您好,欢迎来到尚车旅游网。
搜索
您的当前位置:首页平行四边形知识点总结及对应例题

平行四边形知识点总结及对应例题

来源:尚车旅游网
平行四边形、矩形、菱形、正方形知识点总结

定义:两组对边分别平行的四边形是平行四边形 平行四边形的性质:

(1):平行四边形对边相等 (即:AB=CD,AD=BC);

(2):平行四边形对边平行 (即:AB两组对边分别平行的四边形是平行四边形(定义判定法); 2. 一组对边平行且相等的四边形是平行四边形; 3. 两组对边分别相等的四边形是平行四边形; 4. 对角线互相平分的四边形是平行四边形; 5. 两组对角分别相等的四边形是平行四边形; 考点1 特殊的平行四边形的性质与判定

1.矩形的定义、性质与判定

(1)矩形的定义:有一个角是直角的平行四边形是矩形。

(2)矩形的性质:矩形的对角线_________;矩形的四个角都是________角。矩形具有________的一切性质。矩形是轴对称图形,对称轴有_____________条,矩形也是中心对称图形,对称中心为_____________的交点。矩形被对角线分成了____________个等腰三角形。 (3)矩形的判定

有一个是直角的平行四边形是矩形;有三个角是_____________的四边形是矩形;对角线_____的平行四边形是矩形。

温馨提示:矩形的对角线是矩形比较常用的性质,当对角线的夹角中,有一个角为60度时,则构成一个等边三角形;在判定矩形时,要注意利用定义或对角线来判定时,必须先证明此四边形为平行四边形,然后再请一个角为直角或对角线相等。很多同学容易忽视这个问题。

2.菱形的定义、性质与判定

(1)菱形的定义:有一组邻边相等的平行四边形是菱形。 (2)菱形的性质

菱形的_______都相等;菱形的对角线互相_______,并且每一条对角线______一组对角;菱形也具有平行四边形的一切性质。菱形即是轴对称图形,对称轴有____条。

(3)菱形的面积

菱形的面积=底×高,菱形的面积=成了4个全等的直角三角形。

(4)菱形的判定:______________都相等的四边形是菱形;对角线____________的平行四边形是菱形;有一组邻边相等的平行四边形是菱形。

温馨提示:在利用菱形的判定时,也要注意所要证明的四边形是不是平行四边形,而你用的判定定理需不需要证明它是平行四边形,有对角线时,通常考虑利用对角线互相垂直的平行四边形是菱形来证明,否则一般不利用此定理。

3.正方形的性质及判定方法

(1)正方形的性质:正方形的四个角都是_____________,四条边都_____________;

正方形的两条对角线____________,并且互相垂直平分,每条对角线平分一组对角;正方形即是轴对称图形也是中心对称图形。

正方形具有平行四边形、矩形、菱形的一切性质。

(2)正方形的判定方法:有一组邻边相等的____是正方形;对角线互相____的矩形是正方形;有一个角是直角的菱形是正方形;对角线________的菱形是正方形。

温馨提示:无论是正方形的性质还是正方形的判定,它的中心思想就是正方形即是矩形,又是菱形,如果都从这个出发,则一切的性质与判定就都有了。但要注意在利用对角线判定正方形时,“平分”这个前提,因为只有对角线平分了,此四边形才是平行四边形了,然后再证明是矩形又是菱形。

一.正确理解定义

(1)定义:两组对边分别平行的四边形是平行四边形.

平行四边形的定义揭示了图形的最本质的属性,它既是平行四边形的一条性质,又是一个判定方法.

(2)表示方法:用“ ”表示平行四边形,例如:平行四边形ABCD记作 ABCD,读作“平行四边形ABCD”.

2.熟练掌握性质

平行四边形的有关性质和判定都是从 边、角、对角线 三个方面的特征进行简述的. (1)角:平行四边形的邻角互补,对角相等; (2)边:平行四边形两组对边分别平行且相等; (3)对角线:平行四边形的 对角线互相平分;

1ab,其中a,b分别为菱形两条对角线的长。菱形被对角线分2(4)面积:①S底高=ah;

②平行四边形的对角线将四边形分成4个面积相等的三角形.

