(时间:120分钟 分值:150分)
一、选择题
1.在平面直角坐标系中,已知点A(2,3),则点A关于x轴的对称点的坐标为( )
A.(3,2) B.(2,﹣3) C.(﹣2,3) D.(﹣2,﹣3) 2.点P(2,﹣5)关于x轴对称的点的坐标为( ) A.(﹣2,5) B.(2,5) C.(﹣2,﹣5)
D.(2,﹣5)
3.点A(1,﹣2)关于x轴对称的点的坐标是( ) A.(1,﹣2) B.(﹣1,2) C.(﹣1,﹣2) 4.下列运算正确的是( ) A.a2﹣a4=a8
B.(x﹣2)(x﹣3)=x2﹣6 C.(x﹣2)2=x2﹣4 D.2a+3a=5a
D.(1,2)
5.下列各式计算正确的是( )
A.(a﹣b)2=a2﹣b2 B.(﹣a4)3=a7 C.2a•(﹣3b)=6ab 6.下列计算正确的是( )
A.m3+m2=m5 B.m3•m2=m6 C.(1﹣m)(1+m)=m2﹣1 D.7.已知关于x的分式方程
=1的解是非正数,则a的取值范围是( )
C.a≤1且a≠﹣2 D.a≤1
D.a5÷a4=a(a≠0)
A.a≤﹣1 B.a≤﹣1且a≠﹣2 8.下列计算正确的是( )
A.﹣2﹣1=2 B.(﹣2)2=﹣4 C.20=0 D.9.分式方程A.1
B.2
C.
=2
=1的解为( ) D.0
的解是负数,则m的取值范围是( )
10.关于x的分式方程
A.m>﹣1 B.m>﹣1且m≠0 C.m≥﹣1 D.m≥﹣1且m≠0 11.已知关于x的分式方程( ) A.m>2
B.m≥2
C.m≥2且m≠3 D.m>2且m≠3
+
=1的解是非负数,则m的取值范围是
12.关于x的分式方程=1的解为正数,则字母a的取值范围为( )
A.a≥﹣1 B.a>﹣1 C.a≤﹣1 D.a<﹣1 13.已知方程
﹣a=
,且关于x的不等式组
只有4个整数解,那
么b的取值范围是( )
A.﹣1<b≤3 B.2<b≤3 C.8≤b<9 D.3≤b<4 二、填空题 14.若分式方程15.定义二阶行列式
=a无解,则a的值为 .
=ad﹣bc.那么当x=1时,
为二阶行列式.规定它的运算法则为
的值为 .
16.填空:x2+10x+ =(x+ )2.
17.已知a+b=3,a﹣b=5,则代数式a2﹣b2的值是 . 18.分式方程
=
的解是 .
19.点P(﹣2,3)关于x轴的对称点P′的坐标为 . 20.点P(3,2)关于y轴对称的点的坐标是 . 21.点P(1,﹣2)关于y轴对称的点的坐标为 . 22.点A(﹣3,2)关于x轴的对称点A′的坐标为 .
23.如果从一卷粗细均匀的电线上截取1米长的电线,称得它的质量为a克,再称得剩余电线的质量为b克,那么原来这卷电线的总长度是 米. 24.已知关于x的分式方程25.若关于x的方程26.若关于x的分式方程27.关于x的方程28.已知关于x的方程29.若关于x的方程
=
﹣
=1的解为负数,则k的取值范围是 . 无解,则m= .
的解为正数,那么字母a的取值范围是 .
=﹣1的解是正数,则a的取值范围是 .
的解是正数,则m的取值范围是 . +1无解,则a的值是 .
三、解答题
30.在如图所示的直角坐标系中,每个小方格都是边长为1的正方形,△ABC的顶点均在格点上,点A的坐标是(﹣3,﹣1).
(1)将△ABC沿y轴正方向平移3个单位得到△A1B1C1,画出△A1B1C1,并写出点B1坐标;
(2)画出△A1B1C1关于y轴对称的△A2B2C2,并写出点C2的坐标.
31.小明解方程﹣正确的解答过程.
=1的过程如图.请指出他解答过程中的错误,并写出
32.化简:(a+b)(a﹣b)+2b2.
参考答案
一、选择题 1.B. 2.B. 3.D. 4.D. 5.D. 6.D. 7.B. 8.D. 9.A. 10.B. 11.C 12.B. 13.D
二、填空题(共16小题) 14.1或﹣1 15.0 16.25;5. 17.15 18.x=2. 19(﹣2,﹣3). 20.(﹣3,2). 21.(﹣1,﹣2). 22.(﹣3,﹣2). 23.(+1). 24.k>25.﹣8
且k≠1.
26.a>1且a≠2. 27.a>﹣1且a≠﹣. 28.m>﹣6且m≠﹣4. 29.2或1. 三、解答题
30.解:(1)如图所示:△A1B1C1,即为所求;点B1坐标为:(﹣2,﹣1); (2)如图所示:△A2B2C2,即为所求,点C2的坐标为:(1,1).
31.解:小明的解法有三处错误,步骤①去分母有误; 步骤②去括号有误;步骤⑥少检验;
正确解法为:方程两边乘以x,得:1﹣(x﹣2)=x, 去括号得:1﹣x+2=x, 移项得:﹣x﹣x=﹣1﹣2, 合并同类项得:﹣2x=﹣3, 解得:x=经检验x=
,
是分式方程的解,
.
则方程的解为x=32.
解:原式=a2﹣b2+2b2 =a2+b2.
因篇幅问题不能全部显示,请点此查看更多更全内容