LINK1 可承受单轴拉压的单元,不能承受弯矩作用
PLANE2 2维6节点三角形实体结构单元,可用作平面单元 (平面应力或平面应变),也可以用作轴对称单元
Beam3 可承受拉、压、弯作用的单轴单元,每个节点有三个自由度,即沿x,y方向的线位移及绕Z轴的角位移
Beam4 承受拉、压、弯、扭的单轴受力单元,每个节点上有六个自由度:x、y、z三个方向的线位移和绕x,y,z三个轴的角位移
SOLID5 三维耦合场体单元,8个节点,每个节点最多有6个自由度
LINK8 三维杆(或桁架)单元,用来模拟:桁架、缆索、连杆、弹簧等等,是杆轴
方向的拉压单元,每个节点具有三个自由度:沿节点坐标系X、Y、Z方向的平动
PLANE13 2 维耦合场实体单元,有 4 个节点,每个节点最多有 4 个自由度
PLANE25 建模
4 节点轴对称谐波结构单元,用于承受非轴对称载荷2 维轴对称结构的
LINK32 二维热传导杆单元,应用在二维(板或轴对称)稳态或瞬态热分析
PLANE35 2 维 6 节点三角形热实体单元,用作平面单元或轴对称单元
PLANE42 2 维实体结构单元,作平面单元 (平面应力或平面应变),也可以用作轴
对称单元。本单元有 4 个节点,每个节点有 2 个自由度,分别为 x 和 y 方向的平移
Shell43 4 节点塑性大应变单元,适合模拟线性、弯曲及适当厚度的壳体结构。单元中每个节点具有六个自由度:沿x、y和z 方向的平动自由度以及绕x、y和z 轴的转动自由度
PLANE53 2 维 8 节点磁实体单元,用于 2 维 (平面和轴对称) 磁场问题的建模
PLANE55 2 维 4 节点热实体单元,作为平面单元或轴对称环单元,用于 2 维热
传导分析。本单元有 4 个节点,每个节点只有一个自由度 – 温度
Shell63 弹性壳单元,具有弯曲能力和又具有膜力,可以承受平面内荷载和法向荷载。本单元每个节点具有6个自由度:沿节点坐标系X、Y、Z方向的平动和沿节点坐标系X、Y、Z轴的转动
SOLID64 3-D 各向异性结构实体单元,用于各向异性实体结构的3D建模。单元有8个结点,每个结点3个自由度,即沿x、y、z的平动自由度
SOLID65 用于含钢筋或不含钢筋的三维实体模型。该实体模型可具有拉裂与压碎的性能
PLANE67 电压
2 维热-电耦合实体单元,有 4 各节点,每个节点两个自由度:温度和
PLANE75 4 节点轴对称谐波热单元,作轴对称环单元,具有 3 维热传导能力。本
单元有 4 个节点,每个节点只有一个自由度 – 温度 TEMP
PLANE77 2 维 8 节点热实体单元,2 维 4 节点热单元 (PLANE55) 的高阶版
本。每个节点只有一个自由度 – 温度
PLANE78 8 节点轴对称-谐波热单元,轴对称环单元,具有 3 维热传导能力。本
单元有 8 个节点,每个节点只有一个自由度 – 温度 TEMP
PLANE82 2 维 8 节点结构实体单元,是 2 维 4 节点单元 (PLANE42) 的高阶版
本。对于四边形和三角形混合网格,它有较高的结果精度;可以适应不规则形状而较少损失精度。本 8 节点单元具有一致位移形状函数,能很好地适应曲线边界
PLANE83 8 节点轴对称谐波结构实体单元,非轴对称载荷的 2 维轴对称结构的建
模,有 8 个节点,每个节点有三个自由度 – 节点在 x, y 和 z 方向的平移。对于未转动的节点坐标,其方向分别对应径向、轴向和切线方向 (圆周方向)
PLANE121 2 维 8节点静电单元。本单元每个节点只有一个自由度:电压,用于 2 维静电场分析
PLANE145 2 维四边形结构实体 p 单元,支持最多 8 阶多项式,用作平面单元 (平面应力或平面应变) 或作为轴对称单元
