanism͒.SomeCPGsusebothmechanisms.Inthesimplestcase,oneormoreneuronswithintrinsicburstingactivityactsasthepacemakerfortheentireCPGcircuit.Theintrinsiccurrentsmaybeconstitutivelyactiveortheymayrequireactivationbyneuromodula-tors,so-calledconditionalbursters.Synapticconnectionsacttodeterminethepatternbyexcitingorinhibitingotherneuronsattheappropriatetime.Suchnetworksareextremelyrobustandhavegenerallybeenthoughttobepresentinsystemsinwhichtherhythmicactivityisactiveallormostofthetime.Inthesecondcase,itisthesynapticinteractionsbetweennonburstyneuronsthatgeneratetherhythmicactivityandmanyschemesforthetypesofconnectionsnecessarytodothishavebeenpro-posed.Usuallyreciprocalinhibitionservesasthebasisforgeneratingburstsinantagonisticneuronsandtherearemanyexamplesofcellsinpattern-generatingmicro-circuitsconnectedinthisway͑seeFig.7͒.Circuitsofthistypeareusuallyfoundforbehaviorsthatareintermit-tentinnatureandrequireagreaterdegreeofflexibilitythanthosebasedonpacemakercells.

Physiologistsknowthatreciprocalinhibitoryconnec-tionsbetweenoscillatoryneuronscanproduce,asare-sultofthecompetition,sequentialactivityofneuronsandrhythmicspatiotemporalpatterns͑Szekely,1965;StentandFriesen,1977;RubinandTerman,2004͒.How-ever,evenforarathersimpleMC,consistingofjustthreeneurons,thereisnoquantitativedescription.Iftheconnectionsaresymmetric,theMCcanreachanattrac-

Rabinovichetal.:Dynamicalprinciplesinneuroscience

1227

tor.Itisreasonabletohypothesizethatasymmetricin-hibitoryconnectionsarenecessarytopreservetheorderofpatternswithmorethantwophasespercycle.Thecontradiction,notedearlier,betweenrobustnessandflexibilitycanthenberesolvedbecauseexternalsignalscanmodifytheeffectivetopologyofconnectionssoonecanhavefunctionallydifferentnetworksfordifferentstimuli.

TheoreticalanalysisandcomputerexperimentswithMCsbasedonthewinnerlesscompetitionprinciple͑dis-cussedinSec.IV.C͒showthatsufficientconditionsforthegenerationofsequentialactivitydoexistandtherangeofallowednonsymmetricinhibitoryconnectionsisquitewide͑Rabinovichetal.,2001;Varona,Rabinovich,etal.,2002;Afraimovich,Rabinovich,etal.,2004͒WeillustratethisusingaLotka-Volterraratedescriptionofneuronactivity:

daN

i͑t͒

dt=ai͑t͒ͩ1−͚␳ij͑Si͒aj͑t͒+Si,...,N,

j=1

ͪi=1,͑9͒

wheretherateofeachNneuronisai͑t͒,theconnectionmatrixis␳ij,andthestimuliSiareconstantshere.Thismodelcanbejustifiedasarateneuralmodelasfollows͑FukaiandTanaka,1997͒.Thefiringrateai͑t͒andmem-branepotentialvby

i͑t͒oftheithneuroncanbedescribedai͑t͒=G͑vi−␪͒,͑10͒dvi͑t͒

dt

=−␭vi͑t͒+Ii͑t͒,͑11͒

whereG͑vi−␪͒isagainfunction,␪and␭areconstants,andtheinputcurrentIi͑t͒toneuroniisgeneratedbytheratesaj͑t͒oftheotherneurons:

N

Ii͑t͒=Si−͚␳ijaj͑t͒.

͑12͒

jHereSiistheinputand␳ijisthestrengthoftheinhibi-torysynapsefromneuronjtoneuroni.WesupposethatG͑x͒isasigmoidalfunction:

G͑x͒=G0/͓1+exp͑−␤x͔͒.

͑13͒

Letusthenmaketwoassumptions:͑i͒thefiringrateisalwaysmuchsmallerthanitsmaximumvalueGstronglydissipative͑thisisreasonable0;and͑ii͒thesystemisbe-causeweareconsideringinhibitorynetworks͒.Basedonthese͑͑10͒assumptions,aftercombiningandrescalingEqs.can9͒with–͑13͒an,weadditionalobtainthepositiveLotka-Volterraratedescription͑1997bereplacedbyaconstantterm͓seeonFukaitherightandsideTanakathatThe͒fortestsdetailsofwhether͔.

WLCisoperatinginareducedpyloricCPGcircuitareshowninFig.9.ThisstudyusedestimatesofthesynapticstrengthsshowninFig.9͑a͒.Someofthekeyquestionsherearethese.͑i͒Whatistheminimalstrengthfortheinhibitorysynapsefromthepy-Rev.Mod.Phys.,Vol.78,No.4,October–December2006

FIG.9.͑Coloronline͒CompetitionwithoutwinnerinamodelofthepyloricCPG.͑a͒Schematicdiagramofthethree-neuronnetworkusedforratemodeling.Blackdotsrepresentchemicalinhibitorysynapseswithstrengthsgiveninnanoseconds͑XϾ160͒.͑b͒Phaseportraitofthemodel:Thelimitcyclecorre-spondingtotherhythmicactivityisinthe2Dsimplex͑ZeemanandZeeman,2002͒.͑c͒Robustnessinthepresenceofnoise:Noiseintroducedintothemodelshowsnoeffectontheorderofactivationforeachtypeofneuron.FigureprovidedbyR.Huerta.

loricdilator͑PD͒neuronorABgrouptotheVDneu-ronsuchthatWLCexists?͑ii͒DoestheconnectivityobtainedfromthecompetitionwithoutwinnerconditionproducetheorderofactivationobservedinthepyloricCPG?͑iii͒Isthisdynamicsrobustagainstnoise,inthesensethatstrongperturbationsofthesystemdonotal-terthesequence?Ifthestrengthsof␳ijaretakenas

␳ij=΂11.250

0.875

11.25,X/800.6251

΃theWLCformulasimplythatthesufficientconditionsforareliableandrobustcyclicsequencearesatisfiedifXϾ160.TheactivationsequenceoftheratemodelwithnoiseshowninFig.9͑c͒issimilartothatobservedex-perimentallyinthepyloricCPG.WhenadditiveGauss-iannoiseisintroducedintotherateequations,theacti-vationorderofneuronsisnotbroken,buttheperiodofthelimitcycledependsonthelevelofperturbation.ThereforethecycliccompetitivesequenceisrobustandcanberelatedtothesynapticconnectivityseeninrealMCs.IfindividualneuronsinaMCarenotoscillating,onecanconsidersmallsubgroupsofneuronsthatmayformoscillatoryunitsandapplytheWLCprincipletotheseunits.

Animportantquestionaboutmodelingtherhythmicactivityofsmallinhibitorycircuitsishowthespecificdynamicsofindividualneuronsinfluencesthenetworkrhythmgeneration.Figure10representsthethree-dimensional͑3D͒projectionofthemany-dimensionalphaseportraitofacircuitwiththesamearchitectureas

1228

Rabinovichetal.:Dynamicalprinciplesinneuroscience

FIG.10.͑Coloronline͒Three-dimensionalprojectionofthemany-dimensionalphaseportraitofacircuitwiththesamearchitectureastheoneshowninFig.9,usingHodgkin-Huxleyspiking-burstingneuronmodels.

showninFig.9͑a͒butusingHodgkin-Huxleyspiking-burstingneuronmodels.TheswitchingdynamicsseenintheratemodelisshowninFig.9͑c͒,andthiscircuitisrobustwhennoiseisaddedtoit.

Pairsofneuronscaninteractviainhibitory,excitatory,orelectrical͑gapjunction͒synapsestoproducebasicformsofneuralactivitywhichcanserveasthefounda-tionforMCdynamics.Perhapsthemostcommon͑andwell-studied͒CPGinteractionconsistsofreciprocalin-hibition,anarrangementthatgeneratesarhythmicburstingpatterninwhichneuronsfireapproximatelyoutofphasewitheachother͑WangandRinzel,1995͒.Thisiscalledahalf-centeroscillator.Itoccurswhenthereissomeformofexcitationtothetwoneuronssufficienttocausetheirfiringandsomeformofdecaymechanismtoslowhighfiringfrequencies.Thedynamicalrangeoftheburstingactivityvarieswiththesynapsestrengthandinsomeinstancescanactuallyproducein-phasebursting.Usuallyreciprocalexcitatoryconnections͑unstableiftoolarge͒orreciprocalexcitatory-inhibitoryconnectionsareabletoreducetheintrinsicirregularityofneurons͑Varona,Torres,Abarbanel,etal.,2001͒.

Modelingstudieswithelectricallycoupledneuronshavealsoproducednonintuitiveresults͑Abarbaneletal.,1996͒.Whileelectricalcouplingisgenerallythoughttoprovidesynchronybetweenneurons,undercertainconditionsthetwoneuronscanburstoutofphasewitheachother͑ShermanandRinzel,1992;Elsonetal.,1998,2002͒;seeFig.11andalsoChowandKopell͑2000͒andLewisandRinzel͑2003͒.Aninterestingmodelingstudyofthreeneurons͑Soto-Trevinoetal.,2001͒withsyn-apsesthatareactivitydependentfoundthatthesynapticstrengthsself-adjustedindifferentcombinationstopro-ducethesamethree-phaserhythm.Therearemanyex-amplesofvertebrateMCsinwhichacollectionofneu-ronscanbeconceptuallyisolatedtoperformaparticularfunctionortorepresentthecanonicalormodularcircuitforaparticularbrainregion͓seeShepherd͑1998͔͒.

Rev.Mod.Phys.,Vol.78,No.4,October–December2006

FIG.11.Artificialelectricalcouplingbetweentwolivingcha-oticPDcellsofthestomatogastricganglionofacrustaceancandemonstratebothsynchronousandasynchronousregimesofactivity.InthiscasetheartificialelectricalsynapsewasbuiltontopoftheexistingnaturalcouplingbetweentwoPDcells.Thisshowsdifferentsynchronizationlevels͑a͒–͑d͒asafunctionoftheartificialcouplinggaandadccurrentIinjectedinoneofthecells.͑a͒Withtheirnaturalcouplingga=0thetwocellsaresynchronizedanddisplayirregularspiking-burstingactivity.͑b͒Withanartificialelectricalcouplingthatchangesthesignofthecurrentga=−200nS,andthuscompensatesthenaturalcoupling,thetwoneuronsbehaveindependently.͑c͒Increasingthenegativeconductanceleadstoaregularizedantiphasespik-ingactivity͑bymimickingmutualinhibitorysynapses͒.͑d͒Withnoartificialcouplingbutaddingadccurrenttwoneuronsaresynchronized,displayingtonicspikingactivity.ModifiedfromElsonetal.,1988.

C.Intercircuitcoordination

ItisoftenthecasethatmoreorlessindependentMCsmustsynchronizeinordertoperformsomecoordinatedfunction.Thereisagrowingliteraturesuggestingthatlargegroupsofneuronsinthebrainsynchronizeoscilla-toryactivityinordertoachievecoherence.Thismaybeamechanismforbindingdisparateaspectsofcognitivefunctionintoawhole͑Singer,2001͒,aswewilldiscussinSec.III.D.However,itismorepersuasivetoexamineintercircuitcoordinationinmotorcircuitswherethephasesofdifferentsegmentsorlimbsactuallycontrolmovements.Forexample,thepyloricandgastriccircuitscanbecoordinatedinthecrustaceanstomatogastricsys-tembyahigher-levelmodulatoryneuronthatchannelsthefasterpyloricrhythmtoakeycellinthegastricmillrhythm͑Fig.12͑͒Bartos.IncrabandstomatogastricNushbaum,1997MCs,;Bartosthegastricetal.,1999mill͒cyclehasaperiodofapproximately10swhilethepy-loricperiodisapproximately1s.Whenanidentifiedmodulatoryprojectionneuron͑MCN1͓͒Fig.12͑a͔͒isac-tivated,thegastricmillpatternislargelycontrolledby

Rabinovichetal.:Dynamicalprinciplesinneuroscience

1229

FIG.12.͑a͒SchematiccircuitdiagramunderlyingMCN1acti-vationofthegastricmillrhythmofacrustacean.Thecircuitrepresentstwophasesoftherhythm,retraction͑left͒andpro-traction͑right͒.Lighterlinesrepresentinactiveconnections.LG,Int1,andDGaremembersofthegastricCPGandABandPDaremembersofthepyloricCPG.ArrowsrepresentfunctionaltransmissionpathwaysfromtheMCN1neuron.Barsareexcitatoryanddotsareinhibitory.͑b͒Thegastricmillcycleperiod;thetimingofeachcycleisafunctionofthepy-loricrhythmfrequency.Withthepyloricrhythmturnedoff,thegastricrhythmcyclesslowly͑LG͒.ReplacingtheABinhibitionofInt1withcurrentintoLGusingadynamicclampreducesthegastricmillcycleperiod.ModifiedfromBarotsetal.,1999.

interactionsbetweenMCN1andgastricneuronsLGandInt1͑Bartosetal.,1999͒.WhenInt1isstimulated,theABtoLGsynapse͓seeFig.12͑b͔͒playsamajorroleindeterminingthegastriccycleperiodandcoordinationbetweenthetworhythms.Thetworhythmsbecomeco-ordinatedbecauseLGburstonsetoccurswithaconstantlatencyaftertheonsetofthetriggeringpyloricinput.Theseresultssuggestthatintercircuitsynapsescanen-ableanoscillatorycircuittocontrolthespeedofasloweroscillatorycircuitaswellasprovideamechanismforintercircuitcoordination͑Bartosetal.,1999͒.

AnothertypeofintercircuitcouplingoccursamongsegmentalCPGs.Inthecrayfish,abdominalappendages

Rev.Mod.Phys.,Vol.78,No.4,October–December2006

calledswimmeretsbeatinametachronalrhythmfromposteriortoanteriorwithafrequency-independentphaselagofabout90°.Likemostrhythmsofthiskind,thephaselagmustremainconstantoverdifferentfre-quencies.IntheoreticalandexperimentalstudiesbyJonesetal.͑2003͒,itwasshownthatsuchphasecon-stancycouldbeachievedbyascendinganddescendingexcitatoryandinhibitorysynapses,iftherightconnec-tionsweremade.ItappearsrealistictolookatrhythmicMCsasrecurrentnetworkswithmanyintrinsicfeedbackconnectionssothattheinformationonacompletespa-tiotemporalpatterniscontainedinthelong-termactiv-ityofjustafewneuronsinthecircuit.ThenumberofintercircuitconnectionsnecessaryforcoordinationoftherhythmsisthereforemuchsmallerthanthetotalnumberofneuronsintheMC.

Toinvestigatecoordinatingtwoelementsofapopula-tionofneurons,onemayinvestigatehowvariouscou-plings,implementedinadynamicalclamp,mightoper-ateinthecooperativebehavioroftwopyloricCPGs.Thisisahybridandsimplifiedmodelofthemorecom-plexinterplaybetweenbrainareaswhosecoordinatedactivitymightbeusedtoachievevariousfunctions.Wenowdescribesuchasetofexperiments.

ArtificiallyconnectingneuronsfromthepyloricCPGoftwodifferentanimalsusingadynamicclampcouldleadtodifferentkindsofcoordinationdependingonwhichneuronsareconnectedandwhatkindofsynapsesareused͑Szücsetal.,2004͒.Connectingthepacemakergroupwithelectricalsynapsescouldachievesame-phasesynchrony;connectingthemwithinhibitorysynapsesprovidedmuchbettercoordinationbutoutofphase.Thetwopyloriccircuits͑Fig.13͒arerepresentativeofcircuitsdrivenbycoupledpacemakerneuronsthatcom-municatewitheachotherviabothgradedandconven-tionalchemicalinteractions.ButwhiletheunitCPGpatternisformedinthisway,coordinatingfibersmustusespike-mediatedpostsynapticpotentialsonly.Itthereforebecomesimportanttoknowwhereinthecir-cuittoinputtheseconnectionsinordertoachievemaxi-mumeffectivenessintermsofcoordinatingtheentirecircuitandensuringphaseconstancyatdifferentfre-quencies.SimplycouplingthePDstogetherelectricallyisratherineffectivealthoughthebursts͑notspikes͒dosynchronizecompletelyevenathighcouplingstrengths.ThefactthatthetwoPDsareusuallyrunningatslightlydifferentfrequenciesleadstoboutsofchaosinthetwoneurons,i.e.,areductioninregularity.Moreeffectivesynchronizationoccurswhenthepacemakergroupsarelinkedtogetherwithmoderatelystrongreciprocalin-hibitorysynapsesintheclassichalf-centerconfiguration.BurstsintwoCPGsareofcourse180°outofphase,butthefrequenciesarevirtuallyidentical.Thebestin-phasesynchronizationisobtainedwhentheLPsarecoupledtothecontralateralPDswithinhibitorysynapses͑Fig.13͒.

D.Chaosandadaptability

Overthepastdecadestherehavebeenmanyreportsoftheobservationofchaosintheanalysisofvarious

1230

Rabinovichetal.:Dynamicalprinciplesinneuroscience

FIG.13.CouplingoftwobiologicalpyloricCPGsPyl1andPyl2bymeansofdynamicclampartificialinhibitorysynapses.ThedynamicclampisindicatedbyDCL.ReciprocalinhibitorycouplingbetweenthepacemakergroupsABandPDleadstoantiphasesynchronizationwhilenonreciprocalcouplingfromtheLPsproducesin-phasesynchronization.FigureprovidedbyA.Szücs.

timecoursesofdatafromavarietyofneuralsystemsrangingfromthesimpletothecomplex͑Glass,1995;KornandFaure,2003͒.Perhapstheoutstandingfeatureoftheseobservationsisnotthepresenceofchaosbuttheappearanceoflow-dimensionaldynamicalsystemsastheoriginofspectrallybroadband,nonperiodicsig-nalsobservedinmanyinstances͑RabinovichandAbar-banel,1998͒.Allchaoticoscillationsoccurinaboundedstate-spaceregionofthesystem.Thisstatespaceiscap-turedbythemultivariatetimecourseofthevectorofdynamicaldegreesoffreedomassociatedwithneuralspikegeneration.Thesedegreesoffreedomarecom-prisedofthemembranevoltageandthecharacteristicsofthevariousioncurrentsinthecell.Usingnonlineardynamicaltoolsonecanreconstructamathematicallyfaithfulproxystatespacefortheneuronbyusingthemembranevoltageanditstime-delayedvaluesascoor-dinatesforthestatespace͑seeFig.14͒.

Chaosseemstobealmostunavoidableinnaturalsys-temscomprisedofnumeroussimpleorslightlycomplexsubsystems.Aslongastherearethreeormoredimen-sions,chaoticmotionsaregenericinthebroadmath-ematicalsense.Soneuronsaredealtachaotichandbynatureandmayhavelittlechoicebuttoworkwithit.Acceptingthatchaosismoreorlesstheonlychoice,wecanaskwhatbenefitsaccruetotherobustnessandadaptabilityofneuralactivity.

Chaositselfmaynotbeessentialforlivingsystems.However,themultitudeofregularregimesofoperationthatcanbeaccomplishedindynamicalsystemscom-posedofelementswhichthemselvescanbechaoticgivesrisetoabasicprinciplethatnaturemayusefortheor-Rev.Mod.Phys.,Vol.78,No.4,October–December2006

FIG.14.Chaoticspiking-burstingactivityofisolatedCPGneutrons.Toppanel:ChaoticmembranepotentialtimeseriesofasynapticallyisolatedLPneuronfromthepyloricCPG.Bottompanel:State-spaceattractorreconstructedfromthevoltagemeasurementsoftheLPneuronshowninthetoppanelusingdelayedcoordinates͓x͑t͒,y͑t͒,z͑t͔͒=͓V͑t͒,V͑t−T͒,V͑t−2T͔͒.ThisattractorischaracterizedbytwopositiveLyapunovexponents.ModifiedfromRabinovichandAbar-banel,1998.

ganizationofneuralassemblies.Inotherwords,chaosisnotresponsiblefortheworkofvariousneuralstruc-tures,butratherforthefactthatthosestructuresfunc-tionattheedgeofinstability,andoftenbeyondit.Byrecognizingchaoticmotionsinasystemstatespaceasunstable,butbounded,thisgeometricnotiongivescre-dencetotheotherwiseunappealingideaofsysteminsta-bility.Theinstabilityinherentinchaoticmotions,ormorepreciselyinnonlineardynamicsofsystemswithchaos,facilitatestheextraordinaryabilityofneuralsys-temstoadapt,maketransitionsfromonepatternofbe-haviortoanotherwhentheenvironmentisaltered,andconsequentlycreatearichvarietyofpatterns.Thuschaosgivesameanstoexploretheopportunitiesavail-abletothesystemwhentheenvironmentchanges,andactsasaprecursortoadaptive,reliable,androbustbe-haviorforlivingsystems.

Throughoutevolutionneuralsystemshavedevelopeddifferentmethodsofself-controlorself-organization.Ontheonehand,suchmethodspreservealladvantagesofthecomplexbehaviorofindividualneurons,suchasallowingregulationofthetimeperiodoftransitionsbe-tweenoperatingregimes,aswellasregulationoftheoperationfrequencyinanygivenregime.Theyalsopre-servethepossibilityofarichvarietyofperiodicandnonperiodicregimesofbehavior;seeFig.11andElsonetal.͑1988͒andVarona,Torres,Huerta,etal.͑2001͒.Ontheotherhand,thesecontrolororganizationaltech-niquesprovidetheneededpredictabilityofbehavioralpatternsinneuralassemblies.

Organizingchaoticneuronsthroughappropriatewir-ingassociatedwithelectrical,inhibitory,andexcitatoryconnectionsappearstoallowforessentiallyregularop-erationofsuchanassembly͑Huertaetal.,2001͒.Asanexamplewementionthedynamicsofanartificialmicro-

Rabinovichetal.:Dynamicalprinciplesinneuroscience

1231

FIG.15.AverageburstingperiodofthemodelheartbeatCPGactivityasafunctionoftheinhibitorycoupling⑀.ModifiedfromMalkovetal.,1996.

circuitthatmimicstheleechheartbeatCPG͑Calabreseetal.,1995͒.ThisCPGmodelconsistsofsixchaoticneu-ronsimplementedwithHindmarsh-Roseequationsre-ciprocallycoupledtotheirneighborsthroughinhibitorysynapses.Themodelingshowedthatinspiteofchaoticoscillationsofindividualneuronsthecooperativedy-namicsisregularand,mostimportantly,theperiodofburstingofthecooperativedynamicssensitivelyde-pendsonthevaluesoftheinhibitoryconnections͑Malkovetal.,1996͒͑seeFig.15͒.Thisexampleshowsthehighlevelofadaptabilityofanetworkconsistingofchaoticelements.

Chaoticsignalshavemanyofthetraditionalcharac-teristicsattributedtonoise.Inthepresentcontextwerecognizethatbothchaosandnoiseareabletoorganizetheirregularbehaviorofindividualneuronsorneuralassemblies,buttheprincipaldifferenceisthatdynamicalchaosisacontrollableirregularity,possessingstructureinstatespace,whilenoiseisanuncontrollableactionofdynamicalsystems.Thisdistinctionisextremelyimpor-tantforinformationprocessingasdiscussedbelow͑seeSec.III.B.2anditsfinalremarks͒.

Thereareseveralpossiblefunctionsfornoise͑Lind-neretal.,2004͒,evenseenashigh-dimensionalessen-tiallyunpredictablechaoticmotion,inneuralnetworkstudies.Inhigh-dimensionalsystemscomposedhereofmanycouplednonlinearoscillators,theremaybesmallbasinsofattractionwhere,inprinciple,thesystemcouldbecometrapped.Noisewillblurthebasinboundariesandremovethepossibilitythatthemainattractorscouldaccidentallybemissedandhighlyfunctionalsynchro-nizedstateslosttoneuronalactivity.Somenoisemaypersistinthedynamicsofneuronstosmoothouttheactionsofthechaoticdynamicsactiveincreatingrobust,adaptablenetworks.

Chaosshouldnotbemistakenfornoise,astheformerhasphase-spacestructurewhichcanbeutilizedforsyn-chronization,transmissionofinformation,andregular-izationofthenetworkforperformanceofcriticalfunc-tions.Inthenextsectionwediscusstheroleofchaosininformationprocessingandinformationcreation.

Rev.Mod.Phys.,Vol.78,No.4,October–December2006

III.INFORMATIONALNEURODYNAMICS

Theflowofinformationinthebraingoesfromsen-sorysystems,whereitiscapturedandencoded,tocen-tralnervoussystems,whereitisfurtherprocessedtogenerateresponsesignals.Inthecentralnervoussystemcommandsignalsaregeneratedandtransportedtothemusclestoproducemotorbehavior.Atallthesestageslearningandmemoryprocessesthatneedspecificrepre-sentationstakeplace.Thusitisnotsurprisingthatthenervoussystemhastousedifferentcodingstrategiesatdifferentlevelsofthetransport,storage,anduseofin-formation.Differenttransformationsofcodeshavebeenproposedfortheanalysisofspikingactivityinthebrain.Thedetailsdependontheparticularsystemunderstudybutsomegeneralizationispossibleintheframeworkofanalyzingthespatial,temporal,andspatiotemporalcodes.Therearemanyunknownfactorsrelatedtothecooperationbetweenthesedifferentformsofinforma-tioncoding.Somekeyquestionsareasfollows:͑i͒Howcanneuralsignalsbetransformedfromonecodingspacetoanotherwithoutlossofinformation?͑ii͒Whatdy-namicalmechanismsareresponsibleforstoringtimeinmemory?͑iii͒Canneuralsystemsgeneratenewinforma-tionbasedontheirsensoryinputs?Inthissection,wediscusssomeimportantexperimentalresultsandnewparadigmsthatcanhelptoaddressthesequestions.

A.Timeandneuralcodes

Informationfromsensorysystemsarrivesatsensoryneuronsasanalogchangesinlightintensityortempera-ture,orchemicalconcentrationofanodorant,orskinpressure,etc.Theseanalogdataarerepresentedinin-ternalneuralcircuitdynamicsandcomputationsbyaction-potentialsequencespassedfromsensoryreceiv-erstohigher-orderbrainprocesses.Neuralcodesguar-anteetheefficiency,reliability,androbustnessofthere-quiredneuralcomputations͑Machens,Gollisch,etal.,2005͒.

