IRF7328PbF
HEXFET® Power MOSFET
Trench Technology
lÿÿUltra Low On-Resistancelÿ Dual P-Channel MOSFETlÿAvailable in Tape & ReellÿLead-Free
lÿÿ
VDSS-30V
RDS(on) max
21mΩ@VGS = -10V32mΩ@VGS = -4.5V
ID-8.0A-6.8A
Description
New trench HEXFET® Power MOSFETs fromInternational Rectifier utilize advanced processingtechniques to achieve extremely low on-resistanceper silicon area. This benefit, combined with theruggedized device design that HEXFET powerMOSFETs are well known for, provides the designerwith an extremely efficient and reliable device for usein battery and load management applications.
S1G1S2G2123487D1D1D2D265Top ViewSO-8Absolute Maximum Ratings
Parameter
Max.
Units
VDSDrain-Source Voltage-30VID @ TA = 25°CContinuous Drain Current, VGS @ -10V-8.0ID @ TA = 70°CContinuous Drain Current, VGS @ -10V-6.4AIDMPulsed Drain Current-32PD @TA = 25°CMaximum Power Dissipation2.0WPD @TA = 70°CMaximum Power Dissipation1.3W Linear Derating Factor 16 mW/°C VGS Gate-to-Source Voltage ± 20 VTJ , TSTGJunction and Storage Temperature Range-55 to + 150°C
Thermal Resistance
Parameter
RθJA
Maximum Junction-to-Ambient Max. Units 62.5 °C/Wwww.irf.com1
12/03/10
http://oneic.com/
IRF7328PbF
Electrical Characteristics @ TJ = 25°C (unless otherwise specified)
V(BR)DSS
∆V(BR)DSS/∆TJ
Parameter
Drain-to-Source Breakdown VoltageBreakdown Voltage Temp. CoefficientStatic Drain-to-Source On-ResistanceGate Threshold VoltageForward TransconductanceDrain-to-Source Leakage CurrentGate-to-Source Forward LeakageGate-to-Source Reverse LeakageTotal Gate ChargeGate-to-Source Charge
Gate-to-Drain (\"Miller\") ChargeTurn-On Delay TimeRise Time
Turn-Off Delay TimeFall TimeInput CapacitanceOutput Capacitance
Reverse Transfer Capacitance
RDS(on)VGS(th)gfsIDSSIGSSQgQgsQgdtd(on)trtd(off)tfCissCossCrss
Min.-30––––––-1.012––––––––––––––––––––––––––––––––––––––––––Typ.–––-0.0181726.8––––––––––––––––––529.88.3131519826709262Max.UnitsConditions–––VVGS = 0V, ID = -250µA
–––V/°CReference to 25°C, ID = -1mA21VGS = -10V, ID = -8.0A mΩ
32VGS = -4.5V, ID = -6.8A -2.5VVDS = VGS, ID = -250µA–––SVDS = -10V, ID = -8.0A-15VDS = -24V, VGS = 0VµA
-25VDS = -24V, VGS = 0V, TJ = 70°C-100VGS = -20V
nA
100VGS = 20V78ID = -8.0A–––nCVDS = -15V–––VGS = -10V20VDD = -15V, VGS = -10.0V23ID = -1.0A
ns
297RG = 6.0Ω147RD = 15Ω –––VGS = 0V–––pFVDS = -25V–––ƒ = 1.0MHz
Source-Drain Ratings and Characteristics
ISISMVSDtrrQrr ParameterContinuous Source Current(Body Diode)Pulsed Source Current(Body Diode) Diode Forward VoltageReverse Recovery TimeReverse Recovery ChargeMin.Typ.Max.Units––––––––––––3736-2.0A-32-1.256VnsnC ConditionsMOSFET symbolshowing theGintegral reversep-n junction diode.TJ = 25°C, IS = -2.0A, VGS = 0V TJ = 25°C, IF = -2.0Adi/dt = -100A/µs DSNotes:
max. junction temperature.
Repetitive rating; pulse width limited byPulse width ≤ 400µs; duty cycle ≤ 2%.
Surface mounted on FR-4 board, t ≤ 10sec.
