您好,欢迎来到尚车旅游网。
搜索
您的当前位置:首页高一必修二《圆与方程》课堂练习

高一必修二《圆与方程》课堂练习

来源:尚车旅游网
 高一必修二《圆与方程》课堂练习

寄语】数学网小编给大家整理了高一必修二《圆与方程》课堂练习,希望能给大家带来帮助!

当堂练习:

1.点(1,1)在圆(x-a)2+(y+a)2=4的内部,则a的取值范围是( )

A.-11 D.a=

1

1

2.点P(m2,5)与圆x2+y2=24的位置关系是( )

A.在圆内 B.在圆外 C.在圆上 D.不确定

3.方程(x+a)2+(y+b)2=0表示的图形是( )

A.点(a,b) B.点(-a,-b) C.以(a,b)为圆心的圆 D.以(-a,-b)为圆心的圆

4.已知一圆的圆心为点(2,-3),一条直径的两个端点分别在x轴和y轴上,则此圆的方程是( )

2

A.(x-2)2+(y+3)2=13

C.(x-2)2+(y+3)2=52 D.(x+2)2+(y-3)2=52

B.(x+2)2+(y-3)2=13

5.圆(x-a)2+(y-b)2=r2与两坐标轴都相切的充要条件是( )

A.a=b=r B.|a|=|b|=r C.|a|=|b|=|r|

0 D.以上皆对

6.圆(x-1)2+(y-3)2=1关于2x+y+5=0对称的圆方程是( )

3

A.(x+7)2+(y+1)2=1

C.(x+6)2+(y+1)2=1 D.(x+6)2+(y+2)2=1

7.如果圆的方程为x2+y2+kx+2y+k2=0,那么当圆面积最大时,圆心坐标为( )

A.(-1,1) B.(1,-1) C.(-1,0) D.(0,-1)

8.圆x2+y2-2Rx-2Ry+R2=0在直角坐标系中的位置特征是( )

A. 圆心在直线y=x上 B.圆心在直线y=x上, 且与两坐标轴均相切

C. 圆心在直线y=-x上 D.圆心在直线y=-x上, 且与两坐标轴均相切

4

B.(x+7)2+(y+2)2=1

9.如果方程x2+y2+Dx+Ey+F=0与x轴相切于原点,则( )

A.D=0,E=0,F

0 B.E=0,F=0,D

5

0 C.D=0,F=0,E

0 D.F=0,D

6

0,E 0

10.如果方程x2+y2+Dx+Ey+F=0(D2+E2-4F 0) 所表示的曲线关于直线y=x对称,那么必有( )

7

A.D=E B.D=F C.E=F D.D=E=F

11.方程x4-y4-4x2+4y2=0所表示的曲线是( )

A.一个圆 B.两条平行直线 C.两条平行直线和一个圆 D.两条相交直线和一个圆

12.若a

8

0, 则方程x2+y2+ax-ay=0所表示的图形( )

A.关于x轴对称 B.关于y轴对称 C.关于直线x-y=0对称 D.关于直线x+y=0对称

13.圆的一条直径的两端点是(2,0)、(2,-2),则此圆方程是( )

A.x2+y2-4x+2y+4=0

B.x2+y2-4x-2y-4=0

C.x2+y2-4x+2y-4=0 D.x2+y2+4x+2y+4=0

14.过点P(12,0)且与y轴切于原点的圆的方程为 __________________.

15.圆(x-4)2+(y-1)2=5内一点P(3,0),则过P点的最短弦的弦长为 _____,最短弦所在直线方程为___________________.

9

16.过点(1,2)总可以向圆x2+y2+kx+2y+k2-15=0作两条切线,则k的取值范围是 _______________.

17.已知圆x2+y2-4x-4y+4=0,该圆上与坐标原点距离最近的点的坐标是 ___________,距离最远的点的坐标是________________.

18.已知一圆与直线3x+4y-2=0相切于点P(2,-1),且截x轴的正半轴所得的弦的长为8,求此圆的标准方程.

19.已知圆C:x2+y2-4x-6y+12=0, 求在两坐标轴上截距相等的圆的切线方程.

20.已知方程x2+y2-2(t+3)x+2(1-4t2)y+16t4+9=0表示一个圆,

(1)求t的取值范围;

10

(2)求该圆半径r的取值范围.

21.已知曲线C:x2+y2-4mx+2my+20m-20=0

(1)求证不论m取何实数,曲线C恒过一定点;

(2)证明当m 2时,曲线C是一个圆,且圆心在一条定直线上;

(3)若曲线C与y轴相切,求m的值.

参考答案:

经典例题:

11

解:设所求的圆的方程为: ∵

12

在圆上,所以它们的坐标是方程的解.把它们的坐标代入上面的方程,可以得到关于

的三元一次方程组, 即

13

解此方程组,可得:

14

所求圆的方程为:

15

;

16

得圆心坐标为(4,-3). 或将

左边配方化为圆的标准方程,

17

,从而求出圆的半径

,圆心坐标为(4,-3)

18

当堂练习:

1.A; 2.B; 3.B; 4.A; 5.C; 6.A; 7.D; 8.B; 9.C; 10.A; 11.D; 12.D; 13.A; 14. (x-6)2+y2=36; 15. 2

19

, x+y-3=0; 16.

; 17. (2-

20

,2- ), (2+

21

,2+ );

18. 解:设所求圆圆心为Q(a,b),则直线PQ与直线3x+4y-2=0垂直,即

22

,(1)

且圆半径r=|PQ|= ,(2)

由(1)、(2)两式,解得a=5或a= -

23

(舍),当a=5时,b=3,r=5, 故所求圆的方程为(x-5)2+(y-3)2=25.

19. 解:圆C的方程为(x-2)2+(y-3)2=1, 设圆的切线方程为

24

=1或y=kx,

由x+y-a=0,d= .

由kx-y=0,d=

25

.

综上,圆的切线方程为x+y-5

26

=0或(2 )x-y=0.

20. 解:(1)方程表示一个圆的充要条件是 D2+E2-4F=4(t+3)2+4(1-4t2)2-4(16t4+9) 0,

即:7t2-6t-1 0,

27

(2)r2=

D2+E2-4F=4(t+3)2+4(1-4t2)2-4(16t4+9)=-28t2+24t+4=-28(t-

28

)2+ ,

29

21. 解:(1)曲线C的方程可化为:

(x2+y2-20)+m(-4x+2y+20)=0,由

,

不论m取何值时,x=4, y=-2总适合曲线C的方程,即曲线C恒过定点(4, -2).

(2)D=-4m,

E=2m,

F=20m-20,

D2+E2-4F=16m2+4m2-80m+80=20(m-2)2

30

∵m 2, (m-2)2 0, D2+E2-4F 0, 曲线C是一个圆, 设圆心坐标为(x, y), 则由

消去m得x+2y=0, 即圆心在直线x+2y=0上.

(3)若曲线C与y轴相切,则m 2,曲线C为圆,其半径r=

31

,

又圆心为(2m, -m),则 =|2m|,

32

. 33

因篇幅问题不能全部显示,请点此查看更多更全内容

Copyright © 2019- sceh.cn 版权所有

违法及侵权请联系:TEL:199 1889 7713 E-MAIL:2724546146@qq.com

本站由北京市万商天勤律师事务所王兴未律师提供法律服务