1.Temporalcodes

Twoofthecentralquestionsinunderstandingthedy-namicsofinformationprocessinginthenervoussystemarehowinformationisencodedandhowthecodingspacedependsontime-dependentstimuli.

Acodeinthebiophysicalcontextofthenervoussys-temisaspecificrepresentationoftheinformationoper-atedonorcreatedbyneurons.Acoderequiresaunitofinformation.However,thisisalreadyacontroversialis-suesince,aswehavepreviouslydiscussed,informationisconveyedthroughchemicalandelectricalsynapses,neuromodulators,hormones,etc.,whichmakesitdiffi-culttopointoutasingleuniversalunitofinformation.Aclassicalassumptionatthecellularlevel,validformanyneuralsystems,isthataspikeisanall-or-nothingeventandthusagoodcandidateforaunitofinformation,atleastinacomputationalsense.Thisisnottheonlysim-

1232

Rabinovichetal.:Dynamicalprinciplesinneuroscience

FIG.16.͑Coloronline͒Twopossiblecodesfortheactivityofasingleneuron.Inaratecode,differentinputs͑A–D͒aretrans-formedintodifferentoutputspikingrates.Inatimingcode,differentinputsaretransformedintodifferentspikingse-quenceswithprecisetiming.

plificationneededtoanalyzeneuralcodesforafirstap-proach.Acodingschemeneedstodetermineacodingspaceandtakeintoaccounttime.

Acommonhypothesisistoconsiderauniversaltimeforallneuralelements.Althoughthisistheapproachwediscusshere,weremindthereaderthatthisisalsoanarguableissue,sinceneuronscansensetimeinmanydifferentways:bytheirintrinsicactivity͑subcellulardy-namics͒orbyexternalinput͑synapticandnetworkdy-namics͒.Internalandexternal͑network͒clocksarenotnecessarilysynchronizedandcanhavedifferentdegreesofprecision,timescales,andabsolutereferences.Somedynamicalmechanismscancontributetomakeneuraltimeunifiedandcoherent.

Ontheonehand,whenweconsiderjustasingleneu-ron,aspikeastheunitofinformation,andauniversaltime,wecantalkabouttwodifferenttypesofencoding:thefrequencyoffiringcanencodeinformationaboutthestimulusinaratecode;ontheotherhand,theexacttemporaloccurrenceofspikescanencodethestimulusanditsresponseinaprecisetimingcode.Thetwocod-ingalternativesareschematicallyrepresentedinFig.16.Inthiscontext,aprecisetimingortemporalcodeisacodeinwhichrelativespiketimings͑ratherthanspikecounts͒areessentialforinformationprocessing.Severalexperimentalrecordingshaveshownthepresenceofboth͑typesofsingle-cellcodinginthe1991Adrian;McClurkinandZotterman,etal.,19911926;Softky,;Barlow,nervous19951972;Shadlen;Abeles,systemandNewsome,1998͒.Inparticular,finetemporalprecisionandreliabilityofspikedynamicsarereportedinmanycelltypes͑SegundoandPerkel,1969;MainenandSejnowski,1995;deCharmsandMerzenich,1996;deRytervanStevenincketal.,1997;Segundoetal.,1998;Mehtaetal.,2002;ReinagelandReid,2002͒.Singleneu-ronscandisplaythesetwocodesindifferentsituations.

2.Spatiotemporalcodes

Apopulationofcoupledneuronscanhaveacodingschemedifferentfromthesumoftheindividualcodingmechanisms.Interactionsamongneuronsthroughtheirsynapticconnections,i.e.,theircooperativedynamics,al-lowformorecomplexcodingparadigms.Thereismuchexperimentalevidencewhichshowstheexistenceofso-calledpopulationcodesthatcollectivelyexpressacom-plexstimulusbetterthantheindividualneurons͓see,

Rev.Mod.Phys.,Vol.78,No.4,October–December2006

e.g.,Georgopoulusetal.͑1986͒;WilsonandMcNaugh-ton͑1993͒;Fitzpatricketal.͑1997͒;Pougetetal.͑2000͔͒.Theefficacyofpopulationcodinghasbeenassessedmainlyusingmeasuresofmutualinformationinmodel-ingefforts͑SeungandSompolinsky,1993;Panzerietal.,1999;Sompolinskyetal.,2001͒.

Twoelementscanbeusedtobuildpopulationcodes:neuronalidentity͑i.e.,neuronalspace͒andthetimeoc-currenceofneuralevents͑i.e.,thespikes͒.Accordingly,informationaboutthephysicalworldcanbeencodedintemporalorspatial͑combinatorial͒codes,orcombina-tionsofthesetwo:spiketimecanrepresentphysicaltime͑apuretemporalcode͒,spiketimecanrepresentphysicalspace,neuronalspacecanrepresentphysicaltime͑apurespatialcode͒,andneuronalspacecanrep-resentphysicalspace͑Nádasdy,2000͒.Whenwecon-siderapopulationofneurons,informationcodescanbespatial,temporal,orspatiotemporal.

Populationcodingcanalsobecharacterizedasinde-pendentorcorrelated͑deCharmsandChristopher,1998͒.Inanindependentcode,eachneuronrepresentsaseparatesignal:allinformationthatisobtainablefromasingleneuroncanbeobtainedfromthatneuronalone,withoutreferencetotheactivitiesofotherneurons.Foracorrelatedorcoordinatedcodingmessagesarecarriedatleastinpartbytherelativetimingofthesignalsfromapopulationofneurons.

Thepresenceofnetworkcoding,i.e.,aspatiotemporaldynamicalrepresentationofincomingmessages,hasbeenconfirmedinseveralexperiments.Asanexample,wediscussherethespatiotemporalrepresentationofepisodicexperiencesinthehippocampus͑Linetal.,2005͒.Individualhippocampalneuronsrespondtoawidevarietyofexternalstimuli͑WilsonandMcNaugh-ton,1994;Dragoietal.,2003͒.Theresponsevariabilityatthelevelofindividualneuronsposesanobstacletotheunderstandingofhowthebrainachievesitsrobustreal-timeneuralcodingofthestimulus͑Lestienne,2001͒.Reliableencodingofsensoryorothernetworkinputsbyspatiotemporalpatternsresultingfromthedy-namicalinteractionofmanyneuronsundertheactionofthestimuluscansolvethisproblem͑HamiltonandKauer,1985;Laurent,1996;Vaadiaetal.,1999͒.

Linetal.͑2005͒showedthatmnemonicshort-timeepisodes͑aformofone-triallearning͒cantriggerfiringchangesinasetofCA1hippocampalneuronswithspe-cificspatiotemporalrelationships.Tofindsuchrepresen-tationsinthecentralnervoussystemofananimalisanextremelydifficultexperimentalandcomputationalproblem.Becausetheindividualneuronsthatpartici-pateintherepresentationofaspecificstimulusandformatemporalneuralclusterindifferenttrialscanbediffer-ent,itisnecessarytomeasuresimultaneouslytheactiv-ityofalargenumberofneurons.Inaddition,becauseofthevariabilityintheindividualneuronresponses,thespatiotemporalpatternsofdifferenttrialsmayalsolookdifferent.Thus,toshowthefunctionalimportanceofthespatiotemporalrepresentationofthestimulus,thereaderhastousesophisticatedmethodsofdataanalysis.Linetal.͑2005͒developeda96-channelarraytorecord

Rabinovichetal.:Dynamicalprinciplesinneuroscience

1233

FIG.17.͑Coloronline͒Tempo-raldynamicsofindividualCA1neuronsofthehippocampusinresponseto“startling”events.Spikerasterplots͓͑a͒–͑d͒up-per,sevenrepetitionseach͔andcorrespondingperieventhisto-gram͓͑a͒–͑d͒lower,binwidth500ms͔forunitsexhibitingthefourmajortypesoffiringchangesobserved:͑a͒transientincrease,͑b͒prolongedin-crease,͑c͒transientdecrease,͑d͒andprolongeddecrease.FromLinetal.,2005.

simultaneouslytheactivitypatternsofasmanyas260individualneuronsinthemousehippocampusduringvariousstartlingepisodes͑airblow,elevatordrop,andearthquakeshake͒.Theyusedmultiple-discriminantanalysis͑Dudaetal.,2001͒andshowedthat,eventhoughindividualneuronsexpressdifferenttemporalpatternsindifferenttrials͑seeFig.17͒,itispossibletoidentifyfunctionalencodingunitsintheCA1neuronassembly͑seeFig.18͒.

Therepresentationofnonstationarysensoryinforma-tion,say,avisualstimulus,canusethetransformationofatemporaltoaspatialcode.Therecognitionofaspe-cificneuralfeaturecanbeimplementedthroughthetransformationofaspatialcodeintoatemporalonethroughcoincidencedetectionofspikes.Aspatialrep-resentationcanbetransformedintoaspatiotemporalonetoprovidethesystemwithhighercapacityandro-bustnessandsensitivityatthesametime.Finally,aspa-tiotemporalcodecanbetransformedintoaspatialcodeinprocessesrelatedtolearningandmemory.Thesepos-sibilitiesaresummarizedinFig.19.

Morphologicalconstraintsofneuralconnectionsinsomecasesimposeaparticularspatialortemporalcode.Forexample,projectionneuronstransferinformationbetweenareasofthebrainalongparallelpathwaysbypreservingtheinputtopographyasneuronalspecificityattheoutput.Inmanycasestheinputtopographyistransformedtoadifferenttopographythatispreserved;forexample,theretinotopicmapoftheprimaryvisualareasandsomatotopicmapsofthesomatosensoryandmotorareas.Othertransformationsdonotpreserveto-pology.Theseincludetransformationsinplacecellsinthehippocampus,andthetonotopicrepresentationintheauditorycortex.Thereisahighdegreeofconver-genceanddivergenceofprojectionsinsomeofthesetransformationsthatcanbeacomputationallyoptimaldesign͑Garcia-SanchezandHuerta,2003͒.Inmostofthesetransformations,thetemporaldimensionofthestimulusisencodedbyspiketimingorbytheonsetoffiring-ratetransients.

Anexampleoftransformingaspatiotemporalcodetoapurespatialcodewasfoundintheolfactorysystemof

Rev.Mod.Phys.,Vol.78,No.4,October–December2006

locusts,andhasbeenmodeledbyNowotny,Rabinovich,etal.͑2003͒andNowotnyetal.͑2005͒.Figure20givesagraphicalexplanationoftheconnectionsinvolved.Thecomplexspatiotemporalcodeofsequencesoftransientlysynchronizedgroupsofprojectionneuronsintheanten-nallobe͑Laurentetal.,2001͒isslicedintotemporalsnapshotsofactivitybyfeedforwardinhibitionandcoin-cidencedetectioninthenextprocessinglayer,themush-roombody͑Perez-Oriveetal.,2002͒.Thissnapshotcodeispresumablyintegratedovertimeinthenextstagesofthemushroomlobes,completingthetransformationofthespatiotemporalcodeintheantennallobetoapurelyspatialcode.Itwasshowninsimulationsthatthetem-poralinformationonthesequenceofactivityinthean-tennallobethatcouldbelostindownstreamtemporalintegrationcanberestoredthroughslowlateralexcita-tioninthemushroombody͑Nowotny,Rabinovich,etal.,2003͒.Thishasbeenreportedexperimentally͑LeitchandLaurent,1996͒.Withthisextrafeaturethetransfor-mationfromaspatiotemporalcodetoapurespatialcodebecomesfreeofinformationloss.

3.Coexistenceofcodes

Differentstagesofneuralinformationprocessingaredifficulttostudyinisolation.Inmanycasesitishardtodistinguishbetweenwhatisanencodingofaninputandwhatisastaticordynamic,perhapsnonlinear,responsetothatinput.Thisisacrucialobservationthatisoftenmissed.Encodinganddecodingmayormaynotbepartofadynamicalprocess.However,thecreationofinfor-mation͑discussedinthenextsection͒andthetransfor-mationofspatialcodestotemporalorspatiotemporalcodesarealwaysdynamicalprocesses.

Another,butlessfrequentlyaddressed,issueaboutcodingisthepresenceofmultipleencodingsinsingle-cellsignals͑Latorreetal.,2006͒.Thismayoccursincemultifunctionalnetworksmayneedmultiplecoexistingcodes.TheneuralsignaturesininterspikeintervalsofCPGneuronsprovideanexample͑Szücsetal.,2003͒.Individualfingerprintscharacteristicoftheactivityofeachneuroncoexistwiththeencodingofinformationin

1234

Rabinovichetal.:Dynamicalprinciplesinneuroscience

FIG.18.͑Coloronline͒Classification,visualization,anddy-namicaldecodingofCA1ensemblerepresentationsofstartleepisodesbymultiple-discriminantanalysis͑MDA͒methods.͑a͒Firingpatternsduringrest,airblow,drop,andshakeep-ochsareshownafterbeingprojectedtoathree-dimensionalspaceobtainedbyusingMDAformouseA;MDA1–MDA3denotethediscriminantaxes.Bothtraining͑darksymbols͒andtestdataareshown.Aftertheidentificationofstartletypes,asubsequentMDAisfurtherusedtoresolvecontexts͑fullvsemptysymbols͒inwhichthestartleoccurredforair-blowcon-text͑b͒andforelevatordrop͑c͒.͑d͒Dynamicalmonitoringofensembleactivityandthespontaneousreactivationofstartlerepresentations.Three-dimensionalsubspacetrajectoriesofthepopulationactivityinthetwominutesafteranair-blowstartleinmouseAareshown.Theinitialresponsetoanairblow͑blackline͒isfollowedbytwolargespontaneousexcur-sions͑blue/darkandred/lightlines͒,characterizedbycoplanar,geometricallysimilarlower-amplitudetrajectories͑directional-ityindicatedbyarrows͒.͑e͒Thesametrajectoriesasin͑a͒fromadifferent3Dangle.͑f͒Thetiming͑t1=31.6sandt2=.8s͒ofthetworeactivations͑markedinblue/darkandred/light,respectively͒aftertheactualstartle͑inblack͒͑t=0s͒.Theverticalaxisindicatestheair-blowclassificationprobabil-ity.FromLinetal.,2005.

thefrequencyandphaseofthespiking-burstingrhythms.Thisisanexamplethatshowsthatcodescanbenonexclusive.Inburstingactivity,codingcanexistinslowwaves,butalso,andsimultaneously,inthespikingactivity.

Inthebrain,specificneuralpopulationsoftensendmessagesthroughprojectionstoseveralinformation“users.”Itisdifficulttoimaginethatallofthemdecodetheincomingsignalsinthesameway.Inneurosciencetherelationshipbetweentheencoderanddecoderisnotaone-to-onemapbutcanbemanysimultaneousmapsfromthesenderstodifferentreceivers,basedondiffer-entdynamics.ThisdepartsfromShannon’sclassical

Rev.Mod.Phys.,Vol.78,No.4,October–December2006

formulationofinformationtheory͑Fano,1961;Gallager,1968͒.Forexample,cochlearafferentsinbirdsbifurcatetotwodifferentareasofthebrainwithdifferentdecod-ingproperties.Oneareaextractsinformationaboutrelativetimingfromaspiketrain,whereastheotherex-tractstheaveragefiringrate͑Konishi,1990͒.

4.Temporal-to-temporalinformationtransformation:Workingmemory

Thereisanotherimportantcodetransformationofin-teresthere:thetransformationofafiniteamountoftemporalinformationtoaslowtemporalcodelastingforseconds,minutes,orhours.Weareabletorememberaphonenumberfromsomeonewhojustcalledus.Persis-tentdynamicsisoneofthemechanismsforthisphenom-enon,whichisusuallynamedshort-termmemory͑STM͒orworkingmemory;itisabasicfunctionofthebrain.Workingmemory,incontrasttolong-termmemorywhichmostlikelyrequiresmolecular͑membrane͒orstructural͑connection͒changesinneuralcircuits,isadynamicalprocess.Thedynamicaloriginsofworkingmemorycanvary.

OneplausibleideaisthatSTMsaretheresultofac-tivereverberationininterconnectedneuralclustersthatfirepersistently.Sinceitsconceptualization͑deNó,1938;Hebb,1949͒,reverberatingactivityinmicrocircuitshasbeenexploredinmanymodelingpapers͑Grossberg,1973;AmitandBrunel,1997a;Durstewitzetal.,2000;Seungetal.,2000;Wang,2001͒.Experimentswithcul-turedneuronalnetworksshowthatreverberatoryactiv-itycanbeevokedincircuitsthathavenopreexistinganatomicalspecialization͑LauandBi,2005͒.Therever-berationisprimarilydrivenbyrecurrentsynapticexcita-tionratherthancomplexindividualneurondynamicssuchasbistability.Thecircuitrynecessaryforreverber-atingactivitycanbearesultofnetworkself-organization.Persistentreverberatoryactivitycanexisteveninthesimplestcircuit,i.e.,anexcitatoryneuronwithinhibitoryself-feedback͑Connors,2002;Egorovetal.,2002͒.Inthiscase,reverberationdependsonasyn-chronoustransmitterreleaseandintracellularcalciumstoresasshowninFig.21.

Natureseemstousedifferentdynamicalmechanismsforpersistentmicrocircuitactivity:cooperationofmanyinterconnectedneurons,persistentdynamicsofindi-vidualneurons,orboth.Thesemechanismseachhavedistinctadvantages.Forexample,networkmechanismscanbeturnedonandoffquickly͑McCormicketal.,2003͓͒seealsoBrunelandWang͑2001͔͒.Mostdynami-calmodelswithpersistentactivityarerelatedtotheanalysisofmicrocircuitswithlocalfeedbackexcitationbetweenprincipalneuronscontrolledbydisynapticfeedbackinhibition.Suchbasiccircuitsspontaneouslygeneratetwodifferentmodes:relativequiescenceandpersistentactivity.Thetriggeringbetweenmodesiscon-trolledbyincomingsignals.ThereviewbyBrunel͑2003͒considersseveralbasicmodelsofpersistentdynamics,includingbistablenetworkswithexcitationonlyandmultistablemodelsforworkingmemoryofadiscreteset

Rabinovichetal.:Dynamicalprinciplesinneuroscience

1235

FIG.19.͑Coloronline͒Sum-maryofpossiblescenariosforthetransformationofcodes,theirfunctionalimplications,andthedynamicalmechanisminvolved.

ofpictureswithstructuredexcitationandglobalinhibi-tion.

Workingmemoryisusedfortaskssuchasplanning,organizing,rehearsing,andmovementpreparation.Ex-perimentswithfunctionalmagneticresonanceimagingrevealsomeaspectsofthedynamicsofworkingmemory͓see,forexample,Diwadkaretal.͑2000͒andNystrometal.͑2000͔͒.Itisimportanttonotethatworkingmemoryhasalimitedcapacityofaroundfourtosevenitems͑Cowan,2001;VogelandMichizawa,2004͒.Anessentialfeatureattributedtoworkingmemoryisthelabileandtransientnatureofitsrepresentations.Becausesuchrepresentationsinvolvemanycoupledneuronsfromcor-ticalareas͑CurtsandD’Esposito,2003͒,itisnaturaltomodelworkingmemoryasthespatiotemporaldynamicsoflargeneuralnetworks.

Apopularideaistomodelworkingmemorywithat-tractors.Representationofitemsinworkingmemorybyattractorsmayguaranteeitsrobustness.Althoughro-bustnessisanimportantrequisiteforaworking-memorysystem,itstransientpropertiesarealsoimportant.Con-sideraforagingtaskinwhichananimalusesvisualinputtocatchprey͑NakaharaandDoya,1998͒.Itishelpfultostorethelocationofthepreyintheanimal’sworkingmemoryifthepreygoesbehindabushandthesensorycuebecomestemporarilyunavailable.However,thememoryshouldnotberetainedforeverbecausethepreymayhaveactuallygoneawayormayhavebeeneatenbyanotheranimal.Furthermore,ifmorepreyappearsneartheanimal,theanimalshouldquicklyloadthelocationofthenewpreyintoitsworkingmemorywithoutbeingdisturbedbytheoldmemory.

Thisexampleillustratesthattherearemorerequire-mentsforaworking-memorysystemthansolelyrobust

Rev.Mod.Phys.,Vol.78,No.4,October–December2006

maintenance.First,theactivityshouldbemaintainedbutnotfortoolong.Second,theactivityshouldberesetquicklywhenthereisanovelsensorycuethatneedstobestored.Inotherwords,theneuraldynamicsinvolvedinworkingmemoryforgoal-directedbehaviorsshouldhavethepropertiesoflong-termmaintenanceandquickswitching.Acorrespondingmodelbasedon“near-saddle-node”bifurcationdynamicshasbeensuggestedbyNakaharaandDoya͑1998͒.Theauthorshaveana-lyzedthedynamicsofanetworkofmodelneuralunitsthataredescribedbythefollowingmap͑seeFig.22͒:

yi͑tn+1͒=Fayi͑tn͒+b+͚␳ijyi͑tn͒+␥iIi͑tn͒,

j󰀅i

ͩͪ͑14͒

whereyi͑tn͒isthefiringrateoftheithunitattimetn,F͑z͒=1/͓1+exp͑−z͔͒isasigmoidfunction,aistheself-connectionweight,␳ijarethelateralconnectionweights,Ii͑t͒areexternalinputs,bisthebias,and␥iarecon-stantsusedtoscaletheinputsIi͑t͒.Asthebiasbisin-creased,thenumberoffixedpointschangessequentiallyfromonetotwo,three,two,andthenbacktoone.Asaddle-nodebifurcationoccurswhenthestabletransi-tioncurvey͑tn+1͒=F͑z͒istangenttothefixedpointy͑tn+1͒=y͑tn͒͑seeFig.22͒.Justnearthesaddle-nodebi-furcationthesystemshowspersistentactivity.Thismeansthatitspendsalongtimeinthenarrowchannelbetweenthebisectrixandthesigmoidactivationcurveandthengoestothefixedpointquickly.Suchdynamicalbehaviorremindsoneofthewell-knownintermittencyphenomenoninphysics͑LandauandLifshitz,1987͒.Be-causetheeffectofthesumofthelateralandexternalinputsinEq.͑14͒isequivalenttoachangeinthebias,themechanismmaysatisfytherequirementsofthedy-

1236

Rabinovichetal.:Dynamicalprinciplesinneuroscience

FIG.20.͑Color͒Illustrationofthetransformationoftemporalintospatialinformation.Ifacoincidencedetectionoccurs,thelocalexcitatoryconnectionsactivatetheneighborsoftheac-tiveneuron͑yellowneurons͒.CoincidencedetectionofinputisnowmoreprobableintheseactivatedneighborhoodsthaninotherKenyoncells͑KCs͒.Whichoftheneighborsmightfireaspike,however,dependsontheactivityoftheprojectionneu-rons͑PNs͒inthenextcycle.ItmightbeadifferentneuronforactivegroupBofPNs͑upperbranch͒thanforactivegroupC͑lowerbranch͒.InthiswaylocalsequencesofactiveKCsform.ThesedependontheidentityofactivePNs͑coincidencede-tection͒aswellasonthetemporalorderoftheiractivity͑ac-tivatedneighborhoods͒.ModifiedfromNowotny,Rabinovich,etal.,2003.

namicsofworkingmemoryforgoal-directedbehavior:long-termmaintenanceandquickswitching.

Anotherreasonablemodelforworkingmemorycon-sistsofcompetitivenetworkswithstimulus-dependentinhibitoryconnections͓asinEq.͑9͔͒.Oneoftheadvan-tagesofsuchamodelistheabilitytohavebothworkingmemoryandstimulusdiscrimination.Thisideawaspro-posedbyMachens,Romo,etal.͑2005͒inrelationtothefrontal-lobeneuralarchitecture.Thenetworkfirstper-ceivesthestimulus,thenholdsitintheworkingmemory,andfinallymakesadecisionbycomparingthatstimuluswithanotherone.Themodelintegratesbothworkingmemoryanddecisionmakingsincethenumberofstablefixedpointsandthesizeofthebasinsofattractorsarecontrolledbytheconnectionmatrix␳ij͑S͒whichde-pendsonthestimuliS.Theworking-memoryphasecor-respondstothebifurcationboundary,i.e.,␳model,thisij=␳ji=␳thestatespaceofthedynamicalphaseii.Inisrepresentedbyastablemanifoldcalleda“continuous

Rev.Mod.Phys.,Vol.78,No.4,October–December2006

FIG.21.͑Coloronline͒Reverberationcanbethedynamicaloriginforworkingmemoryinminimalcircuits.͑a͒Mostneu-ronsrespondtoexcitatorystimuli͓upwardstepsinthelinebelow͑c͔͒byspikingonlyaslongaseachstimuluslasts.͑b͒Veryrareneuronsarebistable:briefexcitationleadstopersis-tentspiking,alwaysatthesamerate;briefinhibition͓down-wardstepsinthelinebelow͑c͔͒canturnitoff.͑c͒Multistableneuronspersistentlyincreaseordecreasetheirspikingacrossarangeofratesinresponsetorepeatedbriefstimuli.͑d͒Inthereverberatorynetworkmodelofshort-termmemorydiscussedinthetext,anexcitatorystimulus͑leftarrow͒leadstorecur-siveactivityininterconnectedneurons.Inhibitorystimuli͑barontheright͒canhalttheactivity.͑e͒Egorovetal.͑2002͒sug-gestthatgradedpersistentactivityinsingleneurons͓asin͑c͔͒mightbetriggeredbyapulseofinternalCa2+ionsthatenterthroughvoltage-gatedchannels;Ca2+thenactivatescalcium-dependentnonspecificcation͑CAN͒channels,throughwhichaninwardcurrent͑largelycomprisingNa+ions͒enters,persis-tentlyexcitingtheneuron.Thepositivefeedbackloop͑brokenarrows͒mayincludetheactivityofmanyionicchannels.Modi-fiedfromConnors,2002.

attractor.”Thisisanattractorthatconsistsofcontinuoussetsoffixedpoints͓seeAmari͑1977͒andSeung͑1998͔͒.Thusthestimuluscreatesaspecificfixedpointand,atthenextstage,theworkingmemory͑acontinuousat-tractor͒maintainsit.Duringthecomparisonanddeci-sionphase,thesecondstimulusismappedontothesamestatespaceasanotherattractor.Thecriterionofthede-cisionmakerisreflectedinthepositionsofthesepara-tricesthatseparatethebasinsofattractionofdifferent

FIG.22.Temporalresponsesofself-recurrentunits:Near-saddle-nodebifurcationwitha=11.11,b=−7.9͑centerpanels͒.Increasedbias,b=−3.0͑leftpanels͒.Decreasedbiasb=−9.0͑rightpanels͒.ModifiedfromNakaharaandDoya,1998.