PLANE146 2 维三角形结构实体 p 单元,支持最多 8 阶多项式,作平面单元 (平面应力或平面应变) 或作为轴对称单元
PLANE162 显式动力 2 维结构实体,用于平面问题,也可用于轴对称问题。本单元有4 个节点,每个节点 6 个自由度:节点在 x 和 y 方向的平移、速度和加速度
PLANE182 单元限制 2 维 4 节点结构单元,可用作平面单元 (平面应力、平面应变或广义平面应变),也可作为轴对称单元,具有塑性、超弹性、应力刚度、大变形和大应变能力,并具有力-位移混合公式的能力,可以模拟接近不可压缩的弹塑性材料的变形
PLANE183 2 维 8 节点实体结构单元,用作平面单元 (平面应力、平面应变和广义平面应变),也可用作轴对称单元。本单元具有塑性、蠕变、应力刚度、大变形及大应变的能力。并具有力-位移混合公式的能力,可以模拟接近不可压缩的弹塑性材料的变形
Beam188 3 维线性有限应变梁单元,适合于分析从细长到中等粗短的梁结构
PLANE223 2 维 8 节点耦合场单元, 2 维结构、电、压组和压电分析能力,具有大变形和应力刚度能力
一、单元
(1)link(杆)系列:
link1(2D)和link8(3D)用来模拟珩架,注意一根杆划一个单元。
link10用来模拟拉索,注意要加初应变,一根索可多分单元。
link180是link10的加强版,一般用来模拟拉索。
(2)beam(梁)系列:
beam3(2D)和beam4(3D)是经典欧拉梁单元,用来模拟框架中的梁柱,画弯据图用
etab读入smisc数据然后用plls命令。注意:虽然一根梁只划一个单元在单元两端也能得到正确的弯矩图,但是要得到和结构力学书上的弯据图差不多的结果还需多分几段。该单元需要手工在实常数中输入Iyy和Izz,注意方向。
beam44适合模拟薄壁的钢结构构件或者变截面的构件,可用\"/eshape,1\"显示单元形状。
beam188和beam189号称超级梁单元,基于铁木辛科梁理论,有诸多优点:考虑剪切变形的影响,截面可设置多种材料,可用\"/eshape,1\"显示形状,截面惯性矩不用自己计算而只需输入截面特征,可以考虑扭转效应,可以变截面(8.0以后),可以方便地把两个单元连接处变成铰接(8.0以后,用ENDRELEASE命令)。缺点是:8.0版本之前beam188用的是一次形函数,其精度远低于beam4等单元,一根梁必须多分几个单元。8.0之后可设置“KEYOPT(3)=2”变成二次形函数,解决了这个问题。可见188单元已经很完善,建议使用。beam189与beam188的区别是有3个结点,8.0版之前比beam188精度高,但因此建模较麻烦,8.0版之后已无优势。
(3)shell(板壳)系列
shell41一般用来模拟膜。
shell63可针对一般的板壳,注意仅限弹性分析。
它的塑性版本是shell43。
加强版是shell181(注意18*系列单元都是ansys后开发的单元,考虑了以前单元的
优点和缺陷,因而更完善),优点是:能实现shell41、shell63、shell43...的所有功能并比它们做的更好,偏置中点很方便(比如模拟梁版结构时常要把板中面望上偏置),可以分层,等等。
(4)solid(体)系列
土木中常用的就solid45、46、65、95等。
45就不用多说了,95是它的带中结点版本。
solid46可以容忍单元的长厚比达到20比1,可以用来模拟钢板碳纤维板钢管等。
solid65是专门的混凝土单元,可以考虑开裂,这个讨论得很多了,清华的陆新征写的一个讲义(www.luxizheng.net)里面有详细解释。