3.平行四边形的判别方法

①定义:两组对边分别平行的四边形是平行四边形 ②方法1:两组对角分别相等的四边形是平行四边形 ③方法2:两组对边分别相等的四边形是平行四边形 ④方法3:对角线互相平分的四边形是平行四边形 ⑤方法4:一组平行且相等的四边形是平行四边形 二、.几种特殊四边形的有关概念

(1)矩形:有一个角是直角 的平行四边形 是矩形,它是研究矩形的基础,它既可以看作是矩形的性质,也可以看作是矩形的判定方法,对于这个定义,要注意把握:① 平行四边形; ② 一个角是直角,两者缺一不可.

(2)菱形:有一组邻边相等 的平行四边形 是菱形,它是研究菱形的基础,它既可以看作是菱形的性质,也可以看作是菱形的判定方法,对于这个定义,要注意把握:① 平行四边形;② 一组邻边相等,两者缺一不可.

(3)正方形:有一组邻边相等且有一个直角 的平行四边形 叫做正方形,它是最特殊的平行四边形,它既是平行四边形,还是菱形,也是矩形,它兼有这三者的特征,是一种非常完美的图形. (4)梯形:一组对边平行而另一组对边不平行的四边形叫做梯形,对于这个定义,要注意把握:

①一组对边平行;② 另一组对边不平行

(5)等腰梯形:是一种特殊的梯形,它是两腰相等 的梯形,特殊梯形还有直角梯形. 2.几种特殊四边形的有关性质

(1)矩形: ①边:对边平行且相等; ②角:对角相等、邻角互补;

③对角线:对角线互相平分且相等;

④对称性:轴对称图形(对边中点连线所在直线,2条).

(2)菱形:①边:四条边都相等;

②角:对角相等、邻角互补;

③对角线:对角线互相垂直平分且每条对角线平分每组对角; ④对称性:轴对称图形(对角线所在直线,2条).

(3)正方形:①边:四条边都相等;

②角:四角相等;

③对角线:对角线互相垂直平分且相等,对角线与边的夹角为450; ④对称性:轴对称图形(4条).

(4)等腰梯形:①边:上下底平行但不相等,两腰相等;

②角:同一底边上的两个角相等;对角互补 ③对角线:对角线相等; ④对称性:轴对称图形(上下底中点所在直线).

3.几种特殊四边形的判定方法

(1)矩形的判定:满足下列条件之一的四边形是矩形 ①有一个角是直角的平行四边形; ②对角线相等的平行四边形; ③四个角都相等

(2)菱形的判定:满足下列条件之一的四边形是矩形 ①有一组邻边相等的平行四边形; ②对角线互相垂直的平行四边形; ③四条边都相等.

(3)正方形的判定:满足下列条件之一的四边形是正方形. ① 有一组邻边相等 且有一个直角 的平行四边形 ② 有一组邻边相等 的矩形; ③ 对角线互相垂直 的矩形. ④ 有一个角是直角 的菱形 ⑤ 对角线相等 的菱形;

(4)等腰梯形的判定:满足下列条件之一的梯形是等腰梯形

① 同一底两个底角相等的梯形; ② 对角线相等的梯形.

4.几种特殊四边形的常用说理方法与解题思路分析

(1)识别矩形的常用方法

① 先说明四边形ABCD为平行四边形,再说明平行四边形ABCD的任意一个角为直角.

② 先说明四边形ABCD为平行四边形,再说明平行四边形ABCD的对角线相等. ③ 说明四边形ABCD的三个角是直角.

(2)识别菱形的常用方法

① 先说明四边形ABCD为平行四边形,再说明平行四边形ABCD的任一组邻边相等. ② 先说明四边形ABCD为平行四边形,再说明对角线互相垂直. ③ 说明四边形ABCD的四条相等. (3)识别正方形的常用方法

① 先说明四边形ABCD为平行四边形,再说明平行四边形ABCD的一个角为直角且有一组邻边相等. ② 先说明四边形ABCD为平行四边形,再说明对角线互相垂直且相等. ③ 先说明四边形ABCD为矩形,再说明矩形的一组邻边相等. ④ 先说明四边形ABCD为菱形,再说明菱形ABCD的一个角为直角. (4)识别等腰梯形的常用方法

① 先说明四边形ABCD为梯形,再说明两腰相等.

② 先说明四边形ABCD为梯形,再说明同一底上的两个内角相等. ③ 先说明四边形ABCD为梯形,再说明对角线相等. 5.几种特殊四边形的面积问题

① 设矩形ABCD的两邻边长分别为a,b,则S矩形=ab.