Rabinovichetal.:Dynamicalprinciplesinneuroscience

1237

FIG.23.HallucinationsgeneratedbyLSDareanexampleofadynamicalrepresentationoftheinternalactivityofthevisualcortexwithoutaninputstimulus.Figureshowsexamplesof͑a͒funneland͑b͒spiralhallucinations.ModifiedfromBressloff,etal.2001.

stimuli,i.e.,fixedpoints͑seeanalternativeapproachinRabinovichandHuerta,2006͒.

Wethinkthattheintersectionofthemechanismsre-sponsibleforpersistentactivityofsingleneuronswiththeactivityofanetworkwithlocalornonlocalrecur-renceprovidesrobustnessagainstnoiseandperturba-tions,andatthesametimemakesworkingmemorymoreflexible.

B.Informationproductionandchaos

Informationprocessinginthenervoussysteminvolvesmorethantheencoding,transduction,andtransforma-tionofincominginformationtogenerateacorrespond-ingresponse.Inmanycases,neuralinformationiscre-atedbythejointactionofthestimulusandtheindividualneuronandnetworkdynamics.Acreativeac-tivitylikeimprovisationonthepianoorwritinganewpoemresultsinpartfromtheproductionofnewinfor-mation.Thisinformationisgeneratedbyneuralcircuitsinthebrainanddoesnotdirectlydependontheenvi-ronment.

Time-dependentvisualhallucinationsareoneex-ampleofinformationproducedbyneuralsystems,inthiscasethevisualcortex,themselves.Suchhallucina-tionsconsistinseeingsomethingthatisnotinthevisualfield.Thereareinterestingmodels,beginningfromthepioneeringpaperofErmentroutandCowan͑1979͒,thatexplainhowtheintrinsiccircuitryofthebrain’svisualcortexcangeneratethepatternsofactivitythatunderliehallucinations.Thesehallucinationpatternsusuallytaketheformofcheckerboards,honeycombs,tunnels,spi-rals,andcobwebs͑seetwoexamplesinFig.23͒.Becausethevisualcortexisanexcitablemediumitispossibletousespatiotemporalamplitudeequationstodescribethedynamicsofthesepatterns͑seethenextsection͒.Thesemodelsarebasedonadvancesinbrainanatomyandphysiologythathaverevealedstrongshort-rangecon-nectionsandweakerlong-rangeconnectionsbetweenneuronsinthevisualcortex.Hallucinationpatternscanbequasistatic,periodicallyrepeatable,orchaoticallyre-peatableasinlow-dimensionalconvectiveturbulence;seeforareviewRabinovichetal.͑2000͒.Unpredictabil-ityofthespecificpatterninthehallucinationsequences

Rev.Mod.Phys.,Vol.78,No.4,October–December2006

FIG.24.͑Coloronline͒Dualsensorynetworkdynamics.Toppanels:Schematicrepresentationofthedualroleofasinglestatocyst,thegravitysensoryorganofthemolluskClione.Dur-ingnormalswimming,astonelikestructure,thestatolith,hitsthemechanoreceptorneuronsthatreacttothisexcitation.InClione’shuntingbehavior,thestatocystreceptorsreceiveaddi-tionalexcitationfromthecerebralhuntingneuron͑H͒whichgeneratesawinnerlesscompetitionamongthem.Bottompan-els:Chaoticsequentialswitchingdisplayedbytheactivityofthestatocystduringhuntingmodeinamodelofasix-receptornetwork.Thispaneldisplaysthetimeintervalsinwhicheachneuronisactive͑aiϾ0.03͒.Eachneuronisrepresentedbyadifferentcolor.Thedottedrectanglesindicatetheactivation-sequencelocksamongunitsthatareactiveatagiventimeintervalwithineachnetworkfortimewindowsinwhichallsixneuronsareactive.

͑principlemovie͒meanscanbethecharacterizedgenerationofbyinformationthevaluethatoftheinKolmogorov-Sinaientropy͑Scott,2004͒.

Thecreationorproductionofnewinformationisathemethathasbeenneglectedintheoreticalneuro-science,butitisaprovocativeandchallengingpointthatwediscussinthissection.Asmentionedbefore,infor-mationproductionorcreationmustbeadynamicalpro-cess.Belowwediscussanexamplethatemphasizestheabilityofneuralsystemstoproduceinformation-richoutputfrominformation-poorinput.

1.Stimulus-dependentmotordynamics

Asimplenetworkwithwhichwecandiscussthecre-ationofnewinformationisthegravity-sensingneuralnetworkofthemarinemolluskClionelimacina.Clioneisablindplanktonicanimal,negativelybuoyant,thathastomaintaincontinuousmotoractivityinordertokeepitspreferredhead-uporientation.ItsmotoractivityiscontrolledbywingCPGsandtailmotorneuronsthatuse͑modelPanchinsignalswithetfromsynaptical.,its1995gravity-sensinginhibition͒.Asix-receptororgans,thestatocystshasbeenbuiltneuraltonetworkdescribeasinglestatocyst͑Varona,Rabinovich,etal.,2002͒͑seeFig.24͒.Thisisasmallsphereinwhichastatolith,astonelikestructure,movesaccordingtothegravitational

1238

Rabinovichetal.:Dynamicalprinciplesinneuroscience

FIG.25.͑Coloronline͒Clioneswimmingtrajectoriesindiffer-entsituations.͑a͒Three-dimensionaltrajectoryofroutineswimming.Hereandinthefollowingfigures,differentcolors͑graytones͒areusedtoemphasizethethree-dimensionalper-ceptionofthetrajectoriesandchangeaccordingtothexaxis.Theindicatedtimetisthedurationofthetrajectory.͑b͒Swim-mingtrajectoryofClionewiththestatocystssurgicallyre-moved.͑c͒Trajectoryofswimmingduringhuntingbehaviorevokedbythecontactwiththeprey.͑d͒Trajectoryofswim-mingafterimmersionofClioneinasolutionthatpharmaco-logicallyevokeshunting.ModifiedfromLevietal.,2004.

field.Thestatolithexcitestheneuroreceptorsbypress-ingdownonthem.Whenexcited,thereceptorssendsignalstotheneuralsystemsresponsibleforwingbeat-ingandtailorientation.

Thestatocystshaveadualrole͑Levietal.,2004,2005͒.Duringnormalswimmingonlyneuronsthatareexcitedbythestatolithareactive,andthisleadstoawinner-take-alldynamicalmodeasaresultofinhibitoryconnectionsinthenetwork.͑Winner-take-alldynamicsisessentiallythesameastheattractor-basedcomputa-tionalideasdiscussedearlier.͒However,whenClioneissearchingforitsfood,acerebralhuntingneuronexciteseachneuronofthestatocyst͑seeFig.24͒.Thistriggersacompetitionbetweenallstatocystneuronswhosesignalsparticipateinthegenerationofacomplexmotionthattheanimalusestoscantheimmediatespaceuntilitfindsitsprey͑Levietal.,2004,2005͒͑seeFig.25͒.Thefollow-ingLotka-Volterra-typedynamicscanbeusedtode-scribetheactivityͩofthisnetwork:

daN

i͑t͒

dt=ai͑t͒␴͑H,S͒−͚␳ijaj͑t͒+Hi͑t͒ͪ+Si͑t͒,j=1

͑15͒

whereai͑t͒ജ0representstheinstantaneousspikingrateofthestatocystneurons,Hstimulusfromthecerebralihunting͑t͒representsinterneurontheexcitatorytoneu-Rev.Mod.Phys.,Vol.78,No.4,October–December2006

FIG.26.͑Coloronline͒Irregularswitchinginanetworkofsixstatocystreceptors.Tracesrepresenttheinstantaneousspikingrateofeachneuronai͓neurons1,2,3areshownin͑a͒,neurons4,5,6in͑b͔͒.Notethatafteraneuronissilentforawhile,itsactivityreappearswiththesamesequencerelativetotheoth-ers͑seearrows,andFig.24͒.͑c͒Aprojectionofthephaseportraitofthestrangeattractorin3Dspace;seemodel͑15͒.

roni,Si͑t͒representstheactionofthestatolithonthereceptorthatitispressing,and␳connectionmatrix.Whenijisthenonsymmetricstatocystthereisnostimulusfromthehuntingneuron,Hi=0,orthestatolith,Si=0,then␴͑H,S͒=−1andallneuronsaresilent.WhenthehuntingneuronisactiveHi󰀅0󰀅and/or0,␴͑Hthe,S͒=statolith+1.

ispressingoneofthereceptors,SiDuringhuntingHthehuntingneuroni󰀅0,andweassumethattheactionofoverridestheeffectofthesta-tolithandthusSdisplayiϷ0.Asaresultofthecompetition,thereceptorsahighlyirregular,infactchaotic,switchingactivity.Thephase-spaceimageofthechaoticdynamicsofthestatocystmodelinthisbehavioralmodeisastrangeattractor͓theheteroclinicloopsinthephasespaceofEq.͑15͒becomeunstable;seeSec.IV.C͔.Forsixreceptorswehaveshown͑Varona,Rabinovich,etal.,2002͒thattheobserveddynamicalchaosischaracterizedbytwopositiveLyapunovexponents.

ThebottompanelinFig.24isanillustrationofthenonsteadyswitchingactivityofthereceptors.Aninter-estingphenomenoncanbeseeninthisfigureandisalsopointedoutinFig.26.Althoughthetimingofeachac-tivityisirregular,thesequenceofswitchingamongthestatocystreceptorsisthesameforthoseneuronsthatareactiveatagiventimewindow.DottedrectanglesinFig.24pointoutthisfact.Theactivation-sequencelock

Rabinovichetal.:Dynamicalprinciplesinneuroscience

1239

amongthestatocystreceptorneuronsemergesinspiteofthehighlyirregulartimingoftheswitchingdynamicsand͑VenailleisafeatureInthisetthatcanbeusedformotorcoordinationexampleal.,2005the͒.

winnerlesscompetitionistrig-geredbyaconstantexcitationtoallstatocystreceptors͓Hi=ci;seedetailsbyVarona,Rabinovich,etal.͑2002͔͒.Thusthestimulushaslowinformationcontent.None-theless,thenetworkofstatocystreceptorscanusethisactivitytogenerateaninformation-richsignalwithposi-tiveKolmogorov-Sinaientropy.Thisentropyisequaltothevalueofthenewinformationencodedinthedy-namicalmotion.Thestatocystsensorynetworkisthusmultifunctionalandcangenerateacomplexspatiotem-poralpatternusefulformotorcoordinationevenwhenitsdynamicsarenotevokedbygravity,asduringhunt-ing.

2.Chaosandinformationtransmission

Toillustratetheroleofchaosininformationtransmis-sion,weuseasanexampletheinferiorolive͑IO͒,whichisaninputsystemtothecerebellum.NeuronsoftheIOmaychaoticallyrecodethehigh-frequencyinformationcarried͑byitsinputsintochaotic,low-rateaSchweighofersystemthatcontrolsetal.,2004and͒.coordinatesTheIOhasbeendifferentproposedoutputrhythmsasthroughtheintrinsicoscillatorypropertiesofitsneuronsand͑alsoLlinásthebeenandnatureimplicatedWelsh,of1993theirinmotor;deelectricalZeeuwlearningetinterconnections͑al.Ito,,19981982͒͒.andIthasincomparingtasksofintendedandachievedmovementsasageneratoroferrorsignals͑Oscarsson,1980͒.

ExperimentalrecordingsshowthatIOcellsareelec-tricallycoupledanddisplaysubthresholdoscillationsandspikingactivity.Subthresholdoscillationshavearel-evantroleforinformationprocessinginthecontextofasystemwithextensiveelectricalcoupling.Insuchsys-temsthespikingactivitycanbepropagatedthroughthenetwork,and,inaddition,smalldifferencesinhyperpo-larizedmembranepotentialspropagateamongneigh-boringcells.

AmodelingstudysuggeststhatelectricalcouplinginIOneuronsmayinducechaos,whichwouldallowinformation-rich,butlow-firing-rate,errorsignalstoreachindividualPurkinjecellsinthecerebellarcortex.Thiswouldprovidethecerebellarcortexwithessentialinformationforefficientlearningwithoutdisturbingon-goingmotorcontrol.Thechaoticfiringleadstothegen-erationofIOspikeswithdifferenttiming.BecausetheIOhasalowfiringrate,anaccurateerrorsignalwillbeavailableforindividualPurkinjecellsonlyafterre-peatedtrials.ElectricalcouplingcanprovidethesourceofdisorderthatinducesachaoticresonanceintheIOnetwork͑Schweighoferetal.,2004͒.Thisresonanceleadstoanincreaseininformationtransmissionbydis-tributingthehigh-frequencycomponentsoftheerrorin-putsoverthesporadic,irregular,andnon-phase-lockedspikes.

Rev.Mod.Phys.,Vol.78,No.4,October–December2006

TheIOsingle-neuronmodelconsistsoftwocompart-mentsthatincludealow-thresholdcalciumcurrent͑ICal͒,ananomalousinwardrectifiercurrent͑Ih͒,aHodgkin-Huxley-typesodiumcurrent͑INa͒,andade-layedrectifierpotassiumcurrent͑Icompartment͑seeTableI͒.ThedendriticKd͒incompartmentthesomaticcontainsacalcium-activatedpotassiumcurrent͑IKCa͒andahigh-thresholdcalciumcurrent͑IpartmentalsoreceiveselectricalconnectionsCah͒.Thiscom-fromneighboringneurons.Fastionicchannelsarelocatedinthesoma,andslowchannelsarelocatedinthedendriticcompartment.Someofthechannelconductancesde-pendonthecalciumconcentration.Theequationsforeachcompartmentofasingleneuroncanbesumma-rizedas

CdV͑t͒

M

dt

=−͑Iion+Il+Iinj+Icomp͒,͑16͒

whereCMisthemembranecapacitance,Ilisaleakcur-rent,Iinjistheinjectedstimuluscurrent,Icompconnectsthecompartments,andIionisthesumofthecurrentsaboveforeachcompartment.Inaddition,thedendriticcompartmenthastheelectricalcouplingcurrentI͑t͔͒,wheretheindexirunsovertheneigh-ec=gc͚i͓V͑t͒−Viborsofeachneuron,andgcistheelectricalcouplingconductance.

EachIOneuronisrepresentedbyasystemofordi-narydifferentialequations͑ODEs͒,andthenetworkisasetofthesesystemscoupledthroughtheelectricalcou-plingcurrentsI3,andec.Thenetworksexaminedconsistedof2ϫ2,3ϫ9ϫ3neurons,wherecellsareconnectedtotheirtwo,three,orfourneighborsdependingontheirpositionsinthegrid.

Thisisacomplexnetwork,evenwhenitisonly2ϫ2,andonemustselectanimportantfeatureofthedynam-icstocharacterizeitsbehavior.ThelargestLyapunovexponentofthenetworkisagoodchoiceasitisinde-pendentofinitialconditionsandtellsusaboutinforma-tionflowinthenetwork.Figure27displaysthelargestLyapunovexponentforeachnetworkasafunctionoftheelectriccouplingconductancegc.WealsoseeinFig.27thatthegcproducingthelargestLyapunovexponentyieldsthelargestinformationtransferthroughthenet-work,evaluatedastheaveragemutualinformationperspike.

InamoregeneralframeworkthantheIO,itisre-markablethatthechaoticactivityofindividualneuronsunexpectedlyunderlieshigherflexibilityand,atthesametime,greateraccuracyandprecisionintheirneuraldynamics.Theoriginofthisphenomenonisthepoten-tialabilityofcoupledneuronswithchaoticbehaviortosynchronizetheiractivitiesandgeneraterhythmswhoseperioddependsonthestrengthofthecouplingorothernetworkparameters͓forareviewseeRabinovichandAbarbanel͑1998͒andAihara͑2002͔͒.Networkswithmanychaoticneuronscangenerateinterestingtransientdynamics,i.e.,chaoticitinerancy͑CI͒͑Tsuda,1991;Rowe,2002͒.Chaoticitinerancyresultsfromweakinsta-bilitiesintheattractors,i.e.,attractorsetsinwhose

1240

Rabinovichetal.:Dynamicalprinciplesinneuroscience

FIG.27.͑Coloronline͒Chaoticdynamicsincreasesinforma-tiontransmissioninIOmodels.Toppanel:LargestLyapunovexponentasafunctionoftheelectricalcouplingstrengthgcfordifferentIOnetworksofnonidenticalcells.Bottompanel:Net-workaveragemutualinformationperspikeasafunctionofgc.ModifiedfromSchweighoferetal.,2004.

neighborhoodtherearetrajectoriesthatdonotgototheattractors͑Milnor-typeattractors͒.AdevelopedCImo-tionneedsbothmanyneuronsandaveryhighlevelofinterconnections.Thisisincontrasttothetraditionalconceptofcomputationwithattractors͑Hopfield,1982͒.Chaoticitinerancyyieldscomputationswithtransienttrajectories;inparticular,therecanbemotionalongseparatricesasinwinnerlesscompetitiondynamics͑Sec.IV.C͒.AlthoughCIisaninterestingphenomenon,ap-plyingittoexplainandpredicttheactivityofsensorysystems͑Kay,2003͒,andtoanynonautonomousneuralcircuitdynamics,posesaquestionthathasnotbeenan-sweredyet:HowcanCIbereproducibleandrobustagainstnoiseandatthesametimesensitivetoastimu-lus?

Toconcludethissectionitisnecessarytoemphasizethattheanswertothequestionofthefunctionalroleofchaosinrealneuralsystemsisstillunclear.Inspiteoftheattractivenessofsuchideasas͑i͒chaosmakesneuralcircuitsmoreflexibleandadaptive,͑ii͒chaoticdynamicscreateinformationandcanhelptostoreit͑seeabove͒,and͑iii͒thenonlineardynamicalanalysesofphysiologi-caldata͑e.g.,electroencephalogramtimeseries͒canbeimportantforthepredictionorcontrolofpathologicalneuralstates,itisextremelydifficulttoconfirmtheseideasdirectlyininvivooreveninvitroexperiments.Inparticular,therearethreeobstaclesthatcanfundamen-Rev.Mod.Phys.,Vol.78,No.4,October–December2006

tallyhinderthepowerofdataanalyses:͑i͒finitestatisti-calfluctuations,͑ii͒externalnoise,and͑iii͒nonstation-arityoftheneuralcircuitactivity͓see,forexample,Laietal.͑2003͔͒.

C.Synapticdynamicsandinformationprocessing

Synaptictransmissioninmanynetworksofthener-voussystemisdynamical,meaningthatthemagnitudeofpostsynapticresponsesdependsonthehistoryofpresynapticactivity͑ThompsonandDeuchars,1994;Fuhrmannetal.,2002͒.Thisphenomenonisindepen-dentof͑orinadditionto͒theplasticitymechanismsofthesynapses͑discussedinSec.II.A.3͒.Theroleofsyn-apsesisoftenconsideredtobethesimplenotificationtothepostsynapticneuronofpresynapticcellactivity.However,electrophysiologicalrecordingsshowthatsyn-aptictransmissioncanimplyactivity-dependentchangesinresponsetopresynapticspiketrains.Themagnitudeofpostsynapticpotentialscanchangerapidlyfromonespiketoanother,dependingontheparticulartemporaldistributionofthepresynapticsignals.Thuseachsinglepostsynapticresponsecanencodeinformationaboutthetemporalpropertiesofthepresynapticsignals.

Themagnitudeofthepostsynapticresponseisdeter-minedbytheinterspikeintervalsofthepresynapticac-tivityandbytheprobabilisticnatureofneurotransmitterrelease.Indepressingsynapsesashortintervalbetweenpresynapticspikesisfollowedbysmallpostsynapticre-sponses,whilelongpresynapticinterspikeintervalsarefollowedbyalargepostsynapticresponse.Facilitatingsynapsestendtogenerateresponsesthatgrowwithsuc-cessivepresynapticspikes.Inthiscontext,severaltheo-reticaleffortshavetriedtoexplorethecapacityofsingleresponsesofdynamicalsynapsestoencodetemporalin-formationaboutthetimingofpresynapticevents.

TheoreticalmodelsfordynamicalsynapsesarebasedonthetimevariationofthefractionofneurotransmitterreleasedfromthepresynapticterminalR͑t͒,0ഛR͑t͒ഛ1.Whenapresynapticspikeoccursattimetsp,thefractionUofavailableneurotransmittersandtherecov-erytimeconstant␶recdeterminetherateofreturnofresourcesR͑t͒totheavailablepresynapticpool.Inadepressingsynapse,Uand␶recareconstant.Asimplemodeldescribesthefractionofsynapticresourcesavail-ablefortransmissionas͑Fuhrmannetal.,2002͒

dR͑t͒1−R͑t͒

dt=

␶−UR͑t͒␦͑t−tsp͒,͑17͒

rec

andtheamplitudeofthepostsynapticresponseattimetspisproportionaltoR͑tsp͒.

Forafacilitatingsynapse,UbecomesafunctionoftimeU͑t͒increasingateachpresynapticspikeandde-cayingtothebaselinelevelwhenthereisnopresynapticactivity:

Rabinovichetal.:Dynamicalprinciplesinneuroscience

1241

FIG.28.Dynamicalsynapsesimplythatsynaptictransmissiondependsonpreviouspresynapticactivity.Thisshowstheaver-agepostsynapticactivitygeneratedinresponsetoapresynap-ticspiketrain͑bottomtrace͒inapyramidalneuron͑toptrace͒andinamodelofadepressingsynapse͑middletrace͒.Postsyn-apticpotentialinthemodeliscomputedusingapassivemem-branemechanism␶m͑dV/dt͒=−V+RiIsyn͑t͒,whereRiisthein-putresistance.ModifiedfromTsodyksandMarkram,1997.

dU͑t͒U͑t͒

dt=−

␶+U1͓1−U͑t͔͒␦͑t−tsp͒,͑18͒

facil

whereU1isaconstantdeterminingthestepincreaseinU͑t͒and␶facilistherelaxationtimeconstantofthefa-cilitation.

Otherapproachestomodelingdynamicalsynapsesin-cludeprobabilisticmodelstoaccountforfluctuationsinpresynapticreleaseofneurotransmitters.AtasynapticconnectionwithNreleasesiteswecanassumethatateachsitetherecanbe,atmost,onevesicleavailableforrelease,andthatthereleaseateachsiteisanindepen-dentevent.Whenapresynapticspikeisproducedattimetsp,eachsitecontainingavesiclewillreleaseitwiththesameprobabilityU͑t͒.Onceareleaseoccurs,thesitecanberefilledduringatimeintervaldtwithprobabilitydt/␶rec.TheprobabilisticreleaseandrecoverycanbedescribedbytheprobabilityPv͑t͒foravesicletobeavailableforreleaseatanytimet:

dPv͑t͒1−Pv͑t͒

dt=

␶−U͑t͒Pv͑t͒␦͑t−tsp͒.͑19͒

rec

Figure28showshowthisformulationpermitsanaccu-ratedescriptionofadepressingsynapseinresponsetoaspecifiedpresynapticspiketrain.

Thetransmissionofsensoryinformationfromtheen-vironmenttodecisioncentersthroughneuralcommuni-cationchannelsrequiresahighdegreeofreliabilityand

Rev.Mod.Phys.,Vol.78,No.4,October–December2006

sensitivityfromnetworksofheterogeneous,inaccurate,andsometimesunreliablecomponents.Thepropertiesofthechannelitself,assumingthesensorisaccurate,mustbericherthanconventionalchannelsstudiedinen-gineeringapplications.Thosechannelsarepassiveand,whenofhighquality,canrelayinputsaccuratelytoareceiver.Neuralcommunicationchannelsarecomposedofdynamicallyactiveelementscapableofcomplexau-tonomousoscillations.Individually,chaoticneuronscancreateinformationinawaysimilartothestudyofnon-linearsystemswithunstabletrajectories:Twostatesofthesystem,indistinguishablebecauseonlyfinite-resolutionobservationscanoccur,maythroughtheac-tionoftheinstabilitiesofthenonlineardynamicsfindthemselvesinthefuturewidelyseparatedinstatespace,andthusdistinguishable.Informationaboutdifferentstatesthatwasunavailableatonetimemaybecomeavailableatalatertime.

Biologicalneuralcommunicationpathwaysareabletorecoverinformationfromahiddencodingspaceandtotransferinformationfromonetimescaletoanotherbe-causeoftheintrinsicnonlineardynamicsofsynapses.Asanexample,wediscussaverysimpleneuralinformationchannelcomposedofsensoryinputintheformofaspiketrainthatarrivesatamodelneuronandthenmovesthrougharealisticdynamicalsynapsetoasecondneuronwheretheinformationintheinitialsensorysig-nalisread͑Eguiaetal.,2000͒.Themodelneuronsarefour-dimensionalgeneralizationsoftheHindmarsh-Roseneuron,andamodelofchemicalsynapsederivedfromfirst-orderkineticsisused.Thefour-dimensionalmodelneuronhasarichvarietyofdynamicalbehaviors,includingperiodicbursting,chaoticbursting,continuousspiking,andmultistability.Formanyoftheseregimes,theparametersofthechemicalsynapsecanbetunedsothattheinformationaboutthestimulus,whichisun-readabletothefirstneuroninthepath,canberecov-eredbythedynamicalactivityofthesynapse,andthesecondneuroncanreadit͑seeFig.29͒.

Thequantitativedescriptionofthisunexpectedphe-nomenonwasdonebycalculatingtheaveragemutualinformationI͑S,N1͒betweenthestimulusSandthere-sponseofthefirstneuronN1,andI͑S,N2͒betweenthestimulusandtheresponseofthesecondneuronN2.TheresultintheexampleshowninFig.29isI͑S,NϾandI͑Sneurons,N2͒1͒.Thisactingresultasindicatesinputandhowoutputnonlinearsystemssynapsesalongacommunicationchannelcanrecoverinformationappar-entlyhiddeninearliersynapticconnectionsinthepath-way.Herethemeasureofinformationtransmissionusedistheaveragemutualinformationbetweenelements,andbecausethechannelisactiveandnonlinear,theav-eragemutualinformationbetweenthesensorysourceandthefinalneuronmaybegreaterthantheaveragemutualinformationfoundinanintermediateneuroninthechannel͑butnotgreaterthantheoriginalinforma-tion͒.