(5)combin(弹簧)系列
常用的有7、14、39、40等。
7可以用来模拟铰接点。14是最简单的带阻尼弹簧。39是非线性弹簧,在实常数中可以灵活定义力-位移关系,可用来模拟钢筋与混凝土的粘结滑移等。40可模拟隔震结构(据说)。
(6)contact(接触)系列
常用的有conta52,可用来模拟橡胶垫支座。这个很简单,可以用命令流添加(eintf)。
TARGE16*和CONTA17*系列可用接触向导添加,三维的接触往往会造成收敛困难,和混凝土非线性分析一样,需要凭经验调参数反复试算。
二、材料
弹性部分(必需)用MP命令输入,非线性部分用TB命令输入。
(1)TB,DP
即Drucker-Prager模型,ansys中唯一用来模拟土的模型。可以和几乎所有单元类型(2维和3维)配合使用,所以有时也会在计算2维的混凝土模型时用到它。
(2)TB,CONCR
用来模拟混凝土,采用w-w五参数破坏准则,只能和solid65配合使用。同样参见陆新征的讲义。
(3)TB,BKIN(BISO,MKIN,MISO)
一般用来模拟钢材。
双线形随动强化(双线形等向强化、多线形随动强化、多线形等向强化)模型。
顾名思义,双线形和多线形的区别就是应力应变曲线是两段还是很多段;随动强化和等向强化的区别就是考不考虑包辛格效应。
如果不和其他准则配合的话,默认是von mises屈服准则。
Mass21是由6个自由度的点元素,x,y,z三个方向的线位移以及绕x,y,z轴的旋转位移。每个自由度的质量和惯性矩分别定义。
Link1可用于各种工程应用中。根据应用的不用,可以把此元素看成桁架,连杆,弹簧,等。这个2维杆元素是一个单轴拉压元素,在每个节点都有两个自由度。X,y,方向。铰接,没有弯矩。
Link8可用于不同工程中的杆。可用作模拟构架,下垂电缆,连杆,弹簧等。3维杆元素是单轴拉压元素。每个点有3个自由度。X,y,z方向。作为铰接结构,没有弯矩。具有塑性,徐变,膨胀,应力强化和大变形的特性。
Link10 3维杆元素,具有双线性劲度矩阵的特性,单向轴拉(或压)元素。对于单向轴拉,如果元素变成受压,则硬度就消失了。此特性可用于静力钢缆中,当整个钢缆模拟成一个元素时。当需要静力元素能力但静力元素又不是初始输入时,也可用于动力分析中。该元素是shell41的线形式,keyopt(1)=2,’cloth’选项。如果分析的目的是为了研究元素的运动,(没有静定元素),可用与其相似但不能松弛的元素(如link8和pipe59)代替。当最终的结构是一个拉紧的结构的时候,Link10也不能用作静定集中分析中。但是由于最终局于一点的结果松弛条件也是有可能的。在这种情况下,要用其他的元素或在link10中使用‘显示动力’技术。Link10每个节点有3个自由度,x,y,z方向。在拉(或压)中都没有抗弯能力,但是可以通过在每个link10元素上叠加一个小面积的量元素来实现。具有应力强化和大变形能力。
Link11用于模拟水压圆筒以及其他经受大旋转的结构。此元素为单轴拉压元素,每个
节点有3个自由度。X,y,z方向。没有弯扭荷载。
Link180可用于不同的工程中。可用来模拟构架,连杆,弹簧,等。此3维杆元素是单轴拉压元素,每个节点有3个自由度。X,y,z方向。作为胶接结构,不考虑弯矩。具有塑性,徐变,旋转,大变形,大应变能力。link180在任何分析中都包括应力强化项(分析中,nlgeon,on),此为缺省值。支持弹性,各向同性硬化塑性,运动上的硬化塑性,希尔各向异性塑性,chaboche 非线性硬化塑性和徐变等。
Beam3单轴元素,具有拉,压,弯性能。在每个节点有3个自由度。X,y,方向以及绕z轴的旋转。