② 设菱形ABCD的一边长为a,高为h,则S菱形=ah;若菱形的两对角线的长分别为a,b,

1则S菱形=ab.

21③ 设正方形ABCD的一边长为a,则S正方形=a2;若正方形的对角线的长为a,则S正方形=a2.

21④ 设梯形ABCD的上底为a,下底为b,高为h,则S梯形=(ab)h.

2 图形 平行四边形 矩形 菱形 正方形 1.对边 且 ; 2.对角 ; 性质 邻角 ; 3.对角线 ; 1.对边 且 ; 2.对角 且四个角都是 ; 3.对角线 ; 1.对边 且四条边都 ; 2.对角 ; 3.对角线 且每 条对角线 ; 1.对边 且四条边都 ; 2.对角 且四个角都是 ; 3.对角线 且每条对角线 ; 面积

例1:如图,菱形ABCD中,∠B=60°,AB=2,E、F分别是BC、CD的中点,连接AE、EF、AF, 则△AEF的周长为( )

A.23 B.33 C.43 D.3

例2:如图,把矩形ABCD沿EF对折后使两部分重合,若150,则AEF=( )

A.110° B.115° C.120° D.130°

一、选择题(每题3分,共30分)

1.如图,在菱形ABCD中,AB = 5,∠BCD = 120°,

则对角线AC等于( )

A.20 B.15 C. 10 D.5

2.如图,将一个长为10cm,宽为8cm的矩形纸片对折两次后,

沿所得矩形两邻边中点的连线(虚线)剪下,再打开,

A C B D B

A D

o

C

得到的菱形的面积为( )

A.10cm

2B.20cm

2C.40cm

2D.80cm

2

3.如图,菱形ABCD中,对角线AC、BD相交于点O,M、N分别是边AB、AD的中点, 连接OM、ON、MN,则下列叙述正确的是( )

A.△AOM和△AON都是等边三角形 B.四边形MBON和四边形MODN都是菱形

C.四边形AMON与四边形ABCD是位似图形 D.四边形MBCO和四边形NDCO都是等腰梯形

A

D

M D C

F N A D

C

B O D E P O

C A B A E

B

第3题图C

B

F

第4题图 第5题图

4.如图,在菱形ABCD中,∠A=110°,E,F分别是边AB和BC的中点,EP⊥CD于点P,则∠FPC=( A.35° B.45° C.50° D.55°

5. 将矩形纸片ABCD按如图所示的方式折叠,得到菱形AECF.若AB=3,则BC的长为( )

A.1 B.2

C.2 D.3

7.正方形ABCD的边长为8,M在DC上,且DM=2,N是AC上一动点,则DN+MN的最小值为( )A.8 B.82 C.217 D.10

8.如图,□ABCD的周长是28㎝, △ABC的周长是22㎝,则AC的 长为 ( )

第8题图

A.6㎝ B. 12㎝ C.4㎝ D. 8㎝

9.如图,菱形ABCD的边长为10cm,DE⊥AB,DE=6,则这个菱形的面积= cm2.

第10题图

第9题图

10.如图,四边形ABCD是平行四边形,使它为矩形的条件可以是 .

三、解答题

D

11.如图 ,ABCD是菱形,对角线AC与BD相交于O,ACD30°,BD6.

A

O

C

B

(1)求证:△ABD是正三角形; (2)求 AC的长(结果可保留根号).

12.已知:如图,四边形ABCD是菱形,过AB的中点E作AC的垂线EF,交AD 于点M,交CD的延长线于点F.

(1)求证:AM=DM;

A M E B

F

D

C

第12题图

(2)若DF=2,求菱形ABCD的周长 .

13.如图:已知在△ABC中,ABAC,D为BC边的中点,过点D作

DE⊥AB,DF⊥AC,垂足分别为E,F.

(1) 求证:△BED≌△CFD;

(2)若A90°,求证:四边形DFAE是正方形.

B E A F

D

第13题图

C

因篇幅问题不能全部显示,请点此查看更多更全内容

Copyright © 2019- sceh.cn 版权所有 湘ICP备2023017654号-4

违法及侵权请联系:TEL:199 1889 7713 E-MAIL:2724546146@qq.com

本站由北京市万商天勤律师事务所王兴未律师提供法律服务