Anotherformofsynapticdynamicsinvolvedininfor-mation͑alreadyprocessingdiscussedinandSec.especiallyII.A.3͒.Informationinlearningtransduc-

isSTDP1242

Rabinovichetal.:Dynamicalprinciplesinneuroscience

FIG.29.Exampleofrecoveryofhiddeninformationinneuralchannels.Apresynapticcellreceivesspecifiedinputandcon-nectstoapostsynapticcellthroughadynamicalsynapse.Toppanel:thetimeseriesofsynapticinputtothepresynapticcellJ1͑t͒;middlepanel:themembranepotentialofthefirstburst-ingneuronX1͑t͒;bottompanel:.NotethemembranethatfeaturespotentialoftheofinputthesecondburstingneuronX2͑t͒hiddenintheresponseX1͑t͒arerecoveredintheresponsefollowingadynamicalsynapseX2͑t͒͑notehyperpolarizationregionsforX2͒.ModifiedfromEguiaetal.,2000.

tionisinfluencedbySTDP͑Chechik,2003;HopfieldandBrody,2004͒,whichalsoplaysanimportantroleinbind-ingandsynchronization.

D.Bindingandsynchronization

Wehavediscussedthediversityofneurontypesandthevariabilityofneuralactivity.Neuralprocessingre-quiresthefastinteractionofmanyneuronsindifferentneuralsubsystems.Thereareseveraldynamicalmecha-nismscontributingtothecomplexintegrationofinfor-mationthatneuralsystemsperform.Amongthem,thesynchronizationofneuralactivityistheonethathascapturedthemostattention.Synchronizationofneuralactivityisalsooneoftheproposedsolutionstoawidelydiscussedquestioninneuroscience:thebindingprob-lem,whichwedescribebrieflyinthissection.

ThebindingproblemwasoriginallyformulatedasatheoreticalproblembyvonderMalsburgin1981͓seeareviewbyvonderMalsburg͑1999͒,andRoskies͑1999͒;Singer͑1999͔͒.However,examplesofbindinghadal-readybeenproposedbyRosenblatt͑1962͒forthevisualsystem͓forareviewofthebindingprobleminvisionseeSinger͑1999͒,andWolfeandCave͑1999͔͒.Thebindingproblemisformulatedastheneedforacoherentrepre-sentationofanobjectprovidedbytheassociationofall

Rev.Mod.Phys.,Vol.78,No.4,October–December2006

itsfeatures͑shape,color,location,speed,etc.͒.Theas-sociationofallfeaturesorbindingallowsaunifiedper-ceptionoftheobject.Thebindingproblemisageneral-izedtaskofthenervoussystemasitseekstoreconstructanytotalperceptionfromitscomponents.Therearealsocognitivebindingproblemsrelatedtocognitiveidentifi-cationandmemory.Nodoubtthebindingproblem,likemanyotherproblemsinbiology,hasmultiplesolutions.Thesesolutionsaremostlikelyimplementedthroughtheuseofdynamicalmechanismsforthecontrolofneu-ralactivity.

Themostwidelystudiedmechanismproposedtosolvethebindingproblemistemporalsynchrony͑ortemporalcorrelation͒͑SingerandGray,1995͒.IthasbeensuggestedbyvonderMalsburgandSchneider͑binding.1986͒thatHowever,synchronizationthereisstillisthecriticismbasisoffortheperceptualtemporalbindinghypothesis͑GhoseandMaunsell,1999;Riesen-huberandPoggio,1999͒.Obviously,neuraloscillationsandsynchronoussignalsareubiquitousinthebrain,andneuralsystemscanmakeuseofthesephenomenatoencode,learn,andcreateeffectiveoutputs.Thereareseverallinesofexperimentalevidencethatrevealtheuseofsynchronizationandactivitycorrelationforbind-ingtasks.Figure30showsanexampleofhowneuralsynchronizationcorrelateswiththeperceptualsegmen-tationofacomplexvisualpatternintodistinct,spatiallyoverlappingsurfaces͑Castelo-Brancoetal.,2000͒͑seethefigurecaptionfordetails͒.Indeed,modelingstudiesshowthatinvolvingtimeintheseprocessescanleadtothebindingofdifferentfeatures.Theideaistousethecoincidenceofcertaineventsinthedynamicsofdiffer-entneuralunitsforbinding.Usuallysuchdynamicalbindingisrepresentedbysynchronousneuronsorneu-ronsthatareinphasewithanexternalfield.However,dynamicaleventssuchasphaseorfrequencyvariationsusuallyarenotveryreproducibleandrobust.Asdis-cussedinthenextsection,itisreasonabletohypothesizethatbraincircuitsdisplayingsequentialswitchingofneu-ralactivityusethecoincidenceofthisswitchingtoimplementdynamicalbindingofdifferentWLCnet-works.

Anyspatiotemporalcodingneedsthetemporalcoor-dinationofneuralactivityamongdifferentpopulationsofneuronstoprovide͑i͒betterrecognitionofspecificfeatures,͑ii͒fasterprocessing,͑iii͒higherinformationcapacity,and͑iv͒featurebinding.Neuralsynchroniza-tionhasbeenobservedthroughoutthenervoussystem,particularlyinsensorysystems,forexample,intheolfac-torysystem͑LaurentandDavidowitz,1994͒andthevi-sualsystem͑Grayetal.,19͒.Fromthepointofviewofdynamicalsystemtheory,transientsynchronizationisanidealmechanismforbindingneuronsintoassembliesforseveralreasons:͑i͒thesynchronizedneuronsdonotnec-essarilyhavetobeneighbors;͑ii͒asynchronizationeventdependsonthestateoftheneuronandthestimu-lusandcanbeveryselective,thatis,neuronsfromthesamenetworkcanbetemporalmembersofdifferentcellassembliesatdifferentinstantsoftime;͑iii͒basicbrainrhythmsareabletosynchronizeneuronsresponsiblefor

Rabinovichetal.:Dynamicalprinciplesinneuroscience

1243

FIG.30.Anexampleofbindingshowingdependenceofsyn-chronyontransparencyconditionsandreceptivefield͑RF͒configurationinthecatvisualcortex.͑a͒Stimulusconfigura-tion.͑b͒Synchronizationbetweenneuronswithnonoverlap-pingRFsandsimilardirectionalpreferencesrecordedfromareasA18andPMLSofthecatvisualcortex.Left,RFconstel-lationandtuningcurves;right,crosscorrelogramsforre-sponsestoanontransparent͑left͒andtransparentplaid͑right͒movinginthecells’preferreddirection.Gratingluminancewasasymmetrictoenhanceperceptualtransparency.Smalldarkcorrelogramsareshiftpredictors.͑c͒Synchronizationbe-tweenneuronswithdifferentdirectionpreferencesrecordedfromA18͑polarandRFplots,left͒.Top,correlogramsofre-sponsesevokedbyanontransparent͑left͒andatransparent͑right͒plaidmovinginadirectionintermediatetothecells’preferences.Bottom,correlogramsofresponsesevokedbyanontransparentplaidwithreversedcontrastconditions͑left͒,andbyasurfacedefinedbycoherentmotionofintersections͑right͒.Scaleonpolarplots:dischargerateinspikespersec-ond.Scaleoncorrelograms:abscissa,shiftintervalinms,binwidth1ms;ordinate,numberofcoincidencespertrial,nor-malized.ModifiedfromCastelo-Brancoetal.,2000.

theprocessingofinformationfromdifferentsensoryin-puts;and͑iv͒thesynchronizationispossibleevenbe-tweenneuraloscillatorswithstronglydifferentfrequen-cies͑Rabinovichetal.,2006͒.

Inearlyvisualprocessingneuronsthatencodefea-turesofacomplexvisualperceptareassociatedinfunc-Rev.Mod.Phys.,Vol.78,No.4,October–December2006

tionalassembliesthroughgamma-frequencysynchroni-zation͑Engeletal.,2001͒.Whensensorystimuliareperceptuallyorattentionallyselected,andtherespectiveneuronsareboundtogethertoraisetheirsaliency,thengamma-frequencysynchronizationamongtheseneuronsisalsoenhanced.Gamma-mediatedcouplinganditsmodulationbyattentionarenotlimitedtothevisualsystem:theyarealsofoundintheauditory͑Tiitinenetal.,1993͒andsomatosensorydomains͑DesmedtandTomberg,1994͒.Gammaoscillationsallowvisiomotorbindingbetweenposteriorandcentralbrainregions͑memory.RodriguezAsetaal.means,1999for͒anddynamicallyareinvolvedbindinginshort-termneuronsintoassemblies,gamma-frequencysynchronizationap-pearstobetheprimemechanismforstabilizingcorticalconnectionsamongmembersofaneuralassemblyovertime.Ontheotherhand,neuronscanincreaseorde-creasethestrengthoftheirsynapticconnectionsde-pendingontheprecisecoincidenceoftheiractivation͑videsSTDPthe͒,andrequiredgamma-frequencytemporalprecision.

synchronizationpro-Hatsopoulosetal.͑2003͒andJacksonetal.͑2003͒re-vealedthefunctionalsignificanceofneuralsynchroniza-tionandcorrelationswithinthemotorsystem.Preemi-nentamongbrainactionsmustbetheaggregationofdisparatespikingpatternstoformspatiallyandtempo-rallycoherentneuralcodesthatthendrivealphamotorneuronsandtheirassociatedmuscles.Essentially,motorbindingseemstodescribeexactlywhatmotorstructuresofthemammalianbraindo:providehigh-levelcoordi-nationofsimpleandcomplexvoluntarymovements.Neuronswithsimilarfunctionaloutputhaveanin-creasedlikelihoodofexhibitingneuralsynchronization.Incontrasttoclassicalsynchronization͑Pikovskyetal.,2001͒,synchronizationintheCNSisalwaystran-sient.Thephase-spaceimageoftransientsynchroniza-tioncanbeasaddlelimitcycleinthevicinityofwhichthesystemspendsfinitetime.Alternatively,itcanbealimitcyclewhosebasinofattractiondecreasesintime.Inbothcasesthesystemisabletoleavethesynchroni-zationregionafteraspecificstageofprocessingiscom-pletedandproceedwiththenexttask.Thisisabroadareawheretheissuesandapproachesarenotsettled,andthusitprovidesanopportunityforinnovativeideastoexplainthephenomenon.

Toconcludethissection,wenotethatthefunctionalroleofsynchronizationintheCNSandtheimportanceofspike-timingcodingingeneralarestillasubjectofdebate.Ontheonehand,itispossibletobuildmodelsthatusedynamicalpatternsofspikesforneuralcompu-tations,e.g.,representation,recognition,anddecisionmaking.Examplesofsuchspike-timing-basedcomputa-tionalmodelshavebeendiscussedbyHopfieldandBrody͑HopfieldandBrody,2001;BrodyandHopfield,2003͒.Inthisworktheauthorsshowed,inparticular,thatspikesynchronizationacrossmanyneuronscanbeachievedintheabsenceofdirectsynapticinteractionsbetweenneuronsthroughphaselockingtoacommonunderlyingoscillatorypotential͑likegammaoscillation;seeabove͒.Ontheotherhand,therealconnectionsof

1244

Rabinovichetal.:Dynamicalprinciplesinneuroscience

FIG.31.͑Coloronline͒Spontaneousspatiotemporalpatternsobservedintheneocortexinvitroundertheactionofcarba-chol.Imagescomposedofopticalsignalsrecordedbyeightdetectorsarrangedhorizontally.Theopticalsignalfromeachdetectorwasnormalizedtothemaximumonthatdetectordur-ingthatperiodandnormalizedvalueswereassignedcolorsaccordingtoalinearcolorscale͑atthetopright͒.Thetracesaboveimages2and5areopticalsignalsfromtwoopticalde-tectorslabeledwiththiscolorscale.Thexdirectionoftheimagesrepresentstime͑12s͒andtheydirectionofeachimagerepresents2.6mmofspaceincorticaltissue.Notealsothatthefirstspikehadahighamplitudebutpropagatedmoreslowlyinthetissue.ModifiedfromBaoandWu,2003.

suchtheoreticalmodelswithexperimentsinvivoarenotestablished͑2003͔͒.

͓seealsoFelletal.͑2003͒andO’Reillyetal.IV.TRANSIENTDYNAMICS:GENERATIONANDPROCESSINGOFSEQUENCESA.Whysequences?

Thegenerationandcontrolofsequencesisofcrucialimportanceinmanyaspectsofanimallife.Workingmemory,birdsongs,findingfoodinalabyrinth,jumpingfromonestonetoanotherontheshore—allthesearetheresultsofsequentialactivitygeneratedbythener-voussystem.Lashleycalledtheproblemofcoordinationofconstituentactionsintoorganizedsequentialspa-tiotemporalpatternstheactionsyntaxproblem͑Lashley,1960͒.Thegenerationofsequencesisalsoimportantforintermediateinformationprocessingaswediscussbe-low.

Thesequencescanbecyclic,likemanybrainrhythmsandspatiotemporalpatternsgeneratedbyCPGs.Theycanalsobeirregular,likeneocorticalthetaoscillations͑͑4–10Hz͒generatedspontaneouslyincorticalfiniteBaoandintimeWu,2003like͒those͑seeFig.generated31͒.Thebysequencesnetworksaneuralcancircuitbeundertheactionofexternalinputasinsensorysystems.Fromaphysicist’spointofview,anyreproduciblefinitesequencethatisfunctionallymeaningfulresultsfromthecooperativetransientdynamicsofthecorresponding

Rev.Mod.Phys.,Vol.78,No.4,October–December2006

neuralensembleorindividualneurons.Evenbrainrhythmsdemonstratetransientdynamicsbecausethecircuit’speriodicactivityismodulatedbynonstationarysensoryinputsorsignalsfromtheperiphery.Itisimpor-tanttoemphasizethefundamentalroleofinhibitioninthegenerationandcontrolofsequencesinthenervoussystem.

Inthissectionweconcentrateontheoriginofse-quencegenerationandthemechanismsofreproducibil-ity,sensitivity,andfunctionalreorganizationofMCs.Inthestandardstudyofnonlineardynamicalsystems,at-tentionisfocusedonthelong-timebehaviorofasystem.Thisistypicallynottherelevantquestioninneuro-science.Herewemustaddressthetransientresponsestoastimulusexternaltotheneuralsystemandmustcon-sidertheshort-termbindingofacollectionofresponses,perhapsfromdifferentsensoryinputs,tofacilitateac-tioncommandsdirectedtothemotorsystem.Ifyouat-tempttoswatafly,itcannotaskyoutoperformthisactionmanytimessothatitcanaverageoveryourac-tions,allowingittoperformsomestandardoptimalre-sponse.Fewflieswantingthisrepetitionwouldsurvive.

B.Spatiallyorderednetworks1.Stimulus-dependentmodes

Manyneuralensemblesareanatomicallyorganizedasslightlyinhomogeneousexcitablemedia.Examplesofsuch͑andLeznikmediaareretina͑Tohyaetal.,2003͒,IOnetworkthalamocorticalandLlinas,2002layers͒,cortex͑Contreras͑Ichinoheetal.et,1996al.,2003͒.All͒,theseareneuronallatticeswithchemicalorelectricalconnectionsoccurringprimarilybetweenneighbors.Therearesomegeneraldynamicalmechanismsofse-quencegenerationinsuchspatiallyorderednetworks.ThesemechanismsareusuallyrelatedtotheexistenceofwavemodessuchasthoseshowninFig.31thataremodulatedbyexternalinputsorstimuli.

Manysignificantobservationalandmodelingresultsforthissubjectarefoundinthevisualsystem.Visualsystemsareorganizeddifferentlyfordifferentclassesofanimals.Forexample,themammalianvisualcortexhasseveraltopographicallyorganizedrepresentationsofthevisualfieldandneuronsatadjacentpointsinthecortexareexcitedbystimulipresentedatadjacentregionsofthevisualfield.Thisindicatesthereisacontinuousmap-pingofthecoordinatesofthevisualfieldtothecoordi-natesofthecortex͑vanEssen,1979͒.Incontrasttosuchamappingconnectionsfromthevisualfieldtothevisualcortexintheturtle,forexample,aremorecomplex:Alocalspotinthevisualfieldactivatesmanyneuronsinthecortexbutinanorderedway.Asaresulttheexcita-tionoftheturtlevisualcortexisdistributedandnotlo-calized,andthissuggeststhetemporaldynamicsofsev-eralinteractingmembranemodes͑seeFig.32͒.Inthemammaliancortexamovingstimulusevokesalocalizedwaveorwavefront,whileintheturtlevisualcortexadifferentiallymovingstimulusmodulatestemporalinter-actionsofthecorticalmodesdifferentlyandisrepre-sentedbydifferentsequentialswitchingsbetweenthem.

Rabinovichetal.:Dynamicalprinciplesinneuroscience

1245

FIG.32.͑Coloronline͒Sequentialchangingofcorticalmodesintheturtlevisualcortex.Comparisonbetweenthespatialor-ganizationofthecorticalactivityintheturtlevisualsystemandthenormalmodesofarectangularmembrane͑drum͒.FromSensemanandRobbins,1999.

Tounderstandthedynamicsofthewavemodes,i.e.,stability,sensitivitytostimuli,dependenceonneuro-modulators,etc.,onehastobuildamodelthatisbasedontheexperimentalinformationaboutthepossibilityofthesemodesmaintainingthetopologicalspacestructureobservedinexperiments.Inmanysimilarsituationsonecanintroducecooperativeorpopulationvariablesthatcanbeinterpretedastheamplitudeofsuchmodesde-pendingontime.Thecorrespondingamplitudeequa-tionsareessentiallythewidelystudiedevolutionequa-tions͑CrossofthedynamicaltheoryofpatternformationForanandanalysisHohenberg,ofthe1993wave;Rabinovichmodedynamicsetal.,2000of͒the.turtlevisualcortexSensemanandRobbins͑1999͒usedtheKarhunen-Loevedecompositionandasnapshotofaspatiotemporalpatternattimet=t0couldberepre-sentedasaweightedsumofbasicmodesMi͑x,y͒withcoordinates͑x,y͒ontheimage:

N

u͑x,y,t0͒=͚ai͑t0͒Mi͑x,y͒,

͑20͒

iwhereu͑x,y,t͒representsthecooperativedynamicsofthesemodes.Thepresentationofdifferentvisualstimuli,suchasspotsoflightatdifferentpointsinthevisualfield,producedspatiotemporalpatternsrepre-sentedbydifferenttrajectoriesinthephasespaceapossible1͑t͒,a2͑tto͒,...make,an͑ta͒.reductionDuetal.in͑the2005dimensionality͒showedthatofittheiswavemodesbyasecondKarhunen-Loevedecomposi-tion,whichmapsinsometimewindowthetrajectoryin͑Fig.ai͒space33͒.Theintoobservedapointintransientalow-dimensionaldynamicsisspacesimilar͑seetotheexperimentalresultsontherepresentationofdiffer-entodorsintheinvertebrateolfactorysystem͓seeFig.46andGalanetal.͑2004͔͒.Nenadicetal.͑2002͒usedalarge-scalecomputermodelofturtlevisualcortextore-producequalitativelythefeaturesofthecorticalmodedynamicsseenintheseexperiments.

Itisremarkablethatnotonlydospatiotemporalpat-ternsevokedbyadirectstimuluslooklikewavemodes,butevenspontaneousactivityinthesensorycortexiswell͑organizedandverydifferentfromturbulentsumptionArielietaboutal.,1996the͒.stochasticThismeansandthatuncorrelatedthecommonflowsponta-as-Rev.Mod.Phys.,Vol.78,No.4,October–December2006

FIG.33.͑Color͒Spacerepresentationofcorticalresponsesintheturtlevisualcortextoleft,center,andrightstimuli.FromDuetal.,2005.

neousactivityofneighboringneuronsinneuralnetworks͓see,forexample,vanVreeswijkandSompo-linsky͑1996͒;AmitandBrunel͑1997b͔͒isnotalwayscorrect.Localfieldpotentialsandrecordingsfromsingleneuronsindicatethepresenceofhighlysynchronouson-goingactivitypatternsorwavemodes͑seeFig.34͒.Thespontaneousactivityofasingleneuronconnectedwithothers,inprinciple,canbereconstructedusingtheevokedpatternsofnetworkactivity͑Tsodyksetal.,1999͒.

Therearesomeillustrativemodelsofwavemodesthatwenotehere.In1977Amari͑1977͒foundspatiallylocalizedregionsofhighneuralactivity͑“bumps”͒innetworkmodelsconsistingofasinglelayerofcoupledexcitatory͑andinhibitoryrateneurons.Laingetnection2002͒extendedAmari’sresultstoanonmonotoniccon-al.͑mensions:

showninfunctionFig.35͒͑“Mexicanandaneuralhat”layerwithinoscillatingtwospatialtailsdi-͒ץu͑x,y,t͒

ץt

=−u͑x,y,t͒+

͵͵␻⍀

͑x−q,y−p͒f„u͑q,p,t͒…dqdp,

͑21͒

f͑u͒=2e−␶/͑u−th͒2

⌰͑u−th͒,͑22͒

␻͑x,y͒=e−b

ͱx2+y2͓bsin͑ͱx2+y2͒+cos͑ͱx2+y2͔͒.

͑23͒

Anexampleofatypicallocalizedmodeinsuchneuralmediawithlocalexcitationandlong-rangeinhibitionisrepresentedinFig.36.Differentmodes͑withdifferentnumbersofbumps͒canbeswitchedfromonetoanotherbytransientexternalstimuli.Multipleitemscanbestoredinthismodelbecauseoftheoscillatingtailsofthe

1246

Rabinovichetal.:Dynamicalprinciplesinneuroscience

FIG.34.͑Coloronline͒Relationbetweenthespikingactivityofasingleneuronandthepopulationstateofcorticalnetworks.͑a͒Frombottomtotop:stimulustimecourse;correlationcoefficientoftheinstantaneoussnapshotofpopulationactivitywiththespatialpatternobtainedbyaveragingoverallpatternsobservedatthetimescorrespondingtospikesevokedbytheoptimalorientationofthestimuluscalledtheneuron’spreferredcorticalstate͑PCS͒pattern;observedspiketrainofevokedactivitywiththeoptimalorientationforthatneuron;reconstructedspiketrain.Thesimilaritybetweenthereconstructedandobservedspiketrainsisevident.Also,strongupswingsinthevaluesofcorrelationcoefficientsareevidenteachtimetheneuronemitsburstsofactionpotentials.Everystrongburstisfollowedbyamarkeddownswinginthevaluesofthecorrelationcoefficients.͑b͒Thesameas͑a͒,butforaspontaneousactivityrecordingsessionfromthesameneuron͑eyesclosed͒.͑c͒Theneuron’sPCS,calculatedduringevokedactivityandusedtoobtainboth͑a͒and͑b͒.͑d͒Thecorticalstatecorrespondingtospontaneousactionpotentials.Thetwopatternsarenearlyidentical͑correlationcoefficient0.81͒.͑e͒and͑f͒Anotherexampleofthesimilaritybetweentheneuron’sPCS͑e͒andthecorticalstatecorrespondingtospontaneousactivity͑f͒fromadifferentcatobtainedwiththehigh-resolutionimagingsystem͑correlationcoefficient0.74͒.ModifiedfromTsodyksetal.,1999.

effectiveconnectionstrength.Thisistheresultofthecommonactivityoftheexcitatoryandinhibitoryconnec-tionsbetweenneurons.Inhibitionplaysacrucialroleforthestabilityoflocalizedmodes͑Laingetal.,2002͒.

Localizedmodeswithdifferentnumbersofbumpsre-mindoneofcomplexlocalizedpatternsinadissipativenonequilibriummedia͑Rabinovichetal.,2000͒.Based

onthisanalogy,itisreasonabletohypothesizethatdif-ferentmodesmaycoexistinaneurallayerandtheirinteractionandannihilationcanexplainthesequentialeffectivenessofthedifferentevents.Thissuggeststheycouldbeamodelofsequentialworkingmemory͑seebelow͒.

Manyrhythmsofthebraincantaketheformofwaves:spindlewaves͑7–14Hz͒seenattheonsetofsleep͑Kimetal.,1995͒,slowerdeltarhythmsofdeepersleep,thesynchronousdischargeduringanepilepticsei-

FIG.35.Connectionfunction␻͑x,y͒,centeredatthecenterofthedomain.ModifiedfromLaingetal.,2002.

Rev.Mod.Phys.,Vol.78,No.4,October–December2006

FIG.36.Six-bumpstablesolutionofthemodel͑21͒–͑23͒:b=0.45,␶=0.1,th=1.5.ModifiedfromLaingetal.,2002.

Rabinovichetal.:Dynamicalprinciplesinneuroscience

1247

zure͑ConnorsandAmitai,1997͒,wavesofexcitationassociatedwithsensoryprocessing,40-Hzoscillations,andothers.Inthalamocorticalnetworksthesameclus-tersofneuronsareresponsiblefordifferentmodesofrhythmicactivity.Whatisthedynamicaloriginofsuchmultifunctionality?Thereisnouniqueanswertothisquestion,andthereareseveraldifferentmechanismsthatcanberesponsibleforit͑wehavealreadydiscussedthisforsmallinvertebratenetworks;seeSec.II.B͒.Ter-manetal.͑1996͒studiedthetransitionbetweenspin-dlinganddeltasleeprhythms.Theauthorsshowedthatthesetworhythmsmakedifferentusesofthefastinhi-bitionandslowinhibitiongeneratedbythalamicreticu-lariscells.ThesetwotypesofinhibitionaremediatedinthecortexbyGABA͑A͒andGABA͑B͒receptors,re-spectively͑Schutter,2002;Tamsetal.,2003͒.

Thewavemodeequationdiscussedaboveisfamiliartophysicistsandcanbewrittenbothwheninteractionsbetweenneuronpopulationsarehomogeneousandiso-tropic͑Ermentrout,1998͒andwhentheneurallayerispartitionedintodomainsorhypercolumnslikethepri-maryvisualcortex͑V1͒ofcatsandprimates,whichhasacrystallinelike͑Bressloff,structureattheInthenext2002section;BressloffwediscussandCowan,millimeterthepropagation2002length͒.

scaleofpat-ternsofsynchronousactivityalongspatiallyorderedneuralnetworks.

2.Localizedsynfirewaves

Auditoryandvisualsensorysystemshaveaveryhightemporalresolution.Forexample,theretinaisabletoresolvesequentialtemporalpatternswithaprecisioninthemillisecondrange.Doesthetransmissionofsensoryinformationfromtheperipherytothecortexmaintainsuchhighresolution?Iftheanswerisyes,whatarethedynamicalmechanismsresponsibleforthis?Theseques-tionsarestillopen.