Beam4是具有拉压扭弯能力的单轴元素。每个节点有6个自由度,x,y,z,绕x,y,z轴。具有应力强化和大变形能力。在大变形分析中,提供了协调相切劲度矩阵选项。
Beam23单轴元素,拉压和受弯能力。每个节点有3个自由度。该元素具有塑性,徐变,膨胀能力。如果这些影响都不需要,可使用beam3,2维弹性梁。
Beam24 3维薄壁梁。单轴元素,任意截面都有拉压、弯曲和St. Venant扭转能力。可用于任何敞开的和单元截面。该元素每个节点有6个自由度:x,y,z和绕x,y,z方向。该元素在轴向和自定义的截面方向都具有塑性,徐变和膨胀能力。若不需要这些能力,可用弹性梁beam4或beam44。Pipe20和beam23也具有塑性,徐变和膨胀能力。截面是通过一系列的矩形段来定义的。梁的纵轴向方向由第三个节点指明。
Beam44 3维弹性锥形不对称梁。单轴元素,具有拉压扭和弯曲能力。该元素每个节点有6个自由度:x,y,z和绕x,y,z方向。该元素允许每个端点具有不均匀几何特性,并且
允许端点与梁的中性轴偏移。若不需要这些特性,可采用beam4。该元素的2维形式是beam54。该元素也提供剪应变选项。还提供了输出作用于单元上的与单元同方向的力的选项。具有应力强化和大变形能力。
Beam54单轴元素,拉压和受弯能力. 每个节点有3个自由度。该元素允许在端点有不均匀几何性质。允许端点偏移梁的轴心。无塑性徐变或膨胀能力。有应力强化能力。剪切变形和弹性基础影响也体现在选项中。还可打印作用于元素上的沿元素方向的力。
Beam188 3维线性有限应力梁。适用于分析短粗梁结构。该元素基于timoshenko梁理论。包括剪应变。Beam188是一个三维线性(2节点)梁。每个节点有6或7个自由度,具体依赖于keyopt(1)的值。Keyopt(1)=0为每个节点6个自由度。包括x,y,z方向和绕x,y,z方向。=1还考虑了扭转自由度。该元素适用于线性,大旋转和大应变非线性。包括应力强化项在任何分析中,都缺省为nlgeom=on.。该选项为元素提供了分析曲屈、侧移和扭转的能力。
Beam189 3维二次有限应力梁。适用于分析短粗梁结构。该元素基于timoshenko梁理论。包括剪应变。Beam189是一个三维二次(3节点)梁。每个节点有6或7个自由度,具体依赖于keyopt(1)的值。Keyopt(1)=0为每个节点6个自由度。包括x,y,z方向和绕x,y,z方向。=1还考虑了扭转自由度。该元素适用于线性,大旋转和大应变非线性。包括应力强化项在任何分析中,都缺省为nlgeom=on.。该选项为元素提供了分析曲屈、侧移和扭转的能力。
Plane2 2维6节点3角形结构实体。具有二次位移,适用于模拟不规则网格。该元素有6个结点定义,每个节点2个自由度,分比为x,y方向。可将其用于平面单元(平面应力或平面应变)或是轴对称单元。具有塑性,徐变,膨胀,应力强化,大变形,大应变
能力。
Plane25 轴对称协调4节点结构体。用于承受非轴对称荷载的2维轴对称结构。如弯曲,剪切或扭转。该元素由4个节点定义,每个节点3个自由度:x,y,z方向。对于非扭转节点,这3个方向分别代表半径,轴向和切线方向。给元素是plane42的一般模式,2为结构单元,和在不一定为轴对称。
Plane42 2维实体。该元素即可用于平面单元(平面应力或平面应变)也可用于轴对称单元。该元素由4个节点定义,每个节点2个自由度:x,y方向。具有塑性,徐变,膨胀,应力强化,大变形,大应变能力。