Thereareseveralneurophysiologicalexperimentsthatshowtheabilityofneuralsystemstotransmittempo-rarilymodulatedresponsesofsensorynetworkswithhighprecisionoverseveralprocessinglevels.Forex-ample,crosscorrelationsbetweensimultaneouslyre-cordedresponsesofretinalcellsrelayneuronswithinthethalamus,andcorticalneuronsshowthattheoscilla-torypatterningisreliablytransmittedtothecortexwitharesolutioninthemillisecondrange͓seeforreviewsSinger͑1999͒andNaseetal.͑2003͔͒.Asimilarphenom-enonwasobservedbyKimpoetal.͑2003͒whoshowedevidenceforthepreservedtimingofspikingactivitythroughmultiplestepsofaneuralcontrolloopinthebirdbrain.Thedynamicaloriginofsuchprecisemessagepropagation,independentoftheratefluctuation,isoftenattributedtosynchronizationofthemanyneuronsintheoverallcircuit͑Abeles,1991;Diemannetal.,1999͒.

Wenowdiscussbrieflythedynamicsofwavesofsyn-chronousneuralfiring,i.e.,synfirewaves.Onemodelingstudy͑Diesmannetal.,1999͒hasshownthatthestablepropagationoflocalizedsynfirewaves,short-lastingsyn-chronousspikingactivity,ispossiblealongasequenceof

Rev.Mod.Phys.,Vol.78,No.4,October–December2006

FIG.37.Sequenceofpoolsofexcitatoryneurons,connectedinafeedforwardwaybyso-calleddivergentandconvergentcon-nections.Thenetworkiscalledasynfirechainifitsupportsthepropagationofsynchronousspikepatterns.ModifiedfromGe-waltigetal.,2001.

layersorpoolsofneuronsinafeedforwardcorticalnet-work͑spikeAbeles,suchtimes1991astheamong͒.TheoneshowninFig.37,asynfirechainthedegreepools’oftemporalmembersaccuracydeterminesofwhethersubsequentpoolscanreproduce͑orevenim-prove͒thisaccuracy͓Fig.38͑a͔͒,orwhethersynchronousexcitationdispersesandeventuallydiesoutasinFig.38͑b͒forasmallernumberofspikesinthevolley.Thusinthecontextofsynfirenetworkfunctionthequalityoftimingisjudgedonwhethersynchronousspikingissus-tainedorwhetheritdiesout.

Diesmannetal.͑1999͒,CateauandFukai͑2001͒,Kis-tler͑critical2003and͒havedevalueshownZeeuwdeterminedthat͑2002if͒bythe,andNowotnyandHuertathepoolconnectivitysizeismorebetweenthanalayers,thewaveactivityinitiatedatthefirstpoolpropa-gatesfromonepooltothenext,formingasynfirewave.NowotnyandHuerta͑2003͒havetheoreticallyproventhatnootherstatesexistbeyondsynchronizedorunsyn-chronized͑volleysasshownintheexperimentsbyReyes2003The͒.

synfirefeedforwardchain͑Fig.37͒isanoversim-plifiedmodelforanalyzingsynfirewavesbecauseinre-alityanynetworkwithsynfirechainsisembeddedinalargercorticalnetworkthatalsohasinhibitoryneurons

FIG.38.Propagationoffiringactivityinsynfirechains.͑a͒Stableand͑b͒unstablepropagationofsynchronousspikinginamodelofcorticalnetworks.Rasterdisplaysofpropagatingspikevolleyalongfullyconnectedsynfirechain.Panelsshowthespikesintensuccessivegroupsof100neuronseach͑syn-apticdelaysarbitrarilysetto5ms͒.Initialspikevolley͑notshown͒wasfullysynchronized,containing͑a͒50or͑b͒48spikes.ModifiedfromDiesmannetal.,1999.

1248

Rabinovichetal.:Dynamicalprinciplesinneuroscience

andmanyrecurrentconnections.Thisproblemisdis-cussedindetailbyAvieletal.͑2003͒.

C.Winnerlesscompetitionprinciple1.Stimulus-dependentcompetition

Hereweconsideraparadigmofsequencegenerationthatdoesnotdependonthegeometricalstructureoftheneuralensembleinphysicalspace.Itcan,forexample,beatwo-dimensionallayerwithconnectionsbetweenneighborsorathree-dimensionalnetworkwithsparserandomconnections.Thisparadigmcanbehelpfulfortheexplanationandpredictionofmanydynamicalphe-nomenainneuralnetworkswithexcitatoryandinhibi-torysynapticconnections.Theparadigmiscalledthewinnerlesscompetitionprinciple.WehavetouchedonaspectsofWLCnetworksearlier,andhereweexpandontheirpropertiesandtheirpossibleuseinneuro-science.

“Survivalofthefittest”isaclichéthatisoftenassoci-atedwiththetermcompetition.However,competitionisnotmerelyameansofdeterminingthewinner,asinawinner-take-allnetwork.Itisalsoamultifunctionalin-strumentthatnatureusesatalllevelsoftheneuronalhierarchy.Competitionisalsoamechanismthatmain-tainsthehighestlevelofvariabilityandstabilityofneu-raldynamics,evenifitisatransientbehavior.

OvertwohundredyearsagothemathematiciansBordaanddeCondorcetwereinterestedintheprocessofpluralityelectionsattheFrenchRoyalAcademyofSciences.TheyconsideredvotingdynamicsinacaseofthreecandidatesA,B,andC.IfAbeatsBandBbeatsCinahead-to-headcompetition,wemightreasonablyexpectAtobeatC.Thuspredictingtheresultsoftheelectioniseasy.However,thisisnotalwaysthecase.ItmayhappenthatCbeatsA,resultinginaso-calledCon-dorcettriangle,andthereisnorealwinnerinsuchacompetitiveprocess͑Borda,1781;Saari,1995͒.Thisex-ampleisalsocalleda“votingparadox.”Thedynamicalimage͑ofthisphenomenonisaisseeevenFig.structurally39͒.Insomestablespecific͑GuckenheimercasesrobusttheheteroclinicheterocliniccycleandHolmes,cycle1988;Krupa,1997;StoneandArmbruster,1999;Ashwinetal.,2003;PostlethwaiteandDawes,2005͒.

Thecompetitionwithoutawinnerisalsoknowninhydrodynamics:BusseandHeikesdiscoveredthatcon-vectiverollpatternsinarotatingplanelayerexhibitse-quentialchangesoftheroll’sdirectionasaresultofthecompetitionbetweenpatternswithdifferentrollorien-tations.Nopatternbecomesawinnerandthesystemexhibitsperiodicorchaoticswitchingdynamics͑Busseand͑Heikes,1980͒.Forreviewseegenetic2000͒.TheRabinovichetal.system,samei.e.,phenomenoninexperimentshasbeenwithadiscoveredsyntheticnet-inaworkofthreetranscriptionalregulators͑ElowitzandLeibler,2000͒.Specifically,theseauthorsdescribedthreerepressorgenesA,B,andCorganizedinaclosedchainwithunidirectionalinhibitoryconnectionssuchthatA,B,andCbeateachother.Thisnetworkbehaveslikea

Rev.Mod.Phys.,Vol.78,No.4,October–December2006

FIG.39.͑Coloronline͒IllustrationofWLCdynamics.Toppanel:PhaseportraitcorrespondingtotheautonomousWLCdynamicsofathree-dimensionalcase.Bottompanel:Projec-tionofanine-dimensionalheteroclinicorbitofthreeinhibitorycoupledFitzHugh-Nagumospikingneuronsinathree-dimensionalspace͑thevariables␰1,␰3,␰3arelinearcombina-tionsoftheactualphasevariablesofthesystem͒.FromRabinovichetal.,2001.

clock:itperiodicallyinducessynthesisofgreenfluores-centproteinsasanindicatorofthestateofindividualcellsonatimescaleofhours.

Inneuralsystemssuchclockcompetitivedynamicscanresultfromtheinhibitoryconnectionsamongneu-rons.Forexample,Jefferysetal.͑1996͒showedthathip-pocampalandneocorticalnetworksofmutuallyinhibi-toryinterneuronsgeneratecollective40-Hzrhythms͑amplegammaofoscillationsneuralcompetition͒whenexcitedwithouttonically.awinnerAnotherwasdis-ex-cussedbyErmentrout͑1992͒.Theauthorstudiedthedynamicsofasingleinhibitoryneuronconnectedtoasmallclusteroflooselycoupledexcitatorycellsandob-servedtheemergenceofalimitcyclethroughahetero-cliniccycle.Forautonomousdynamicalsystemscompe-titionwithoutawinnerisawell-knownphenomenon.WeusethetermWLCprincipleforthenonautono-moustransientdynamicsofneuralsystemsreceivingex-ternalstimuliandexhibitingsequentialswitchingamongtemporalwinners.ThemainpointoftheWLCprincipleisthetransformationofincominginputsintospatiotem-poraloutputsbasedontheintrinsicswitchingdynamicsoftheneuronalensemble͑seeFig.40͒.Inthephasespaceofthenetwork,suchswitchingdynamicsarerep-resentedbyaheteroclinicsequencewhosearchitecturedependsonthestimulus.Suchasequenceconsistsof

Rabinovichetal.:Dynamicalprinciplesinneuroscience

1249

FIG.40.Transformationoftheidentityspatialinputintospa-tiotemporaloutputbasedontheintrinsicsequentialdynamicsofaneuralensemblewithWLC.

manysaddleequilibriaorsaddlecyclesandmanyhet-eroclinicorbitsconnectingthem,i.e.,manyseparatrices.Thesequencecanserveasanattractingsetifeverysemistablesethasonlyoneunstabledirection͓seealsoAshwinandTimme͑2005͔͒.

ThekeypointsonwhichWLCnetworksarebasedarethefollowing:͑i͒thestimulus-dependentheteroclinicse-quencecorrespondingtoaspecificorderofswitchinghasalargebasinofattraction,i.e.,thesequenceisro-bust;and͑ii͒thetopologyoftheheteroclinicsequencesensitivelydependsontheincomingsignals,i.e.,WLCdynamicshaveahighresolution.

Inthismannerstimulus-dependentsequentialswitch-ingofneuronsorgroupsofneurons͑clusters͒isabletoresolvethefundamentalcontradictionbetweensensitiv-ityandrobustnessinsensoryrecognition.Anykindofsequentialactivitycanbeprogrammed,inprinciple,byanetworkwithstimulus-dependentnonsymmetricinhibi-toryconnections.Itcanbethecreationofspatiotempo-ralpatternsofmotoractivity,thetransformationofthespatialinformationintospatiotemporalinformationforsuccessfulrecognition͑seeFig.40͒,andmanyothercomputations.

Thegenerationofsequencesininhibitorynetworkshasalreadybeendiscussedwhenweanalyzedthedy-namicsofCPGs͑seeSec.II.B͒focusingonrhythmicactivity.ThemathematicalimageinphasespaceoftherhythmicsequentialswitchingshowninFigs.8and9isalimitcycleinthevicinityoftheheterocliniccontour͓cf.Fig.39͑a͔͒.

WLCdynamicscanbedescribedintheframeworkofneuralmodelsatdifferentlevels.Thesecouldberatemodels,Hodgkin-Huxley-typemodels,orevensimplemapmodels͑seeTableI͒.Forspikingneuronsorgroupsofsynchronizedspikingneuronsinanetworkwithnon-symmetricallateralinhibitionWLCmayleadtoswitch-ingbetweenactiveandinactivestates.Themathemati-calimageofsuchswitchingactivityisalsoaheteroclinicloop,butinthiscasetheseparatricesdonotconnectsaddleequilibriumpoints͓Fig.39͑a͔͒butsaddlelimitcyclesasshowninFig.39͑b͒.TheWLCdynamicsinamodelnetworkofninespikingneuronswithinhibitoryconnectionsisshowninFig.41.Similarresultsbasedon

Rev.Mod.Phys.,Vol.78,No.4,October–December2006

FIG.41.SpatiotemporalpatternsgeneratedbyanetworkofnineFitzHugh-Nagumoneuronswithinhibitoryconnections.Theleftandrightpanelscorrespondtotwodifferentstimuli.FromRabinovichetal.,2001.

a͑2003mapmodelofneuronshavebeenreportedbyCasadoAn͒.

importantadvantageofWLCnetworksisthattheycanproducedifferentspatiotemporalpatternsinresponsetodifferentstimuli,and,remarkably,neuronsspontaneouslyformsynchronizedclustersdespitetheabsenceofexcitatorysynapticconnections.Foradiscus-sionofsynchronizationwithinhibitionseealsovanVreeswijketal.͑1994͒andElsonetal.͑2002͒.

FinallyWLCnetworksalsopossessastrikinglydiffer-entcapacityorabilitytorepresentinadistinguishablemanneranumberofdifferentpatterns.InanattractorcomputationnetworkoftheHopfieldvariety,anetworkwithNattractorshasbeenshowntohaveacapacityofapproximatelyN/7.InasimpleWLCnetworkwithNnodes,thiscapacityhasbeenshown͑Rabinovichetal.,2001͒tobeofordere͑N−1͒!,whichisaremarkablegainincapacity.

2.Self-organizedWLCnetworks

Itisgenerallyacceptedthatthereisinsufficientge-neticinformationavailabletoaccountforallthesynap-ticconnectivityinthebrain.Howthencanthefunc-tionalarchitectureofWLCcircuitsbegeneratedintheprocessofdevelopment?

OnepossibleanswerhasbeenfoundbyHuertaandRabinovich.Startingwithamodelcircuitconsistingof100ratemodelneuronsconnectedrandomlywithweakinhibitorysynapses,newsynapticstrengthsarecom-putedfortheconnectionsusingHebblearningrulesinthepresenceofweaknoise.TheneuronratesaaLotka-Volterramodelfamiliarfromourearlieri͑t͒discus-satisfysion.Inthiscasethematrix␳ij͑t͒isadynamicalvariable:

dai͑t͒

dt=ai͑t͒ͩ␴͑S͒−͚␳ij͑t͒aj͑t͒ͪ+␰i͑t͒.͑24͒

j

␴the͑S͒strengthsisafunctionofthedependentinhibitoryonconnectionsthestimulusdetermined

S,␳ij͑t͒are1250

Rabinovichetal.:Dynamicalprinciplesinneuroscience

FIG.42.͑Color͒Resultofsimulatinganetworkof100neuronssubjecttothelearningruleg͑ai,aj͒=aiaj͓10tanh͑aj−ai͒+1͔.Theactivityofrepresentativeneuronsinthisnetworkisshownindifferentcolors.Thesystemstartsfromrandominitialcon-ditionsfortheconnections.Thenoiselevelis␩=0.01.Forsim-plicity,theswitchingactivityofonlyfourofthe100neuronsisshown.

bysomelearningrules,and␰͗equations

␰͑t−tЈ͒.Thelearningi͑t͒isGaussianisdescribednoisebywithi͑t͒␰j͑tЈ͒͘=␩␦ij␦thed␳ij͑t͒

dt

=␳ij͑t͒g„ai͑t͒,aj͑t͒,S…−͓␳ij͑t͒−␥͔,͑25͒

whereg͑ai,aj,S͒representsthestrengtheningofinterac-tionsfromneuronitoneuronjasafunctionoftheexternalstimulusS.Theparameter␥representsthelowerboundofthecouplingstrengthsamongneurons.Figure42showstheactivityofrepresentativeneuronsinanetworkbuiltwiththismodel.Aftertheself-organizationphase,thisnetworkdisplaysWLCswitch-ingdynamics.

Winnerlesscompetitiondynamicscanalsobethere-sultoflocalself-organizationinnetworksofHHmodelneuronsthatdisplaySTDPwithinhibitorysynapticcon-nectionsasshowninFig.43.Suchmechanismsofself-organization,asshownbyNowotnyandRabinovich,canbeappropriatefornetworksthatgeneratenotonlyrhythmicactivitybutalsotransientheteroclinicse-quences.

3.Stableheteroclinicsequence

Thephase-spaceimageofnonrhythmicWLCdynam-icsisatrajectoryinthevicinityofastableheteroclinicsequence͑SHS͒inthestatespaceofthesystem.Suchasequence͑seeFig.44͒isanopenchainofsaddlefixedpointsconnectedbyone-dimensionalseparatriceswhichretainnearbytrajectoriesinitsvicinity.TheflexibilityofWLCdynamicsisprovidedbytheirdependenceontheidentityofparticipatingneuralclustersofstimuli.Se-quencegenerationinchainlikeorlayerlikenetworksofneuronsmayresultfromafeedforwardwavelikepropa-gationofspikeslikewavesinsynfirechains͑seeabove͒.Incontrast,WLCdynamicsdoesnotneedaspecificspa-tialorganizationofthenetwork.However,theimageofawaveisausefulone,becauseinthecaseofWLCawaveofneuralactivitypropagatesinstatespacealongtheSHS.Suchawaveisinitiatedbyastimulus.The

Rev.Mod.Phys.,Vol.78,No.4,October–December2006

FIG.43.͑Coloronline͒ExampleofWLCdynamicsentrainedinanetworkbyalocallearningrule.Inisolation,thefourHHneuronsinthenetworkarereboundbursters,i.e.,theyfireabriefburstofspikesafterbeingstronglyinhibited.Theall-to-allinhibitorysynapsesinthesmallnetworkaregovernedbyaSTDPlearningrulewhichstrengthensthesynapseforpositivetimedelaysbetweenpostsynapticandpresynapticactivityandweakensitotherwise.SuchSTDPofinhibitorysynapseshasbeenobservedintheentorhinalcortexofrats͑Haasetal.,2006͒.͑a͒Beforeentrainmenttheneuronsjustfollowtheinputsignalofperiodiccurrentpulses.͑b͒Theresultingburstsstrengthentheforwardsynapsescorrespondingtotheinputsequencemakingthemeventuallystrongenoughtocausere-boundbursts.͑c͒Afterentrainmentactivatinganyoneoftheneuronsleadstoaninfiniterepetitionofthetrainedsequencecarriedbythesuccessivereboundburstsoftheneurons.

speedofthesequentialswitchingdependsonthenoiselevel␩.NoisecontrolsthedistancebetweentrajectoriesrealizedbythesystemandtheSHS.FortrajectoriesthatgetclosertotheSHSthetimethatthesystemspendsnearsemistablestates͑saddles͒,i.e.,theintervalbe-tweenswitching,becomeslonger͑seeFig.44͒.

ThemechanismofreproducingtransientsequentialneuralactivityhasbeenanalyzedbyAframovich,Zhigu-lin,etal.͑2004͒͑seeFig.44͒.Itisquitegeneralanddoesnotdependonthedetailsoftheneuronalmodel.Saddlepointsinthephasespaceoftheneuralnetworkcanbereplacedbysaddlelimitcyclesorevenchaoticsetsthatdescribeneuralactivityinmoredetail,asintypicalspik-ingorspiking-burstingmodels.Thisfeatureisimportantforneuralmodelingbecauseitmayhelptobuildabridgebetweentheconceptsofneuralcompetitionandsynchronizationofspikes.

WecanformulatethenecessaryconditionsfortheconnectivityofaWLCnetworkthatmustbesatisfiedinorderforthenetworktoexhibitreproduciblesequentialdynamicsalongtheheteroclinicchain.Asbefore,webaseourdiscussionontheratemodel

Rabinovichetal.:Dynamicalprinciplesinneuroscience

1251

FIG.44.Astableopenheteroclinicsequenceinaneuralcir-cuitwithWLC.Wsiisastablemanifoldoftheithsaddlefixedpoint͑heavydots͒.ThetrajectoriesinthevicinityoftheSHSrepresentsequenceswithdifferenttimings.ThetimeintervalsbetweenswitchesisproportionaltoTϳ͉ln␩͉/␭u,where␭uisapositiveLyapunovexponentthatcharacterizestheone-dimensionalunstableseparatricesofthesaddlepoints͑StoneandHolmes,1990͒.ModifiedfromAfraimovich,Zhigulin,etal.,2004.

ai͑t͒dt=ai͑t͒ͩជNl

␴i͑Sl͒−͚␳ij͑Sជl͒aj͑t͒ͪ+␰i͑t͒,͑26͒

j

where␰i͑t͒isanexternalGaussiannoise.InthismodelisassumedthatthestimulusS

ជit

linfluencesthematrix␳andincrements␴ionlyinthesubnetworkNl

ij

.Eachin-crement␴icontrolsthetimeconstantofaninitialexpo-nentialgrowthfromtherestingstateabyAframovich,Zhigulin,etal.͑2004͒toi͑t͒assure=0.Asthatshown

theSHSisinthephasespaceofthesystem͑26͒thefollow-inginequalitiesmustbesatisfied:

␴ik−1k−1␴Ͻ␳␴iiik−1ikϽ

k␴+1,͑27͒

ik

␴ik+1␴−1Ͻ␳␴ik+1iik+1ikϽ

k

␴,͑28͒

ik

␳␴i−␴ik−1

iikϾ␳ik−1ik+

␴.

͑29͒

ik

␴imistheincrementofthemthsaddlewhoseunstablemanifoldisonedimensional;␳ik±1ikisthestrengthoftheinhibitoryconnectionbetweenneighboringsaddlesintheheteroclinicchain.Thecomputermodelingresultofanetworkwithparametersthatsatisfy͑27͒–͑29͒isshowninFig.45.

InthenextsectionwediscusssomeexperimentsthatsupporttheSHSparadigm.

4.Relationtoexperiments

Theolfactorysystemmayserveasoneexampleofaneuralsystemthatgeneratestransient,buttrial-to-trial

Rev.Mod.Phys.,Vol.78,No.4,October–December2006

FIG.45.͑Coloronline͒TimeseriesoftheactivityofaWLCnetworkduringtentrials͑only20neuronsareshown͒:simula-tionsofeachtrialwerestartedfromadifferentrandominitialcondition.Inthisploteachneuronisrepresentedbyadiffer-entcoloranditslevelofactivitybythesaturationofthecolor.FromAfraimovich,Zhigulin,etal.,2004.

reproducible,sequencesofneuronalactivitywhichcanbeexplainedwiththeWLCprinciple.Thecomplexin-trinsicdynamicsintheantennallobe͑AL͒ofinsectstransformstaticsensorystimuliintospatiotemporalpat-ternsofneuralactivity͑Laurentetal.,2001͒.SeveralexperimentalresultsaboutthereproducibilityofthetransientspatiotemporalALdynamicshavebeenpub-lished͑Stopferetal.,2003;Galanetal.,2004;MazorandLaurent,2005͒͑seeFig.46͒.InexperimentsdescribedbyGalanetal.͑2004͒beeswerepresentedwithdifferentodors,andneuralactivityintheALwasrecordedusingcalciumimaging.Theauthorsanalyzedthetransienttra-jectoriesintheprojectionneuronactivityspaceandfoundthattrajectoriesrepresentingdifferenttrialsofstimulationwiththesameodorwereverysimilar.Itwasshownthatafteratimeintervalofabout800msdiffer-entodorsarerepresentedinphasespacebydifferentstaticattractors,i.e.,thetransientspatiotemporalpat-ternsconvergetodifferentspatialpatternsofactivity.However,theauthorsemphasizethatduetotherepro-ducibilityofthetransientdynamicssomeodorswererecognizedintheearlytransientstageassoonas300msaftertheonsetoftheodorpresentation.ItishighlylikelythatthetransienttrajectoriesobservedintheseexperimentsrepresentrealizationsofaSHS.

Thegenerationofreproduciblesequencesplaysalsoakeyroleinthehighvocalcenter͑HVC͒ofthesongbirdsystem͑Hahnloseretal.,2002͒.LikeaCPG,thisneuralsystemisabletogeneratesparsespatiotemporalpat-ternswithoutanyrhythmicstimuliinvitro͑SolisandPerkel,2005͒.InitsprojectionstothepremotornucleusRA,HVCinanawakesingingbirdsendssparseburstsofhigh-frequencysignalsonceforeachsyllableofthesong.Theseburstshaveaninterspikeintervalabout2msandlastabout8mswithinasyllabletimescaleof100–200ms.TheburstsareshownforseveralHVC→tainsRAprojectionmanyinhibitoryneuronsininterneuronsFig.47.TheHVC͑Mooneyalsocon-andPrather,2005͒.Theinterneuronsburstdenselythrough-outthevocalizations,incontrasttotheburstingoftheRA-projectingHVCneuronsatsingleprecisetimings.A

1252

Rabinovichetal.:Dynamicalprinciplesinneuroscience

FIG.46.͑Color͒TransientALdynamics.Toppanel:Trajecto-riesoftheantennallobeactivityduringpoststimulusrelaxationinonebee.ModifiedfromGalanetal.,2004.Bottompanel:VisualizationoftrajectoriesrepresentingtheresponseofaPNpopulationinalocustALovertime.Time-slicepointswerecalculatedfrom110PNresponsestofourconcentrations͑0.01,0.05,0.1,1͒ofthreeodors,projectedontothreedimensionsusinglocallylinearembedding,analgorithmthatcomputeslow-dimensional,neighborhood-preservingembeddingsofhigh-dimensionalinputs͑RoweisandSaul,2000͒.ModifiedfromStopferetal.,2003.

plausiblehypothesisisthatHVC’ssynapticconnectionsarenonsymmetricandWLCcanbeamechanismoftheneuralspatiotemporalpatterngenerationofthesong.Thiswouldprovideabasisforthereproduciblepat-ternedoutputfromtheHVCwhenitreceivesasongcommandstimulus.

D.Sequencelearning

Sequencelearningandmemoryassequencegenera-tionrequiretemporalasymmetryinthesystem.Suchasymmetrycanresultfromspecificpropertiesofthenet-workconnections,inparticular,asymmetryofthecon-nections,orcanresultfromtemporalasymmetryinthedynamicalfeaturesofindividualneuronsandsynapses,orboth.Thespecificdynamicalmechanismsofsequencelearningdependonthetimescaleofthesequencethat

Rev.Mod.Phys.,Vol.78,No.4,October–December2006

FIG.47.͑Coloronline͒HVCsongbirdpatterns.SpikerasterplotoftenHVC͑RA͒neuronsrecordedinonebirdduringsinging.Eachrowoftickmarksshowsspikesgeneratedduringonerenditionofthesongorcall;roughlytenrenditionsareshownforeachneuron.ModifiedfromHahnloseretal.,2002.

thisneuralsystemneedstolearn.Learningoffastse-quences,20–30msandfaster,needsprecisesynchroni-zationofthespikesorphasesofneuralwaves.Onepos-siblemechanismforthiscanbethelearningofsynfirewaves.Forslowsequences,likeautonomousrepetitivebehavior,itwouldbepreferabletolearnrelevantbehav-ioraleventsthattypicallyoccuronthetimescaleofhun-dredsofmillisecondsorslowerandtheswitching͑tran-sitions͒betweenthem.NetworkswhosedynamicsarebasedonWLCareabletodosuchajob.Weconsiderhereslowsequencelearningandspatialsequentialmemory͑SSM͒.

TheideaisthatsequentialmemoryisencodedinamultidimensionaldynamicalsystemwithaSHS.Eachofthesaddlepointsrepresentsaneventinasequencetoberemembered.Oncethestateofthesystemapproachesonefixedpointrepresentingacertainevent,itisdrawnalonganunstableseparatrixtowardthenextfixedpoint,andthemechanismrepeatsitself.Thenecessaryconnec-tionsareformedinthelearningphasesbydifferentsen-soryinputsoriginatedbysequentialevents.

Seligeretal.͑2003͒havediscussedamodeloftheSSMinthehippocampus.Itiswellacceptedthatthehippo-campusplaysthecentralroleinacquisitionandprocess-inginformationrelatedtorepresentingmotioninphysi-calspace.Themostspectacularmanifestationofthisroleistheexistenceofso-calledplacecellswhichrepeat-edly͑firewhenananimalisinacertainspatiallocationalsoO’KeefefavorsandanDostrovsky,alternative1971concept͒.Experimentalofspatialresearchmemorybasedonalinkedcollectionofstoredepisodes͑WilsonandMcNaughton,1993͒.Eachepisodecomprisesase-quenceofevents,which,besidesspatiallocations,mayincludeotherfeaturesoftheenvironment͑orientation,odor,sound,etc.͒.Itisplausibletodescribethecorre-spondinglearningwithapopulationmodelthatrepre-sentsneuralactivitybyratecoding.Seligeretal.͑2003͒haveproposedatwo-layerdynamicalmodelofSSMthatcananswerthefollowingkeyquestions:͑i͒Howisacertainevent,e.g.,animageoftheenvironment,re-cordedinthestructureofthesynapticconnectionsbe-

Rabinovichetal.:Dynamicalprinciplesinneuroscience

1253

tweenmultiplesensoryneurons͑SNs͒andasingleprin-cipalneuron͑PN͒duringlearning?͑ii͒WhatkindofcooperativedynamicsforcesindividualPNstofirese-quentially,inawaythatwouldcorrespondtoaspecificsequenceofsnapshotsoftheenvironment?͑iii͒Howcomplexshouldthisnetworkbeinordertostoreacer-tainnumberofdifferentepisodeswithoutmixingdiffer-enteventsorstoringspuriousepisodes?

Thetwo-layerstructureoftheSSMmodelisreminis-centoftheprojectionnetworkimplementationofthenormalformprojectionalgorithm͑NFPA͒;seeBairdandEeckman͑1993͒.IntheNFPAmodel,thedynamicsofthenetworkiscastintermsofnormalformequationswhicharewrittenforamplitudesofcertainnormalformscorrespondingtodifferentpatternsstoredinthesystem.Thenormalformdynamicscanbechosentofollow͑improved1993͒havecertaincapacityshowndynamicalcanthatrules.BairdandEeckmanbeabuiltHopfield-typeusingthisapproach.networkwithFur-thermore,ithasbeensuggested͑BairdandEeckman,1993͒thatspecificchoicesofthecouplingmatrixforthenormalformdynamicscanleadtomultistabilityamongmorecomplexattractingsetsthansimplefixedpoints,suchaslimitcyclesorevenchaoticattractors.Forex-ample,quasiperiodicoscillationscanbedescribedbyanormalformthatcorrespondstoamultipleHopfbifur-cation͑GuckenheimerandHolmes,1986͒.Asshownbe-low,amodelofSSMafterlearningiscompletedcanbeviewedasavariantoftheNFPAwithaspecificchoiceofnormalformdynamicscorrespondingtowinnerlesscompetitionamongdifferentpatterns.

Toillustratetheseideasconsideratwo-levelnetworkofNcanreasonablysSNs͓xi͑t͔͒assumeandNthatpprincipalneurons͓asensoryneuronsdoi͑nott͔͒.haveOnetheirowncomplexdynamicsandareslavedeithertoexternalstimuliinthelearningorstoringregimeortothePNsintheretrievalregime.Inthelearningregime,xi͑t͒isabinaryinputpatternconsistingof0’sand1’s.

Duringtheretrievalphase,xϫNi͑t͒=͚ofconnectionsjN=1pPijaj͑t͒,wherePijis

theNspprojectionmatrixamongSNsandPNs.

ThePNsaredrivenbySNsduringthelearningphase,buttheyalsohavetheirowndynamicscontrolledbyin-hibitoryinterconnections.Whenlearningiscomplete,thedirectdrivingfromSNsisdisconnected.Theequa-tionsforthePNratesai͑t͒read

daNN

i͑t͒

p

sdt=ai͑t͒−ai͑t͚͒Vijaj͑t͒+␣ai͚PTijxj͑t͒+␰͑t͒,j=1

j=1͑30͒

where␣󰀅0inthelearningphaseand␣=0inthere-trievalphase,andPTijistheprojectionmatrix.Thecou-plingbetweenSNsandPNsisbidirectional.Thelast

termontheright-handsideofEq.͑30͒representssmallpositiveexternalperturbationswhichcaninputsignalsfromotherpartsofthebrainthatcontrollearningandretrievaldynamics.

Rev.Mod.Phys.,Vol.78,No.4,October–December2006

Afteracertainpatternispresentedtothemodel,the

sensorystimuliresetthestateofthePNlayeraccording

totheprojectionruleaaccordingtoEq.͑30͒.

i͑t͒=͚jN=1SPTijxj͑t͒,butai͑t͒change

ThedynamicsofSNsandPNsduringthelearningandretrievalphaseshavetwolearningprocesses:͑i͒formingtheprojectionmatrixPofsensoryijwhichisresponsibleforcon-nectingagroupneuronsofthefirstlayercor-respondingtoacertainstoredpatterntoasinglePNwhichrepresentsthispatternatthePNlevel;and͑ii͒learningofthecompetitionmatrixVforthetemporal͑logical͒orderingijwhichisrespon-sibleofthesequentialmemory.

Theslowlearningdynamicsoftheprojectionmatrixiscontrolledbythefollowingequation:

P˙ij=⑀ai͑␤xj−Pij

͒͑31͒

with⑀Ӷ1.WeassumethatinitiallyallP␩ijconnectionsarenearlyidenticalPij=1+ij,where␩ijaresmallran-domperturbations,͚j␩ij=0,͗␩22

thatinitiallythematrixij͘=␩V0Ӷ1.Additionally,weassumefori󰀅j.

ijispurelycompeti-tive:VSupposeii=1andVwewantij=Vto0Ͼ1memorizeacertainpatternAinourprojectionmatrix.WeapplyasetofinputsAspondingtothepatternAoftheSNs.Asbefore,icorre-weassumethatexternalstimulirendertheSNsinoneoftwostates:excited,Ai=1,andquiescent,Ai=0.Theini-tialstateofthePNlayerisfullyexcited:ai͑0͒=͚jPijAj.Accordingtothecompetitivenatureofinteractionsbe-tweenPNsafterashorttransient,onlyoneofthem,theneuronAwhichcorrespondstothemaximumamainsexcitedandtheothersbecomequiescent.i͑Which0͒,re-neuronbecomesresponsibleforthepatternAisactuallyrandom,asitdependsontheinitialprojectionmatrixPij.ItfollowsfromEq.͑31͒thatforsmall⑀synapsesofsuppressedPNsdonotchange,whereassynapsesofthesingleexcitedneuronevolvesuchthatconnectionsbe-tweenexcitedSNsandPNsneuronsamplifytoward␤ϾSNs1,anddecayconnectionstozero.Asbetweenaresult,excitedthefirstPNsinputandpatternquiescentwillberecordedinoneofthematrixPijrows,whileotherrowswillremainalmostunchanged.Nowsupposethatwewanttorecordasecondpatterndifferentfromthefirstone.Wecanrepeattheproceduredescribedabove,namely,applyexternalstimuliassociatedwithpatternBtotheSNs,projectthemtotheinitialstateofthePNlayer,aapticconnectionsi͑0͒=͚jPijBfromj,andletthesystemevolve.Sincesyn-SNssuppressedbythefirstpat-terntoneuronAhavebeeneliminated,anewsetofstimulicorrespondingtopatternBwillexciteneuronAmoreweaklythanmostoftheothers,andcompetitionwillleadtoselectionofonePNBdifferentfromneuronA.InthiswaywecanrecordasmanypatternsastherearePNs.

ThesequentialorderofthepatternsrecordedintheprojectionnetworkisdeterminedbythecompetitionmatrixV󰀅jandVij,Eq.͑30͒.InitiallyitissettoVij=V0Ͼ1foriii=1whichcorrespondstowinner-take-allcom-petition.Thegoalofsequentialspatiallearningisto

12

Rabinovichetal.:Dynamicalprinciplesinneuroscience

FIG.48.Amplitudesofprincipalneuronsduringthememoryretrievalphaseinatwo-layerdynamicalmodelofsequentialspatialmemory.͑a͒Periodicretrieval,twodifferenttestpat-ternspresented;͑b͒aperiodicretrievalwithmodulatedinhibi-tion͑seetext͒.ModifiedfromSeligeretal.,2003.

recordthetransitionofpatternAtopatternBintheformofsuppressingthecompetitionmatrixelementVBA.Wesupposethattheslowdynamicsofthenondi-agonalelementsofthecompetitionmatrixarecon-trolledbythedelay-differentialequation

V˙ij=⑀ai͑t͒aj͑t−␶͒͑V1−Vij

͒,͑32͒

where␶isconstant.Equation͑32͒showsthatonlythematrixelementscorrespondingtoa󰀅0arechangingtowardtheasymptotici͑t͒value󰀅0andVaj͑t−␶͒respondingtothedesiredtransition.Sincemost1Ͻ1cor-ofthetime,exceptforshorttransients,onlyonePNisexcited,onlyoneoftheconnectionsVijischangingatanytime.Asaresult,anarbitrary,nonrepeating,sequenceofpat-ternscanberecorded.

WhenatestpatternTispresentedtothesensorylayer,xi͑0͒=T͑i͒ai͑0͒=͚iPijTTj,andTresemblesoneoftherecordedpatterns,thiswillinitiateaperiodicse-quenceofpatternscorrespondingtothepreviouslyre-cordedsequenceinthenetwork.Figure48showsthebehaviorofprincipalneuronsafterdifferentinitialpat-ternsresemblingdifferentdigitshavebeenpresented.Inbothcases,thesystemquicklysettlesontoacyclicgen-erationofpatternsassociatedwithagiventestpattern.Atanygiventime,exceptforashorttransienttimebe-tweenpatterns,onlyasinglePNison,correspondingtoaparticularpattern.

Rev.Mod.Phys.,Vol.78,No.4,October–December2006

E.Sequencesincomplexsystemswithrandomconnections

Thelevelofcellularandnetworkcomplexityinthenervoussystemleadsonetoask:Howdoevolutionandgeneticsbuildacomplexbrain?Comparativestudiesoftheneocortexindicatethatearlymammalianneocorti-ceswerecomposedofonlyafewcorticalfieldsandinprimatestheneocortexexpandeddramatically;thenum-berofcorticalfieldsincreasedandtheconnectivitybe-tweenthembecameverycomplex.Thearchitectureofthemicrocircuitryofthemammalianneocortexremainslargelyunknownintermsofcell-to-cellconnections;however,theconnectionsofgroupsofneuronswithothergroupsarebecomingbetterunderstoodthankstonewanatomicaltechniquesandtheuseofslicetech-niques.Manypartsoftheneocortexdevelopedunderstrictgeneticcontrolasprecisenetworkswithconnec-tionsthatappearsimilarfromanimaltoanimal.Ko-zloskietal.͑2001͒discussedvisualnetworksinthiscon-text.However,thelocalconnectivitycanbeprobabilisticorrandomasaconsequenceofexperience-dependentplasticityandself-organization͑Chklovskiietal.,2004͒.Inparticular,theimagingofindividualpyramidalneu-rons͑drivesMaravallinthetheetmouseformational.,2004barrel͒cortexoveraperiodofweeksandshowedeliminationthatsensoryofsynapsesexperienceandthatthesechangesmightunderlieadaptiveremodelingofneuralcircuits.

Thusthebrainappearsasacompromisebetweenex-istinggeneticconstraintsandtheneedtoadapt,i.e.,net-worksareformedbybothgeneticsandactivity-dependentorself-organizingmechanisms.Thismakesitverydifficulttodeterminetheprinciplesofnetworkar-chitectureandtobuildreasonabledynamicalmodelsthatareabletopredictthereactionsofacomplexneuralsystemtochangesintheenvironment;wehavetotakeintoaccountthatevenself-organizednetworksareun-dergeneticcontrolbutinadifferentsense.Forexample,geneticscancontroltheaveragebalancebetweenexci-tatoryandinhibitorysynapticconnections,sparsenessoftheconnections,etc.ThepointofviewthattheinfantcortexisnotacompletelyorganizedmachineisbasedonthesuppositionthatthereisinsufficientstoragecapacityintheDNAtocontroleveryneuronandeverysynapse.This͑Ince,ideawasformulatedfirstAsimple1992͒.

byAlanTuringin1948calculationrevealsthatthetotalsizeofthehumangenomecanspecifytheconnectivityofabout105neurons.Thehumanbrainactuallycontainsaround1011neurons.LetussaythatwehaveNneurons.Eachneu-ronrequiresNplog2Nbitstocompletelyspecifyitscon-nections,wherepistheaveragenumberofconnections.ThereforeweneedatleastN2plog2Nbitstospecifytheentireon-offconnectivitymatrixofNneurons.IftheconnectivitydegreepisnotverysparsethenwejustneedN2bits.So,ifwesolvemin͑N2,N2plog109basepairsinthehumangenomeusinga2N͒=3.3ϫconnec-tivitydegreeof1%,weobtainamaximumof105neu-ronsthatcanbecompletelyspecified.Sincewedonotknowhowmuchofthegenomeisusedforbrainconnec-

Rabinovichetal.:Dynamicalprinciplesinneuroscience

1255

tivity,itisnotpossibletonarrowdowntheestimation.Nevertheless,itdoesnotmakesensetoexpectthewholegenometospecifyallconnectionsinthebrain.Thissimpleestimatemakesclearthatlearningandsyn-apticplasticityhaveaveryimportantroleindetermin-ingtheconnectivityofbraincircuits.

Thedynamicsofcomplexnetworkmodelsaredifficulttodissect.Themappingofthecorrespondinglocalandglobalbifurcationsinalow-dimensionalsystemhasbeenextensivelystudied.Toperformsuchanalysisinhigh-dimensionalsystemsisverydemandingifnotimpos-sible.Averagemeasures,suchasmeanfiringrates,aver-agemembranepotential,correlations,etc.,canhelpustounderstandthedynamicsofthenetworkasafunctionofafewvariables.Oneofthefirstmodelstouseamean-fieldapproachwastheWilson-Cowanmodel͑WilsonandCowan,1973͒.Individualneuronsinthemodelre-sembleintegrate-and-fireneuronswithamembranein-tegrationtime␮andarefractoryperiodr.WilsonandCowan’smainhypothesisisthattheunreliableindi-vidualresponses,whengroupedtogether,canleadtomorereliableoperations.TheWilson-Cowanformalismcanbereducedtothefollowingequations:

␮ץE͑x,t͒

ץt

=−E͑x,t͒+͓1−rE͑x,t͔͒ϫLeͫ͵E͑y,t͒wee͑y,x͒dy

͵I͑y,t͒wei͑y,x͒dy+Se͑x,t͒ͬ,

͑33͒

␮ץI͑x,t͒

ץt

=−I͑x,t͒+͓1−rI͑x,t͔͒ϫLiͫ͵E͑y,t͒wie͑y,x͒dy

͵I͑y,t͒wii͑y,x͒dy+Si͑x,t͒ͬ,

͑34͒

whereE͑x,t͒andI͑x,t͒aretheproportionsoffiringneuronsintheexcitatoryandinhibitorypopulation,thecoordinatexisacontinuousvariablethatrepresentsthepositioninthecorticalsurface,wee,wei,wie,andwiiaretheconnectivityweights,andSeandSpopulations,iareexternalin-putstotheexcitatoryandinhibitoryrespec-tively.ThegainfunctionsLexcitatoryeandLibasicallyreflecttheexpectedproportionsofandinhibitoryneu-ronsreceivingatleastthresholdexcitationperunitoftime.Onesubtletrickusedinthederivationofthismodelisthatthemembraneintegrationtimeisintro-ducedthroughsynapticconnections.Themodelex-pressedinthisformattemptstoeliminatetheuncer-taintyofsingleneuronsbygroupingthemaccordingtothosewithreliablecommonresponses.Wearestillleftwiththeproblemofwhattoexpectinanetworkofclus-tersconnectedrandomlytoeachother.Herewewilldiscussitinmoredetail.

Rev.Mod.Phys.,Vol.78,No.4,October–December2006

Inarandomnetworkofexcitatoryandinhibitoryneu-rons,itisnotuncommontofindoscillatoryactivity͑Jin,2002;HuertaandRabinovich,2004͒.However,itismoreinterestingtostudythetransientbehaviorofneuralre-currentnetworks.Thesearefastbehaviorsandimpor-tantforsensoryprocessingandforthecontrolofmotorcommands.Instudyingthisoneneedstoaddresstwomainissues:͑i͒whetheritispossibletoconsistentlyfindnetworkswithrandomconnections,describedbyequa-tionssimilartoEqs.͑33͒and͑34͒,behavingregularly,and͑ii͒whethertransientbehaviorinthesenetworksisreproducible.

HuertaandRabinovich͑2004͒showed,usingtheWilson-Cowan͑controllimitcyclesparameter͒ismoreformalism,spacelikelywheretoperiodicbeinhibitoryfoundsequentialinactivityandregionsexcitatoryofthesynapsesareslightlyoutofbalance.However,reproduc-ibletransientdynamicsismorelikelyfoundinthere-gionofparameterspacefarfrombalancedexcitationandinhibition.Inparticular,theauthorsinvestigatedthemodel

dxNNI

␮i͑t͒

dt

=⌰͚ͩ

EwEE−j=1

ijxj͑t͒

͚wEIijyj͑t͒+SE

−xi͑t͒,j=1

iͪ͑35͒

dyNNi͑t͒

EI

␮dt

=⌰͚ͩ

wIE−j=1

ijxj͑t͒

͚wIIijyj͑t͒+SI

iͪ−yi͑t͒,j=1

͑36͒

wherex͑t͒andyi͑t͒representthefractionsofactiveneu-ronsinclusterioftheexcitatoryandinhibitorypopula-tions,respectively.Thenumbersofexcitatoryandinhibi-toryclustersareNEandNI.ThelabelsEandIareused

todenotequantitiesassociatedwiththeexcitatoryorinhibitorypopulations,respectively.TheexternalinputsSE,Iareinstantaneouskicksappliedtoafractionofthetotalpopulationattimezero.Thegainfunctionis⌰͑z͒=͕tanh͓͑z−b͒/␴͔+1͖/2,withathresholdb=0.1belowtheexcitatoryandinhibitorysynapticstrengthofasingleconnection.Clustersaretakentohaveverysharpthresholdsofexcitabilitybychoosing␴=0.01.Thereisawiderangeofvaluesthatgeneratessimilarresults.ThetimescaleissetasdonebyWilsonandCowan͑1973͒,␮drawn=10ms.fromTheaBernoulliconnectivityprocessmatrices͑HuertawXYij

haveentriesandRabino-vich,2004͒.Themaincontrolparametersinthisproblemaretheprobabilitiesofconnectionsfrompopulationtopopulation.

Nowwecananswerthefollowingquestion:Whatkindofactivitycananetworkwithmanyneuronsandran-domconnectionsproduce?Intuitionsuggeststhattheanswerhastobeacomplexmultidimensionaldynamics.However,thisisnotthecase͑Fig.49͒:mostobservablestimulus-dependentdynamicsaremoresimpleandre-producible;periodic,transient,orchaotic͑alsolowdi-mensional͒.

1256

Rabinovichetal.:Dynamicalprinciplesinneuroscience

FIG.49.͑Coloronline͒Three-dimensionalprojectionsofsimulationsofrandomnetworksof200neurons.Forillustra-tivepurposesweshowthreetypesofdynamicsthatcanbegeneratedbyarandomnetwork:͑top͒chaos,͑middle͒limitcycle͑bothintheareasofparameterspacethatareclosetobalanced͒,and͑bottom͒transientdynamics͑farfrombal-anced͒.

Thisisaveryimportantpointforunderstandingcor-texdynamicsthatinvolvesthecooperativeactivityofmanycomplexnetworks͑unitsormicrocircuits͒.Fromthefunctionalpointofview,thestimulus-dependentdy-namicsofthecortexcanbeconsideredasacoordinatedbehaviorofmanyunitswithlow-dimensionaltransientdynamics.Thisisthebasisofanewapproachtocortexmodelingnamedthe“liquid-statemachine”͑Maassetal.,2002͒.

F.Coordinationofsequentialactivity

Coordinationofdifferentsequentialbehaviorsiscru-ciallyimportantforsurvival.Fromthemodelingpointofviewitisaverycomplexproblem.TheIO͑anetwork

Rev.Mod.Phys.,Vol.78,No.4,October–December2006

FIG.50.͑Color͒Spatiotemporalpatternsofcoordinatedrhythmsinducedbystimuliinamodeloftheinferiorolive.Severalstructureswithdifferentfrequenciescancoexistsimul-taneouslyinacommensuraterepresentationofthespikingfre-quencieswhenseveralstimuliarepresent.Incommensuratestimuliareintroducedintheformofcurrentinjectionsindif-ferentclustersofthenetwork.͑Panelsontherightshowthepositionsoftheinputclusters.͒Thesecurrentinjectionsinducedifferentspikingfrequenciesintheneurons.Colorsinthesepanelsrepresentdifferentcurrentinjections,andthusdifferentspikingfrequenciesintheinputclusters.Toprowshowstheactivityofanetworkwithtwodifferentinputclusters.Bottomrowshowstheactivityofanetworkwith25differentinputclusters.Sequencesdevelopintimefromlefttoright.Regionswiththesamecolorhavesynchronousbehavior.Colorbarmapsthemembranepotential.Redcorrespondstospikingneurons͑−45mVisabovethefiringthresholdinthemodel͒.Darkbluemeanshyperpolarizedactivity.Bottompanelshowstheactivityofasingleneuronwithsubthresholdoscillationsandspikingactivity.ModifiedfromVarona,Aguirre,etal.,2002.

alreadydiscussedinSec.III.B.2͒hasbeensuggestedasasystemthatcoordinatesmotorvoluntarymovementsin-volvingseveralsimultaneousrhythms͑LlinásandWelsh,1993͒.Hereanexampleofhowsubthresholdoscillationscoordinatedifferentincommensuraterhythmsinacom-mensuratefashionisshown.IntheIO,neuronsareelec-tricallycoupledtotheircloseneighbors.Theiractivityischaracterizedbysubthresholdoscillationsandspikingactivity͑seeFig.50͒.ThecooperativedynamicsoftheIOundertheactionofseveralincommensurateinputshasbeenmodeledbyVarona,Aguirre,etal.͑2002͒.Theresultsoftheselarge-networksimulationsshowthattheelectricalcouplingofIOneuronsproducesquasisyn-chronizedsubthresholdoscillations.Becausespikingac-tivitycanhappenonlyontopoftheseoscillations,in-commensurateinputscanproduceregionswithdifferentcommensuratespikingfrequencies.Severalspikingfre-quenciesareabletocoexistinthesenetworks.Theco-existenceofdifferentrhythmsisrelatedtothedifferentclusterizationofthespatiotemporalpatterns.

Anotherimportantquestionrelatedtocoordinationofseveralsequentialbehaviorsconcernsthedynamicalprinciplesthatcanbeabasisforfastneuronalplanningandreactiontoachangingenvironment.Onemight

Rabinovichetal.:Dynamicalprinciplesinneuroscience

1257

thinkthattheWLCprinciplecanbegeneralizedinor-dertoorganizethesequentialswitchingaccordingto͑i͒thelearnedskilland͑ii͒thedynamicalsensoryinputs.ThecorrespondingmathematicalmodelmightbesimilartoEqs.͑26͒–͑29͒togetherwithalearningrulesimilartoEq.͑25͒.StimuliSlchangesequentiallyandthetimingofeachstep͑thetimethatthesystemspendsmovingfromthevicinityofonesaddletothevicinityofthenextone;seeFig.51͒shouldbecoordinatedwiththetimeofchangeintheenvironment.Inrecurrentnetworks,asaresultoflearning,thestimuluscangosequentiallytothespecificgoalofanoptimalheteroclinicsequenceamongmanysuchsequencesthatexistinthephasespaceofthemodel.Whatisimportantisthatatthesametime,i.e.,inparallelwiththechoosingoftherestofthemotorplan,thealreadyexistingpartofthemotoractivityplanisexecuted.

Thetwoideasjustdiscussedcanbeappliedtothecerebellarcircuit,whichisanexampleofacomplexre-currentnetwork͑seeFig.52͒.Togiveanimpressionofthecomplexityofthecerebellarcortexwenotethatitisorganizedintothreelayers:themolecularlayer,thePurkinjecelllayer,andthegranulecelllayer.Onlytwosignificantinputsreachthecerebellarcortex:mossyfi-bersandclimbingfibers.Mossyfibersareinthemajority͑mation4:1͒andofcarrymultipleawealthmodalities.ofsensoryTheyandmakecontextualspecializedinfor-excitatorysynapsesinstructurescalled“glomeruli”withthedendritesofnumerousgranulecells.Granulecellaxonsformparallelfibersthatruntransverselyinthemolecularlayer,makingexcitatorysynapseswithPurkinjecells.EachPurkinjecellreceivesϷ150000syn-apses.Thesesynapsesarethoughttobemajorstoragesitesfortheinformationacquiredduringmotorlearning.ThePurkinjecellaxonprovidestheonlyoutputfromthecerebellarcortex.Thisisviathedeepcerebellarnu-clei.EachPurkinjecellreceivesjustoneclimbingfiberinputfromtheinferiorolive,butthisinputisverypow-erfulbecauseitinvolvesseveralhundredsofsynapticcontacts.Theclimbingfiberisthoughttohavearoleinteachinginthecerebellum.TheGolgicellisexcitedbymossyfibersandgranulecellsandexercisesaninhibi-toryfeedbackcontrolupongranulecellactivity.StellateandbasketcellsareexcitedbyparallelfibersinordertoprovidefeedforwardinhibitiontoPurkinjecells.