Plane82 二维8节点实体。该元素是plane42的高次形式。它为混合(四边形-三角形)自动网格划分提供了更精确的求解结果,并能承受不规则形状而不会产生任何精度上的损失。8节点元素具有位移协调形状,适用于模拟弯曲边界。该元素由8个节点定义,每个节点2个自由度,x,y方向。可用于平面单元也可用于轴对称单元。具有塑性,徐变,膨胀,应力强化,大变形,大应变能力。并提供不同的输出选项。
Plane83 二维8节点实体。用于承受非轴对称荷载的2维轴对称结构。如弯曲,剪切或扭转。该元素每个节点3个自由度:x,y,z方向。对于非扭转节点,这3个方向分别代表半径,轴向和切线方向。该元素是plane25的高次形式。它为混合(四边形-三角形)自动网格划分提供了更精确的求解结果,并能承受不规则形状而不会产生任何精度上的损失。该元素也是plane82的一般轴向形式,其荷载不需要对陈。
Plane145 二维四边形实体p-元素。Plane145是一个四边形p-元素,支持最高为8次的多项式。该元素由8个节点定义,每个节点2个自由度,x,y方向。可用于平面单元
也可用于轴对称单元。
Plane146 二维三角形实体p-元素。Plane145是一个三角形p-元素,支持最高为8次的多项式。该元素由6个节点定义,每个节点2个自由度,x,y方向。可用于平面单元也可用于轴对称单元。
Plane182 2维4节点实体。该元素用于2维模型。可用于平面单元也可用于轴对称单元。该元素由4个节点定义,每个节点2个自由度,x,y方向。可用于平面单元也可用于轴对称单元。具有塑性,超弹性,应力强化,大变形,大应变能力。可用来模拟几乎不能压缩的次弹性材料和完全不能压缩的超弹性材料的变形。
Plane183 2维8节点实体。具有二次位移,适用于模拟不规则网格。该元素由8个节点定义,每个节点2个自由度,x,y方向。可用于平面单元也可用于轴对称单元。具有塑性,超弹性,应力强化,大变形,大应变能力。可用来模拟几乎不能压缩的次弹性材料和完全不能压缩的超弹性材料的变形。支持初始应力。并提供不同的输出选项。
Solid45 3-D实体。用于3维实体结构模型。8个节点,每个节点3个自由度,x,y,z三个方向。该元素有塑性,徐变,膨胀,应力强化,大变形和大应变能力。提供带有沙漏控制的缩减选项。各向异性选用solid64.。solid45的高次形式使用solid95.
Solid46 3维8节点分层实体。是solid45的分层形式,用于模拟分层壳或实体。该元素允许达到250层。如果需要超过250层,需要用到一个构成矩阵选项。该元素也可通过选择的方法进行累积。每个节点有3个自由度:x,y,z方向。
Solid64 3维各向异性实体。该元素有8个节点定义,每个节点3个自由度:x,y,z方
向。具有应力强化和大变形能力。提供限制特大位移以及定义输出位置的选项。该元素有各种不同的应用,如用于晶体和合成物。
Solid65 3维钢筋混凝土实体。该元素用含钢筋或不含钢筋的3维实体。该实体能被拉裂或压碎。用于混凝土时,例如,元素的实体能力可以用来模拟混凝土,而钢筋能力用来模拟钢筋性能。在其他情况下,该元素还可用于加固合成物(如玻璃纤维)和地质材料(如石块)。元素由8个节点定义,每个节点3个自由度:x,y,z方向。可以定义3个不同钢筋。混凝土元素与solid45相似,只是比它多了能被拉裂和压碎的能力。该元素最重要的方面是它具有非线性材料的性能。混凝土可以(在三个正交方向)开裂、压碎、塑性变形和徐变。钢筋可以抗拉压,但不能抗剪。也可以具有塑性变形和徐变的性能。
Solid92 3维10节点四面体结构实体。具有二次位移,适用于模拟不规则网格。该元素由10个节点定义,每个节点3个自由度:x,y,z方向。具有塑性,徐变,膨胀,应力强化,大变形,大应变能力。
因篇幅问题不能全部显示,请点此查看更多更全内容