Thehugenumberofinhibitoryneuronsandthearchi-tectureofthecerebellarnetworks͑deZeeuwetal.,1998͒supportthegeneralizedWLCmechanismforco-ordination.AwidelydiscussedhypothesisisthatthespecificcircuitryoftheIO,cerebellarcortex,anddeepcerebellarnucleicalledtheslowloop͑seeFig.52͒canserveasadynamicalworkingmemoryorasaneuronalclockwithϷ100-mscycletimewhichwouldmakeiteasytoconnectittobehavioraltimescales͑KistleranddeZeeuw,2002;Melamedetal.,2004͒.

Temporalcoordinationand,inparticular,synchroniza-tionofneuralactivityisarobustphenomenon,fre-quentlyobservedacrosspopulationsofneuronswithdi-versemembranepropertiesandintrinsicfrequencies.Inthelightofsuchdiversitythequestionofhowprecise

Rev.Mod.Phys.,Vol.78,No.4,October–December2006

FIG.51.IllustrationofthelearnedsequentialswitchinginarecurrentnetworkwithWLCdynamics:Thinlines,possiblelearnedsequences;thickline,sequentialswitchingchosenon-linebythedynamicalstimulus.

synchronizationcanbeachievedinheterogeneousnet-worksiscritical.Severalmechanismshavebeensug-gestedandmanyofthemrequireanunreasonablyhighdegreeofnetworkhomogeneityorverystrongconnec-tivitytoachievecoherentneuralactivity.Asdiscussedabove͑Sec.II.A.4͒,inanetworkoftwosynapticallycoupledneuronsSTDPatthesynapseleadstothedy-namicalself-adaptationofthesynapticconductancetoavaluethatisoptimalfortheentrainmentofthepostsyn-apticneuron.ItisinterestingtonotethatjustafewSTDPsynapsesareabletomaketheentrainmentofa

FIG.52.Aschematicrepresentationofthemammaliancer-ebellarcircuit.Arrowsindicatethedirectionoftransmissionacrosseachsynapse.Sourcesofmossyfibers:Ba,basketcell;BR,brushcell;cf,climbingfiber;CN,cerebellarnuclei;Go,Golgicell;IO,inferiorolive;mf,mossyfiber;pf,parallelfiber;PN,pontinenuclei;sbandsmb,spinyandsmoothbranchesofPcelldendrites,respectively;PC,Purkinjecell;bat,basketcellterminal;pcc,Pcellcollateral;no,nucleo-olivarypathway;nc,collateralofnuclearrelaycell.ModifiedfromVoogdandGlickstein,1998.

1258

Rabinovichetal.:Dynamicalprinciplesinneuroscience

heterogeneousnetworkofelectricallycoupledneuronsmoreeffective͑ZhigulinandRabinovich,2004͒.IthasbeenshownthatsuchanetworkoscillateswithamuchhigherdegreeofcoherencethanwhenitissubjecttostimulationthatismediatedbySTDPsynapsesascom-paredwithstimulationthroughstaticsynapses.Theob-servedphenomenondependsonthenumberofstimu-latedneurons,thestrengthofelectricalcoupling,andthedegreeofheterogeneity.Inreality,long-termplastic-itydependsnotonlyonspiketiming͑STDP͒butalsoonthefiringrateandthecooperativityamongdifferentneuronalinputs͑Sjöströmetal.,2001͒.Thismakesmod-elingself-organizationandlearningmorechallenging.Realbehaviorinnonstationaryorcomplexenviron-ments,asalreadydiscussed,requiresswitchingbetweendifferentsequentialactivities.Janckeetal.͑2000͒haveidentifieddistributedregionsindifferentpartsofthecortexthatareinvolvedintheswitchingamongsequen-tialmovements.Itisimportantfordynamicalmodelingthatthisdifferentialpatternofactivationisnotseenforsimplerepetitivemovements.Thussuchmovementsaretoosimpletoevokeadditionalactivation.Thismeansthatadynamicalmodelthataimstodescribethese-quentialbehavioringeneralhastocorrectlydescribetheswitchingfromalow-dimensionalsubspacetoahigh-dimensionalstatespace,andviceversa.Therearenogeneralmethodsfordescribingmultidimensionaldis-sipativenonlinearsystemswithsuchtransientbutrepro-ducibledynamics.WethinkthattheWLCprinciplemightbethefirststepinthisdirection.

V.CONCLUSION

Physicists,mathematicians,andphysiologistsallagreethatanimportantattributeofanydynamicalmodelofCNSactivityisthatnotonlyshoulditbeabletofittheavailableanatomicalandphysiologicaldata,butitshouldalsobecapableofexplainingfunctionandpre-dictingbehavior.However,thewaysinwhichphysicistsandmathematicians,ononehand,andphysiologists,ontheotherhand,usemodelingarebasedontheirownexperienceandviewsandthusaredifferent.Inthisre-viewwetriedtobringthesedifferentviewpointsclosertogetherand,usingmanyexamplesfromthesensory,motor,andcentralnervoussystems,discussedjustafewprincipleslikereproducibility,adaptability,robustness,andsensitivity.

Letusreturntothequestionsformulatedatthebe-ginningofthereview:

•Whatcannonlineardynamicslearnfromneuro-science?•Whatcanneuroscience

learn

from

nonlinear

dynamics?

Afterreadingthisreview,wehopethereadercanjoinusinintegratingthekeymessagesinourpresentation.Perhapswemayofferourcompactformulation.

Addressingthefirstquestionofwhatnonlineardy-namicscanlearnfromneuroscience:

Rev.Mod.Phys.,Vol.78,No.4,October–December2006

•Themostimportantactivitiesofneuronalsystemsaretransientandcannotbeunderstoodbyanalyzingattractordynamicsalone.Theseneedtobeaug-mentedbyreliabledescriptionsofstimulus-dependenttransientmotionsinstatespaceasthiscomprisestheheartofmostneurobiologicalactivity.Nonetheless,becausethedynamicsofrealisticneu-ronalmodelsarestronglydissipative,theirstimulus-dependenttransientbehaviorisstronglyattractedtosomelow-dimensionalmanifoldsembeddedinthehigh-dimensionalstatespaceoftheneuralnetwork.Itisastrongstimulustononlineardynamicstode-velopatheoryofreasonablylow-dimensionaltran-sientactivityand,inparticular,toconsiderthelocalandglobalbifurcationsofsuchobjectsashomoclinicandheteroclinictrajectories.•Formanydynamicalproblemsofneuroscience,incontrasttotraditionaldynamicalapproaches,theini-tialconditionsdomattercrucially.Persistentneu-ronalactivity͑i.e.,dynamicalmemory͒,stimulus-dependenttransientcompetition,stimulus-dependenttransientsynchronization,andstimulus-dependentsynapticplasticityareallaspectsofthis.Clearly,addressingtheseimportantphenomenawillrequireanexpansioninourapproachestodynamicalsystems.Addressingthesecondquestionofwhatneurosciencecanlearnfromnonlineardynamics:

•Dynamicalmodelsconfirmthekeyroleofinhibitioninneuronalsystems.Thefunctionofinhibitionisnotjusttoorganizeabalancewithexcitationinordertostabilizeanetworkbutmuchmore:͑a͒inhibitorynetworkscangeneraterhythms,suchasreproducibleandadaptivemotorrhythmsinCPGs,orgammarhythmsinthebrain;͑b͒theyareresponsibleforthetransformationofanidentitysensorycodetoaspa-tiotemporalcodeimportantforbetterrecognitioninanacousticallyclutteredenvironment;and͑c͒thankstoinhibition,neuralsystemscanbeatthesametimeverysensitivetotheirinputandrobustagainstnoise.•Dynamicalchaosisnotjustafundamentalphenom-enonbutalsoimportantforthesurvivaloflivingor-ganisms.Neuronalsystemsmayusechaosfortheor-ganizationofnontrivialbehaviorsuchastheirregularhunting-swimmingofClioneandfortheor-ganizationofhigherbrainfunctions.

•Theimprovementinyield,stability,andlongevityofmultielectroderecordings,newimagingtechniques,combinedwithnewdataprocessingmethods,haveallowedneurophysiologiststodescribebrainactivi-tiesasthedynamicsofspatiotemporalpatternsinsomevirtualspace.Wethinkthisisabasisforbuild-ingabridgebetweentransientlarge-scalebrainac-tivityandanimalbehavior.

Andfinallyaswepursuetheinvestigationofdynami-calprinciplesinneuroscience,wehopethateventuallynottoseethesetwoquestionsapartfromoneanother

Rabinovichetal.:Dynamicalprinciplesinneuroscience

1259

butasanintegratedapproachtodeepandcomplexsci-entificproblems.

ACKNOWLEDGMENTS

WethankRamonHuertaandThomasNowotnyfortheirhelp,andRafaelLeviandValentinZhigulinforusefulcomments.ThisworkwassupportedbyNSFGrantNo.NSF/EIA-0130708,andGrantNo.PHY0414174;NIHGrantNo.1R01NS50945andGrantNo.NS40110;MECBFI2003-07276,andFundaciónBBVA.

GLOSSARY

AL

antennallobe,thefirstsiteofsensoryintegrationfromtheol-factoryreceptorsofinsects.AMPAreceptors

transmembranereceptorfortheneurotransmitterglutamatethatmediatesfastsynaptictransmission.

bumpsspatiallylocalizedregionsofhighneuralactivity.

CA1subsystemofthehippocampuswithaveryactiveroleingen-eralmemory.

carbacholchemicalthatinducesoscilla-tionsininvitropreparations.Clionemarinemolluskwhosenervoussystemisfrequentlyusedinneurophysiologystudies.CNScentralnervoussystem.

CPG

centralpatterngenerator,asmallneuralcircuitthatcanproducestereotypedrhythmicoutputswithoutrhythmicsen-soryorcentralinput.

depolarization

anychangeintheneuronmem-branepotentialthatmakesitmorepositivethanwhenthecellisinitsrestingstate.

dynamicclamp

acomputersetuptoinsertvir-tualconductancesintoaneuralmembranetypicallyusedtoaddsynapticinputtoacellbycalculatingtheresponsecur-renttoaspecificpresynapticin-put.

GABA

neurotransmitteroftypicallyinhibitorysynapses;theycanbemediatedbyfastGABA͑A͒orslowGABA͑B͒receptors.

heteroclinicloopaclosedchainofheteroclinictrajectories.

heteroclinictrajectory

trajectorythatliessimulta-neouslyonthestablemanifoldofonesaddlepoint͑orlimitcycle͒andtheunstablemani-foldofanothersaddle͑orlimitcycle͒connectingthem.

Rev.Mod.Phys.,Vol.78,No.4,October–December2006

HH

Hodgkin-Huxleyneuronmodel.

HVChighvocalcenterinthebrainof

songbirds.

hyperpolarizationanychangeintheneuronmem-branepotentialthatmakesit

morenegativethanwhenthecellisinitsrestingstate.

interneuronsneuronswhoseaxonsremain

withinaparticularbrainregionascontrastedwithprojectionneurons,whichhaveaxonspro-jectingtootherbrainregions,orwithmotoneurons,whichin-nervatemuscles.

IOinferiorolive,aneuralsystem

thatisaninputtothecerebel-larcortexpresumablyinvolvedinmotorcoordination.

KCsKenyoncells,interneuronsof

themushroombodyofinsects.

Kolmogorov-Sinaiameasureofthedegreeofpre-entropydictabilityoffurtherstatesvis-itedbyachaotictrajectory

startedwithinasmallregioninastatespace.

LPlateralpyloricneuronofthe

crustaceanstomatogastricCPG.

LTDlong-termdepression,activity-dependentdecreaseofsynaptic

efficacytransmission.

LTMlong-termmemory.LTPlong-termpotentiation,

activity-dependentreinforce-mentofsynapticefficacytrans-mission.

Lyapunovexponents␭jtherateofexponentialdiver-gencefromperturbedinitialconditionsinthejthdirectionofthestatespace.Fortrajecto-riesbelongingtoastrangeat-tractorthespectrum␭pendentofinitialconditionsjisinde-andcharacterizesthestablechaoticbehavior.

MCsmicrocircuits;circuitscom-posedofasmallnumberof

neuronsthatperformspecificoperationaltasks.

mushroombodylobedsubsystemoftheinsect

braininvolvedinclassification,learning,andmemoryofodors.

mutualinformationameasureoftheindependence

oftwosignalsXandY,i.e.,theinformationofXthatissharedbyY.Inthediscretecase,ifthejointprobabilitydensityfunc-tionofXandYisp͑x,y͒=P͑X=x,Y=y͒,theprobability

1260

Rabinovichetal.:Dynamicalprinciplesinneuroscience

densityfunctionofXaloneisf͑x͒=P͑X=x͒,andtheprob-abilitydensityfunctionofYaloneisg͑y͒=P͑Y=y͒,thenthemutualinformationofXandYisgivenbyI͑X,Y͒=͚neuromodulators

asubstancex,yp͑x,y͒logother2͓p͑xthan,y͒/f͑ax͒neu-g͑y͔͒.rotransmitter,releasedbyneu-ronsthatcanaffecttheintrinsicandsynapticdynamicsofotherneurons.

neurotransmitterschemicalsthatareusedtorelayatthesynapsesthesignalsbe-tweenneurons.

pacemakerneuronorcircuitthathasen-dogenousrhythmicactivity.PD

pyloricdilatorneuronofthecrustaceanCPG.

phase͑lockingsynchronization͒theshiponsetofacertaincoupledbetweenself-sustainedthephasesrelation-oscilla-oftors.

placecell

atypeofneuronfoundinthehippocampusthatfiresstronglywhenananimalisinaspecificlocationinanenvironment.plasticitychangesthatoccurintheorga-nizationofsynapticconnec-tionsorintracellulardynamics.PN

projectionorprincipalneurons.Purkinjecellmaincelltypeofthecerebellarcortex.

RApremotornucleusofthesong-birdbrain.

receptor

aproteinonthecellmembranethatbindstoaneurotransmit-ter,neuromodulator,orothersubstance,andinitiatesthecel-lularresponsetotheligand.receptorneuronsensoryneuron.

SHSstableheteroclinicsequence.SNsensoryneuron.

SSMsequentialspatialmemory.

statocyst

balanceorganinsomeinverte-bratesthatconsistsofasphere-likestructurecontainingamin-eralizedmass͑statolith͒andseveralsensoryneuronsalsocalledstatocystreceptors.

STDP

spike-timing-dependentplastic-ity.

STM

short-termmemory.

structuralstability

conditioninwhichsmallchangesintheparametersdonotchangethetopologyofthephaseportraitinthestatespace.

synapse

specializedjunctionthroughwhichneuronssignaltoonean-

Rev.Mod.Phys.,Vol.78,No.4,October–December2006

other.Thereareatleastthreedifferenttypesofsynapses:ex-citatoryandinhibitorychemi-calsynapsesandelectricalsyn-apsesorgapjunctions.

synfirechain

propagationofsynchronousspikingactivityinasequenceoflayersofneuronsbelongingtoafeedforwardnetwork.WLC

winnerless-competitionprin-cipleforthenonautonomoustransientdynamicsofneuralsystemsreceivingexternalstimuliandexhibitingsequen-tialswitchingamongtemporal“winners.”

REFERENCES

Abarbanel,H.,R.Huerta,andM.I.Rabinovich,2002,Proc.Natl.Acad.Sci.U.S.A.99,10132.

Abarbanel,H.D.I.,1997,AnalysisofObservedChaoticData͑Springer,NewYork͒.

Abarbanel,H.D.I.,R.Huerta,M.I.Rabinovich,N.F.Rulkov,P.F.Rowat,andA.I.Selverston,1996,NeuralCom-put.8,1567.

Abarbanel,H.D.I.,M.Rabinovich,andM.Sushchik,1993,IntroductiontoNonlinearDynamicsforPhysicists͑WorldSci-entific,Singapore͒.

Abeles,M.,1991,Corticonics:NeuralCircuitsoftheCerebralCortex͑CambridgeUniversityPress,Cambridge,England͒.Abeles,M.,H.Bergman,E.Margalit,andE.Vaadia,1993,J.Neurophysiol.79,1629.

Adrian,E.D.,andY.Zotterman,1926,J.Physiol.͑London͒61,151.

Afraimovich,V.,V.Zhigulin,andM.Rabinovich,2004,Chaos14,1123.

Afraimovich,V.S.,M.I.Rabinovich,andP.Varona,2004,Int.J.BifurcationChaosAppl.Sci.Eng.14,1195.Aihara,K.,2002,Proc.IEEE90,919.Amari,S.,1977,Biol.Cybern.27,77.

Amit,D.,andN.Brunel,1997a,Cereb.Cortex7,237.Amit,D.J.,andN.Brunel,1997b,Cereb.Cortex7,237.

Andronov,A.,1933,inTheFirstAll-UnionConferenceonAuto-oscillations͑GTTI,MoscowLeningrad͒,pp.32–71.Andronov,A.,A.Vitt,andS.Khaikin,1949,TheoryofOscil-lations͑PrincetonUniversityPress,Princeton,NJ͒.

Andronov,A.A.,andL.Pontryagin,1937,Dokl.Akad.NaukSSSR14,247.

Arbib,M.A.,P.Érdi,andJ.Szentágothai,1997,NeuralOrga-nization:Structure,Function,andDynamics͑BradfordBook/MIT,Cambridge,MA͒.

Arieli,A.,A.Sterkin,A.Grinvald,andA.Aertsen,1996,Sci-ence273,1868.

Arnold,V.,V.Afrajmovich,Y.Ilyashenko,L.Shilnikov,andN.Kazarinoff,1999,BifurcationTheoryandCatastropheTheory͑Springer,NewYork͒.

Ashby,W.R.,1960,DesignforaBrain,2nded.͑Wiley,NewYork͒.

Ashwin,P.,M.Field,A.Rucklidge,andR.Sturman,2003,Chaos13,973.

Aswin,P.,andM.Timme,2005,Nature͑London͒436,36.

Rabinovichetal.:Dynamicalprinciplesinneuroscience

1261

Aviel,Y.,C.Mehring,M.Abeles,andD.Horn,2003,NeuralComput.15,1321.

Baird,B.,andF.Eeckman,1993,inAssociativeNeuralMemo-ries:TheoryandImplementation,editedbyM.H.Hassoun͑OxfordUniversityPress,NewYork͒,p.135.

Bao,W.,andJ.-Y.Wu,2003,J.Neurophysiol.90,333.Barlow,H.B.,1972,Perception1,371.

Bartos,M.,Y.Manor,F.Nadim,E.Marder,andM.P.Nus-baum,1999,J.Neurosci.19,6650.

Bartos,M.,andM.P.Nusbaum,1997,J.Neurosci.17,2247.Bi,G.,2002,Biol.Cybern.87,319.

Bi,G.,andM.Poo,1998,J.Neurosci.18,104.

Bi,G.,andM.Poo,2001,Annu.Rev.Neurosci.24,139.

Bliss,T.V.,andT.Lomo,1973,J.Physiol.͑London͒232,331.Block,H.D.,1962,Rev.Mod.Phys.34,123.

Bondarenko,V.,G.S.Cymbalyuk,G.Patel,S.Deweerth,andR.Calabrese,2003,Neurocomputing52-,691.

Borda,J.C.,1781,Memoiresurleselectionsauscrutin͑His-toiredel’AcademieRoyaledesSciences,Paris͒.Bressloff,P.,2002,Phys.Rev.Lett.,088101.

Bressloff,P.,andJ.D.Cowan,2002,NeuralComput.14,493.Bressloff,P.,J.Cowan,M.Golubitsky,P.Thomas,andM.Weiner,2001,Philos.Trans.R.Soc.London,Ser.B356,299.Brody,C.,andJ.Hopfield,2003,Neuron37,843.Brunel,N.,2003,Cereb.Cortex13,1151.

Brunel,N.,andX.Wang,2001,J.Comput.Neurosci.11,63.Busse,F.,andK.Heikes,1980,Science208,173.

Calabrese,R.,F.Nadim,andO.Olsen,1995,J.Neurobiol.27,390.

Canavier,C.,D.Baxter,J.Clark,andJ.Byrne,1993,J.Neu-rophysiol.69,2252.

Canavier,C.,J.Clark,andJ.Byrne,1990,Biophys.J.57,1245.Casado,J.,2003,Phys.Rev.Lett.91,208102.

Castelo-Branco,M.,R.Goebel,S.Neuenschwander,andW.Singer,2000,Nature͑London͒405,685.

Cateau,H.,andT.Fukai,2001,NeuralNetworks14,675.Cazelles,B.,M.Courbage,andM.I.Rabinovich,2001,Euro-phys.Lett.56,504.

Chay,T.,1985,PhysicaD16,223.

Chechik,G.,2003,NeuralComput.15,1481.

Chklovskii,D.B.,B.W.Mel,andK.Svoboda,2004,Nature͑London͒431,78.

Chow,C.,andN.Kopell,2000,NeuralComput.12,13.Cohen,A.,P.Holmes,andR.Rand,1982,J.Math.Biol.13,345.

Cohen,M.A.,andS.Grossberg,1983,IEEETrans.Syst.ManCybern.13,815.

Connors,B.,2002,Nature͑London͒420,133.

Connors,B.W.,andY.Amitai,1997,Neuron18,347.

Contreras,D.,A.Destexhe,T.Sejnowski,andM.Steriade,1996,Science274,771.

Coombes,S.,andA.Osbaldestin,2000,Phys.Rev.E62,4057.Cossart,R.,D.Aronov,andR.Yuste,2003,Nature͑London͒423,283.

Cowan,N.,2001,Behav.BrainSci.24,87.Crawford,J.,1991,Rev.Mod.Phys.63,991.

Crevier,D.,andM.Meister,1998,J.Neurophysiol.79,1869.Cross,M.,andP.Hohenberg,1993,Rev.Mod.Phys.65,851.Curts,C.E.,andM.D’Esposito,2003,TrendsCogn.Sci.7,415.

Cymbalyuk,G.,O.Gaudry,M.Masino,andR.Calabrese,2002,J.Neurosci.22,10580.

deCharms,R.,andM.Merzenich,1996,Nature͑London͒361,

Rev.Mod.Phys.,Vol.78,No.4,October–December2006

610.

deCharms,R.C.,1998,Proc.Natl.Acad.Sci.U.S.A.95,15166.deNó,R.L.,1938,J.Neurophysiol.1,207.

deRytervanSteveninck,R.,G.Lewen,S.Strong,R.Koberle,andW.Bialek,1997,Science275,1805.

Desmedt,J.,andC.Tomberg,1994,Neurosci.Lett.168,126.deZeeuw,C.I.,J.I.Simpson,C.C.Hoogenaraad,N.Galjart,S.K.E.Koekkoek,andT.J.H.Ruigrok,1998,TrendsNeu-rosci.21,391.

Diesmann,M.,M.-O.Gewaltig,andA.Aertsen,1999,Nature͑London͒402,529.

Diwadkar,V.A.,P.A.Carpenter,andM.Just,2000,Neuroim-age11,85.

Doboli,S.,A.A.Minai,andP.Best,2000,NeuralComput.12,1009.

Dragoi,G.,K.Harris,andG.Buzsaki,2003,Neuron39,843.Du,X.,B.K.Ghosh,andP.Ulinski,2005,IEEETrans.Biomed.Eng.52,566.

Duda,R.,E.Hart,andD.Stork,2001,PatternClassification͑Wiley,NewYork͒.

Durstewitz,D.,J.Seamans,andT.Sejnowski,2000,Nat.Neu-rosci.3,1184.

Egorov,A.,B.Hamann,E.Fransen,M.Hasselmo,andA.Alonso,2002,Nature͑London͒420,173.

Eguia,M.C.,M.I.Rabinovich,andH.D.I.Abarbanel,2000,Phys.Rev.E62,7111.

Elhilali,M.,J.Fritz,D.Klein,J.Z.Simon,andS.Shamma,2004,J.Neurosci.24,1159.

Elowitz,M.,andS.Leibler,2000,Nature͑London͒403,335.Elson,R.C.,A.I.Selverston,H.D.I.Abarbanel,andM.I.Rabinovich,2002,J.Neurophysiol.88,1166.

Elson,R.C.,A.I.Selverston,R.Huerta,N.F.Rulkov,M.I.Rabinovich,andH.D.I.Abarbanel,1998,Phys.Rev.Lett.81,5692.

Engel,A.K.,P.Fries,andW.Singer,2001,Nat.Rev.Neurosci.2,704.

Ermentrout,B.,1992,NeuralNetworks5,415.

Ermentrout,G.,andJ.Cowan,1979,Biol.Cybern.34,137.Ermentrout,G.B.,1998,Rep.Prog.Phys.61,353.

Ermentrout,G.B.,andN.Kopell,1984,SIAMJ.Math.Anal.15,215.

Fano,R.M.,1961,Ed.,TransmissionofInformation:AStatis-ticalTheoryofCommunications͑MIT,NewYork͒.

Fatt,P.,andB.Katz,1952,J.Physiol.͑London͒117,109.

Fell,J.,G.Fernandez,P.Klaver,C.Elger,andP.Fries,2003,BrainRes.Rev.42,265.

Feudel,U.,A.Neiman,X.Pei,W.Wojtenek,H.Braun,M.Huber,andF.Moss,2000,Chaos10,231.FitzHugh,R.,1961,Biophys.J.1,445.

Fitzpatrick,D.C.,R.Batra,T.R.Sanford,andS.Kuwada,1997,Nature͑London͒388,871.

Foss,J.,A.Longtin,B.Mensour,andJ.Milton,1996,Phys.Rev.Lett.76,708.

Freeman,W.,1972,ProgressinTheoreticalBiology͑Academic,NewYork͒,Vol.2.

Freeman,W.,2000,Neurodynamics:AnExplorationinMeso-scopicBrainDynamics͑Springer,NewYork͒.

Fuhrmann,G.,I.Segev,H.Markram,andM.Tsodyks,2002,J.Neurophysiol.87,140.

Fukai,T.,andS.Tanaka,1997,NeuralComput.9,77.

Galan,R.F.,S.Sachse,C.G.Galizia,andA.V.M.Herz,2004,NeuralComput.16,999.

1262

Rabinovichetal.:Dynamicalprinciplesinneuroscience

Gallager,R.G.,1968,Ed.,InformationTheoryandReliableCommunication͑Wiley,NewYork͒.

Garcia-Sanchez,M.,andR.Huerta,2003,J.Comput.Neuro-sci.15,5.

Gavrilov,N.,andA.Shilnikov,2000,Am.Math.Soc.Transl.200,99.

Georgopoulos,A.P.,A.B.Schwartz,andR.E.Kettner,1986,Science233,1416.

Gerstner,W.,andW.Kistler,2002,SpikingNeuronModels͑CambridgeUniversityPress,Cambridge,England͒.Getting,P.,19,Annu.Rev.Neurosci.12,185.

Gewaltig,M.-O.,M.Diesmann,andA.Aertsen,2001,NeuralNetworks14,657.

Ghose,G.,andJ.Maunsell,1999,Neuron24,79.

Glass,L.,1995,TheHandbookofBrainTheoryandNeuralNetworks͑MIT,Cambridge͒,pp.186–1.Goldman-Rakic,P.,1995,Neuron14,477.

Goroff,D.,1992,Ed.,NewMethodsofCelestialMechanics͑AIP,NewYork͒.

Gray,C.,P.Konig,A.Engel,andW.Singer,19,Nature͑London͒338,334.

Grillner,S.,2003,Nat.Rev.Neurosci.4,573.Grossberg,S.,1973,Stud.Appl.Math.52,213.

Gu,H.,M.Yang,L.Li,Z.Liu,andW.Ren,2003,Phys.Lett.A319,.

Guckenheimer,J.,S.Gueron,andR.Harris-Warrick,1993,Philos.Trans.R.Soc.London,Ser.B341,345.

Guckenheimer,J.,andP.Holmes,1986,NonlinearOscillations,DynamicalSystems,andBifurcationsofVectorFields͑Springer,NewYork͒.

Guckenheimer,J.,andP.Holmes,1988,Math.Proc.Cam-bridgePhilos.Soc.103,1.

Hass,J.,T.Nowotny,andH.D.I.Abarbanel,2006,J.Neuro-physiol.,doi:10.1152/jn.00551.2006.

Hahnloser,R.H.,A.A.Kozhevnikov,andM.S.Fee,2002,Nature͑London͒419,65.

Hamilton,K.,andJ.Kauer,1985,BrainRes.338,181.

Hatsopoulos,N.,L.Paninski,andJ.Donoghue,2003,Exp.BrainRes.149,478.

Hebb,R.,1949,TheOrganizationofBehavior͑Wiley,NewYork͒.

Hindmarsh,J.L.,andR.M.Rose,1984,Proc.R.Soc.London,Ser.B221,87.

Hodgkin,A.L.,andA.F.Huxley,1952,J.Physiol.͑London͒117,500.

Hopfield,J.,andC.Brody,2001,Proc.Natl.Acad.Sci.U.S.A.98,1282.

Hopfield,J.,andC.Brody,2004,Proc.Natl.Acad.Sci.U.S.A.101,337.

Hopfield,J.J.,1982,Proc.Natl.Acad.Sci.U.S.A.79,25.Huang,X.,W.C.Troy,Q.Yang,H.Ma,C.R.Laing,S.J.Schiff,andJ.-Y.Wu,2004,J.Neurosci.24,97.

Huerta,R.,andM.I.Rabinovich,2004,Phys.Rev.Lett.93,238104.

Huerta,R.,M.Rabinovich,H.H.D.I.Abarbanel,andM.Bazhenov,1997,Phys.Rev.E55,R2108.

Huerta,R.,P.Varona,M.Rabinovich,andH.Abarbanel,2001,Biol.Cybern.84,L1.

Ichinohe,N.,F.Fujiyama,T.Kaneko,andK.S.Rockland,2003,J.Neurosci.23,1372.

Ikegaya,Y.,G.Aaron,R.Cossart,D.Aronov,I.Lampl,D.Ferster,andR.Yuste,2004,Science304,559.

Rev.Mod.Phys.,Vol.78,No.4,October–December2006

Ince,D.,1992,Ed.,MechanicalIntelligence:CollectedWorksofA.M.Turing͑North-Holland,Amsterdam͒.Ito,M.,1982,Annu.Rev.Neurosci.5,275.

Izhikevich,E.,2004,IEEETrans.NeuralNetw.15,1063.

Izhikevich,E.,2006,DynamicalSystemsinNeuroscience:TheGeometryofExcitabilityandBursting͑MIT,Cambridge,MA͒.

Jackson,A.,V.Gee,S.Baker,andR.Lemon,2003,Neuron38,115.

Jancke,L.,M.Himmelbach,N.Shah,andK.Zilles,2000,Neu-roimage12,528.

Jefferys,J.,R.Traub,andM.Whittington,1996,TrendsNeu-rosci.19,202.

Jin,D.Z.,2002,Phys.Rev.Lett.,208102.

Jones,S.R.,B.Mulloney,T.J.Kaper,andN.Kopell,2003,J.Neurosci.60,3457.

Kandel,E.R.,J.H.Schwartz,andT.M.Jessell,2000,Prin-ciplesofNeuralScience͑McGraw-Hill,NewYork͒.

Kaplan,D.,andL.Glass,1995,UnderstandingNonlinearDy-namics͑Springer,NewYork͒.

Katz,B.,1969,TheReleaseofNeurotransmitterSubstances͑Thomas,Springfield,IL͒.Kay,L.,2003,Chaos13,1057.

Kepecs,A.,andJ.Lisman,2003,NetworkComput.NeuralSyst.14,103.

Kim,U.,T.Bal,andD.A.McCormick,1995,J.Neurophysiol.74,1301.

Kimpo,R.R.,F.E.Theunissen,andA.J.Doupe,2003,J.Neurosci.23,5730.

Kistler,W.M.,andC.I.deZeeuw,2002,NeuralComput.14,2597.

Koch,C.,1999,BiophysicsofComputation͑OxfordUniversityPress,NewYork͒.

Konishi,M.,1990,ColdSpringHarborSymp.Quant.Biol.55,575.

Korn,H.,andP.Faure,2003,CR.SeancesSoc.Biol.Fil326,787.

Kozloski,J.,F.Hamzei-Sichani,andR.Yuste,2001,Science293,868.

Krupa,P.,1997,J.NonlinearSci.7,129.

Kuramoto,Y.,1984,ChemicalOscillations,Waves,andTurbu-lence͑Springer,NewYork͒.

Kuznetsov,Y.,1998,ElementsofAppliedBifurcationTheory,2nded.͑Springer,NewYork͒.

Lai,Y.C.,M.A.F.Harrison,M.G.Frei,andI.Osorio,2003,Phys.Rev.Lett.91,068102.

Laing,C.R.,W.C.Troy,B.Gutkin,andG.B.Ermentrout,2002,SIAMJ.Appl.Math.63,62.

Landau,L.D.,andE.M.Lifshitz,1987,FluidMechanics͑Per-gamon,NewYork͒.

Lapicque,L.,1907,J.Physiol.Pathol.Gen.9,620.

Lashley,K.,1960,inTheNeuropsychologyofLashley,editedbyF.A.Beach,D.O.Hebb,C.T.Morgan,andH.W.Nissen͑McGraw-Hill,NewYork͒,pp.506–521.

Latorre,R.,F.B.Rodriquez,andP.Varona,2006,Biol.Cy-bern.95,169.

Lau,P.,andG.Bi,2005,Proc.Natl.Acad.Sci.U.S.A.102,10333.

Laurent,G.,1996,TrendsNeurosci.19,4.

Laurent,G.,andH.Davidowitz,1994,Science265,1872.

Laurent,G.,M.Stopfer,R.W.Friedrich,M.I.Rabinovich,andH.D.I.Abarbanel,2001,Annu.Rev.Neurosci.24,263.Leitch,B.,andG.Laurent,1996,J.Comp.Neurol.372,487.

Rabinovichetal.:Dynamicalprinciplesinneuroscience

1263

LeMasson,G.,S.R.-L.Masson,D.Debay,andT.Bal,2002,Nature͑London͒417,8.

Lestienne,R.,2001,Prog.Neurobiol.͑Oxford͒65,5.

Levi,R.,P.Varona,Y.I.Arshavsky,M.I.Rabinovich,andA.I.Selverston,2004,J.Neurophysiol.91,336.

Levi,R.,P.Varona,Y.I.Arshavsky,M.I.Rabinovich,andA.I.Selverston,2005,J.Neurosci.25,9807.

Lewis,T.,andJ.Rinzel,2003,J.Comput.Neurosci.14,283.Leznik,E.,andR.Llinas,2002,Ann.N.Y.Acad.Sci.978,529.Lin,L.,R.Osan,S.Shoham,W.Jin,W.Zuo,andJ.Tsien,2005,Proc.Natl.Acad.Sci.U.S.A.102,6125.

Lindner,B.,J.Garca-Ojalvo,A.Neiman,andL.Schimansky-Geier,2004,Phys.Rep.392,2004.

Llinás,R.,andJ.P.Welsh.,1993,Curr.Opin.Neurobiol.3,958.Loebel,A.,andM.Tsodyks,2002,J.Comput.Neurosci.13,111.

Lotka,A.J.,1925,ElementsofPhysicalBiology͑Williams&WilkinsCo.,Baltimore͒.

Maass,W.,T.Natschläger,andH.Markram,2002,NeuralComput.14,2531.

Machens,C.,T.Gollisch,O.Kolesnikova,andA.Herz,2005,Neuron47,447.

Machens,C.,R.Romo,andC.Brody,2005,Science307,1121.Maeda,Y.,andH.Makino,2000,BioSystems58,93.

Maeda,Y.,K.Pakdaman,T.Nomura,S.Doi,andS.Sato,1998,Biol.Cybern.78,265.

Mainen,Z.,andT.Sejnowski,1995,Science268,1503.Malenka,R.C.,andR.A.Nicoll,1999,Science285,1870.Malkov,V.,M.Rabinovich,andM.M.Sushchik,1996,Pro-ceedingsofNizhnyNovgorodUniversity,editedbyV.D.Shalfeev͑NizhnyNovgorovUniverity,NizhnyNovgorod͒,p.72.

Mandelblat,Y.,Y.Etzion,Y.Grossman,andD.Golomb,2001,J.Comput.Neurosci.11,43.

Maravall,M.,I.Y.Y.Koh,W.Lindquist,andK.Svoboda,2004,Cereb.Cortex10,1093.

Marder,E.,andR.L.Calabrese,1996,Physiol.Rev.76,687.Marder,E.,L.A.G.Turrigiano,Z.Liu,andJ.Golowasch,1996,Proc.Natl.Acad.Sci.U.S.A.93,13481.

Martin,S.J.,P.D.Grimwood,andR.G.M.Morris,2000,Annu.Rev.Neurosci.23,9.

Mazor,O.,andG.Laurent,2005,Neuron48,661.

McClurkin,J.W.,L.M.Optican,B.J.Richmond,andT.J.Gawne,1991,Science253,675.

McCormick,D.,Y.Shu,A.Hasenstaub,M.Sanches-Vives,M.Badoual,andT.Bal,2003,Cereb.Cortex13,1219.

McCulloch,W.S.,andW.Pitts,1943,Bull.Math.Biophys.5,115.

Mehta,M.R.,A.K.Lee,andM.A.Wilson,2002,Nature͑London͒417,741.

Melamed,O.,W.Gerstner,W.Maas,M.Tsodyks,andH.Markram,2004,TrendsNeurosci.27,11.

Mooney,R.,andJ.Prather,2005,J.Neurosci.25,1952.Morris,C.,andH.Lecar,1981,Biophys.J.35,193.Nádasdy,Z.,2000,J.Physiol.͑Paris͒94,505.

Nagumo,J.,S.Arimoto,andS.Yoshizawa,1962,Proc.IRE50,2061.

Nakahara,H.,andK.Doya,1998,NeuralComput.10,113.Nase,G.,W.Singer,H.Monyer,andA.K.Engel,2003,J.Neurophysiol.90,1115.

Nenadic,Z.,B.K.Ghosh,andP.Ulinski,2002,IEEETrans.Biomed.Eng.49,753.

Nicholls,J.G.,A.R.Martin,andB.G.Wallace,1992,From

Rev.Mod.Phys.,Vol.78,No.4,October–December2006

NeurontoBrain:ACellularandMolecularApproachtotheFunctionoftheNervousSystem͑SinauerAssociates,Sunder-land,MA͒.

Nowotny,T.,2003,URLhttp://inls.ucsd.edu/$\\sim$nowotny/dynclamp.html

Nowotny,T.,andR.Huerta,2003,Biol.Cybern.,237.

Nowotny,T.,R.Huerta,H.Abarbanel,andM.Rabinovich,2005,Biol.Cybern.93,436.

Nowotny,T.,M.I.Rabinovich,R.Huerta,andH.D.I.Abar-banel,2003,J.Comput.Neurosci.15,271.

Nowotny,T.,V.P.Zhigulin,A.I.Selverston,H.D.I.Abar-banel,andM.I.Rabinovich,2003,J.Neurosci.23,9776.Nystrom,L.E.,T.S.Braver,F.W.Sabb,M.R.Delgado,D.C.Noll,andJ.D.Cohen,2000,Neuroimage11,424.

O’Keefe,J.,andJ.Dostrovsky,1971,BrainRes.34,171.

O’Reilly,R.,R.Busby,andR.Soto,2003,TheUnityofConsciousness—Binding,IntegrationandDissociation͑Ox-fordUniversityPress,Oxford͒,Chap.3,p.2.5.

Oscarsson,O.,1980,inTheInferiorOlivaryNucleus,editedbyJ.Courville,C.deMontigny,andY.Lamarre͑Raven,NewYork͒,pp.279–2.

Ott,E.,1993,ChaosinDynamicalSystems͑CambridgeUni-versityPress,Cambridge,England͒.

Panchin,Y.,Y.Arshavsky,T.Deliagina,L.Popova,andG.Orlovsky,1995,J.Neurophysiol.73,1924.

Panzeri,S.,S.Schultz,A.Treves,andE.Rolls,1999,Proc.R.Soc.London,Ser.B266,1001.

Perez-Orive,J.,O.Mazor,G.C.Turner,S.Cassenaer,R.I.Wilson,andG.Laurent,2002,Science297,359.

Persi,E.,D.Horn,V.Volman,R.Segev,andE.Ben-Jacob,2004,NeuralComput.16,2577.

Pikovsky,A.,M.Rosenblum,andJ.Kurths,2001,Synchroni-zation:AUniversalConceptinNonlinearSciences͑Cam-bridgeUniversityPress,Cambridge,England͒.

Pinto,R.,P.Varona,A.Volkovskii,A.Szücs,H.Abarbanel,andM.Rabinovich,2000,Phys.Rev.E62,24.

Poincaré,A.,1905,LeValeurdelaScience͑Flammarion,Paris͒.

Poincaré,H.,12,MéthodesNouvellsdelaMécaniqueCéleste͑Gauthier-Villars,Paris͒.

Postlethwaite,C.M.,andJ.H.P.Dawes,2005,Nonlinearity18,1477.

Pouget,A.,P.Dayan,andR.Zemel,2000,Nat.Rev.Neurosci.1,125.

Prinz,A.,L.F.Abbott,andE.Marder,2004a,TrendsNeuro-sci.27,218.

Prinz,A.A.,D.Bucher,andE.Marder,2004b,Nat.Neurosci.7,1345.

Rabinovich,M.,A.Ezersky,andP.Weidman,2000,TheDy-namicsofPatterns͑WorldScientific,Singapore͒.

Rabinovich,M.,R.Huerta,andP.Varona,2006,Phys.Rev.Lett.96,014101.

Rabinovich,M.,A.Volkovskii,P.Lecanda,R.Huerta,H.D.I.Abarbanel,andG.Laurent,2001,Phys.Rev.Lett.87,068102.Rabinovich,M.I.,andH.D.I.Abarbanel,1998,Neuroscience87,5.

Rabinovich,M.I.,andR.Huerta,2006,Phys.Rev.Lett.97,188103.

Ramirez,J.,A.Tryba,andF.Pena,2004,Curr.Opin.Neuro-biol.6,665.

Reinagel,P.,andR.C.Reid,2002,J.Neurosci.22,6837.Reyes,A.D.,2003,Nat.Neurosci.6,593.

Riesenhuber,M.,andT.Poggio,1999,Neuron24,87.

12

Rabinovichetal.:Dynamicalprinciplesinneuroscience

Rinzel,J.,D.Terman,X.Wang,andB.Ermentrout,1998,Sci-ence279,1351.

Robinson,H.,andN.Kawai,1993,J.Neurosci.Methods49,157.

Rodriguez,E.,N.George,J.Lachaux,J.Martinerie,B.Renault,andF.Varela,1999,Nature͑London͒397,430.Rosenblatt,F.,1962,PrinciplesofNeurodynamics:PerceptionsandtheTheoryofBrainMechanisms͑SpartanBooks,NewYork͒.

Roskies,A.,1999,Neuron24,7.

Rowe,D.,2002,Behav.BrainSci.24,5.

Roweis,S.,andL.Saul,2000,Science290,2323.

Rubin,J.E.,andD.Terman,2004,J.Comput.Neurosci.16,211.

Rulkov,N.F.,2002,Phys.Rev.E65,041922.

Saari,G.,1995,BasicGeometryofVoting͑Springer-Verlag,Berlin͒.

Sanchez-Vives,M.,andD.McCormick,2000,Nat.Neurosci.3,1027.

SchutterE.D.,2002,Curr.Biol.12,R363.

Schweighofer,N.,K.Doya,H.Fukai,J.V.Chiron,T.Fu-rukawa,andM.Kawato,2004,Proc.Natl.Acad.Sci.U.S.A.101,4655.

Scott,A.,2004,Ed.,EncylopediaofNonlinearScience͑Rout-ledge,NewYork͒.

Segundo,J.P.,andD.H.Perkel,1969,UCLAForumMed.Sci.11,349.

Segundo,J.P.,G.Sugihara,P.Dixon,M.Stiber,andL.F.Bersier,1998,Neuroscience87,741.

Seliger,P.,L.S.Tsimring,andM.I.Rabinovich,2003,Phys.Rev.E67,011905.

Selverston,A.,2005,CellMol.Neurobiol.25,223.

Selverston,A.,M.Rabinovich,H.Abarbanel,R.Elson,A.Szücs,R.Pinto,R.Huerta,andP.Varona,2000,J.Physiol.͑Paris͒94,357.

Senseman,D.M.,andK.A.Robbins,1999,J.Neurosci.19,RC31.

Seung,H.,D.Lee,B.Reis,andD.Tank,2000,J.Comput.Neurosci.9,171.

Seung,H.S.,1998,inAdvancesinNeuralInformationProcess-ingSystems,editedbyM.I.Jordan,M.J.Kearns,andS.A.Solla͑MIT,Cambridge,MA͒,Vol.10.

Seung,H.S.,andH.Sompolinsky,1993,Proc.Natl.Acad.Sci.U.S.A.90,10749.

Shadlen,M.N.,andW.T.Newsome,1998,J.Neurosci.18,3870.

Sharp,A.,M.O’Neil,L.Abbott,andE.Marder,1993,TrendsNeurosci.16,3.

Shepherd,G.,1998,TheSynapticOrganizationoftheBrain͑OxfordUniversityPress,NewYork͒.

Sherman,A.,andJ.Rinzel,1992,Proc.Natl.Acad.Sci.U.S.A.,2471.

Shilnikov,A.,andG.Cymbalyuk,2005,Phys.Rev.Lett.94,048101.

Shu,Y.,A.Hasenstaub,andD.McCormick,2003,Nature͑London͒423,288.

Silberberg,G.,S.Grillner,F.LeBeau,R.Maex,andH.Markram,2005,TrendsNeurosci.28,1.

SimmersA.J.,andM.Moulins,1988,J.Neurophysiol.59,740.Singer,W.,1999,Neuron24,49.

Singer,W.,2001,Ann.N.Y.Acad.Sci.929,123.

Singer,W.,andC.M.Gray,1995,Annu.Rev.Neurosci.18,555.

Rev.Mod.Phys.,Vol.78,No.4,October–December2006

Sjöström,P.J.,G.G.Turrigiano,andS.B.Nelson,2001,Neu-ron32,1149.

Softky,W.R.,1995,Curr.Opin.Neurobiol.5,239.Solis,M.,andD.Perkel,2005,J.Neurosci.25,2811.

Sompolinsky,H.,andI.Kanter,1986,Phys.Rev.Lett.57,2861.Sompolinsky,H.,H.Yoon,K.Kang,andM.Shamir,2001,Phys.Rev.E,051904.

Soto-Trevino,C.,P.Rabbah,E.Marder,andF.Nadim,2005,J.Neurophysiol.94,590.

Soto-Trevino,C.,K.A.Thoroughman,E.Marder,andL.E.Abbott,2001,Nat.Neurosci.4,297.

Stein,S.G.,S.Grillner,A.I.Selverston,andG.S.Douglas,1997,Eds.,Neurons,Networks,andMotorBehavior͑MIT,Cambridge,MA͒.

Stent,G.S.,andW.O.Friesen,1977,Biol.Cybern.28,27.Stone,E.,andD.Armbruster,1999,Chaos9,499.

Stone,E.,andP.Holmes,1990,SIAMJ.Appl.Math.50,726.Stopfer,M.,V.Jayaraman,andG.Laurent,2003,Neuron39,991.

Strogatz,S.H.,2001,NonlinearDynamicsandChaos:WithApplicationstoPhysics,Biology,ChemistryandEngineering͑PerseusBooksGroup,Cambridge,MA͒.

Szekely,G.,1965,ActaPhysiol.Acad.Sci.Hung.27,285.Szücs,A.,R.D.Pinto,M.I.Rabinovich,H.D.I.Abarbanel,andA.I.Selverston,2003,J.Neurophysiol.,1363.

Szücs,A.,P.Varona,A.Volkovskii,H.D.I.Abarbanel,M.Rabinovich,andA.Selverston,2000,NeuroReport11,563.Szücs,A.,A.I.Selverston,M.I.Rabinovich,andH.D.I.Abarbanel,2004,Soc.NeurosciAbs.420,4.

Tams,G.,A.Lorincz,A.Simon,andJ.Szabadics,2003,Sci-ence299,1902.

Terman,D.,A.Bose,andN.Kopell,1996,Proc.Natl.Acad.Sci.U.S.A.93,117.

Thompson,A.M.,andJ.Deuchars,1994,TrendsNeurosci.17,119.

Tiitinen,H.,J.Sinkkonen,K.Reinikainen,K.Alho,J.Lavi-kainen,andR.Naatanen,1993,Nature͑London͒3,59.Tohya,S.,A.Mochizuki,andY.Iwasa,2003,J.Theor.Biol.221,2.

Traub,R.D.,andR.Miles,1991,Ann.N.Y.Acad.Sci.627,277.

Tsodyks,M.,T.Kenet,A.Grinvald,andA.Arieli,1999,Sci-ence286,1943.

Tsodyks,M.,andH.Markram,1997,Proc.Natl.Acad.Sci.U.S.A.94,719.

Tsuda,I.,1991,WorldFutures32,167.

Turrigiano,G.G.,E.Marder,andL.Abbott,1996,J.Neuro-physiol.75,963.

Vaadia,E.,I.Haalman,M.Abeles,H.Bergman,Y.Prut,H.Slovin,andA.Aertsen,1995,Nature͑London͒373,515.vanEssen,D.C.,1979,Annu.Rev.Neurosci.2,227.

vanVreeswijk,C.,L.F.Abbott,andG.B.Ermentrout,1994,J.Comput.Neurosci.1,313.

vanVreeswijk,V.,andH.Sompolinsky,1996,Science274,1724.

Varona,P.,C.Aguirre,J.J.Torres,M.I.Rabinovich,andH.D.I.Abarbanel,2002,Neurocomputing44-46,685.

Varona,P.,M.I.Rabinovich,A.I.Selverston,andY.I.Ar-shavsky,2002,Chaos12,672.

Varona,P.,J.J.Torres,H.D.I.Abarbanel,M.I.Rabinovich,andR.Elson,2001,Biol.Cybern.84,91.

Varona,P.,J.J.Torres,R.Huerta,H.D.I.Abarbanel,andM.I.Rabinovich,2001,NeuralNetworks14,865.

Rabinovichetal.:Dynamicalprinciplesinneuroscience

1265

Venaille,A.,P.Varona,andM.I.Rabinovich,2005,Phys.Rev.E71,061909.

Vogel,E.K.,andM.G.Machizawa,2004,Nature͑London͒428,748.

Vogels,T.,K.Rajan,andL.Abbott,2005,Annu.Rev.Neuro-sci.28,357.

Volterra,V.,1931,inAnimalEcology,editedbyR.N.Chap-man͑McGraw-Hill,NewYork͒,pp.409–448.vonderMalsburg,C.,1999,Neuron24,95.

vonderMalsburg,C.,andW.Schneider,1986,Biol.Cybern.,29.

Voogd,J.,andM.Glickstein,1998,TrendsNeurosci.21,370.Wang,X.,2001,TrendsNeurosci.24,455.

Wang,X.-J.,andJ.Rinzel,1995,TheHandbookofBrainWaugh,F.,C.Marcus,andR.Westervelt,1990,Phys.Rev.Lett.,1986.

Wilson,H.R.,1999,Spikes,Decisions,andActions͑OxfordUniversityPress,NewYork͒.

Wilson,H.R.,andJ.D.Cowan,1973,Kybernetik13,55.Wilson,M.A.,andB.L.McNaughton,1993,Science261,1055.Wilson,M.A.,andB.McNaughton,1994,Science265,676.Wolfe,J.,andK.Cave,1999,Neuron24,11.

Yuste,R.,J.MacLean,J.Smith,andA.Lansner,2005,Nat.Rev.Neurosci.6,477.

Zeeman,E.,andM.Zeeman,2002,Nonlinearity15,2019.Zhigulin,V.P.,andM.I.Rabinovich,2004,Neurocomputing58-60,373.

Zhigulin,V.P.,M.I.Rabinovich,R.Huerta,andH.D.I.Abar-TheoryandNeuralNetworks͑MIT,Cambridge,MA͒,p.686.Rev.Mod.Phys.,Vol.78,No.4,October–December2006

banel,2003,Phys.Rev.E67,021901.

因篇幅问题不能全部显示,请点此查看更多更全内容

Copyright © 2019- sceh.cn 版权所有 湘ICP备2023017654号-4

违法及侵权请联系:TEL:199 1889 7713 E-MAIL:2724546146@qq.com

本站由北京市万商天勤律师事务所王兴未律师提供法律服务