2www.irf.com
http://oneic.com/
IRF7328PbF
100VGS 100
VGS TOP -10.0V -5.0V -4.5V -4.0V -3.5V -3.3V -3.0VBOTTOM -2.7V-ID, Drain-to-Source Current (A)-ID, Drain-to-Source Current (A)10TOP -10.0V -5.0V -4.5V -4.0V -3.5V -3.3V -3.0VBOTTOM -2.7V10
-2.7V1
1-2.7V20µs PULSE WIDTHTj = 25°C0.10.111010020µs PULSE WIDTHTj = 150°C0.1
0.1
1
10
100
-VDS, Drain-to-Source Voltage (V)
-VDS, Drain-to-Source Voltage (V)
Fig 1. Typical Output CharacteristicsFig 2. Typical Output Characteristics
R S ( o ) , Drain-to-Source On ResistanceDn(Normalized) 1002.0ID=-8.0A-I , Drain-to-Source Current (A)D1.5 10°T = 150 CJ1.0 1°T = 25 CJ0.50.12.0V = -15VDS20µs PULSE WIDTH3.04.05.06.00.0-60-40-20VGS=-10V020406080100120140160-V , Gate-to-Source Voltage (V)GS°T , Junction Temperature( C)JFig 3. Typical Transfer CharacteristicsFig 4. Normalized On-ResistanceVs. Temperature
www.irf.com3
http://oneic.com/
IRF7328PbF
4000VCGS=0V,f = 1MHzCiss=Cgs+ Cgd ,C SHORTEDdsCrss=CCgdoss=ds+ Cgd)F3000pC(iss ecnatica2000paC ,C1000CossCrss0 1 10 100-V , Drain-to-Source Voltage (V)DSFig 5. Typical Capacitance Vs.Drain-to-Source Voltage
100)A( tneT = 150 CrJ°ruC 10 niaT = 25 CrJ°D esreveR 1 , D IS-0.1V = 0 V GS0.20.40.60.81.01.21.41.6-V ,Source-to-Drain Voltage (V)SDFig 7. Typical Source-Drain Diode
Forward Voltage
4http://oneic.com/
14ID=-8A)V(V e12VDS=-24VgDS=-15VatolV10 ecru8oS-ot-6etaG 4, S VG-200102030405060Q , Total Gate Charge (nC)GFig 6. Typical Gate Charge Vs.Gate-to-Source Voltage
1000OPERATION IN THIS AREA LIMITEDBY RDS(on))A( tn 100erruC niarD100us , 10 ID-1ms TC= 25 C° T° 1 Single PulseJ= 150 C10ms0.1 1 10 100-V , Drain-to-Source Voltage (V)DSFig 8. Maximum Safe Operating Areawww.irf.com
IRF7328PbF
10.0VDS8.0RDVGSRG-ID , Drain Current (A)D.U.T.+-VDD
6.0VGS4.0Pulse Width ≤ 1 µsDuty Factor ≤ 0.1 %Fig 10a. Switching Time Test Circuit
2.0td(on)trtd(off)tfVGS0.02550°T , Case Temperature( C)TAC7510012515010%Fig 9. Maximum Drain Current Vs.Case Temperature
90%VDSFig 10b. Switching Time Waveforms
1000Thermal Response(Z t h A )J 100D = 0.50 100.200.100.05 10.020.01SINGLE PULSE(THERMAL RESPONSE)0.10.0001PDMt1t2Notes:1. Duty factor D =t / t122. Peak TJ=PDMx ZthJA+ TA0.1 1 10 100 10000.0010.01t , Rectangular Pulse Duration (sec)1Fig 11. Maximum Effective Transient Thermal Impedance, Junction-to-Ambient
www.irf.com5
http://oneic.com/
IRF7328PbF
ΩRDS ( on ) , Drain-to-Source On Resistance ( ) (), Drain-to -Source On ResistanceΩRDS(on)0.0600.100
0.0500.075
0.0400.030ID = -8.0A0.050
VGS = -4.5V0.025
VGS = -10V0.0200.0100.0003.04.05.06.07.08.09.010.00.000
0
10
20
30
40
50
60
70
-ID , Drain Current ( A )
-VGS, Gate -to -Source Voltage (V)
Fig 12. Typical On-Resistance Vs.
Gate Voltage
Fig 13. Typical On-Resistance Vs.
Drain Current
CurrentRegulatorSameTypeasD.U.T.50KΩQG12V.2µF.3µF-D.U.T.VGS-3mA10 V+VDSQGSQGDVGIGIDCurrentSamplingResistorsChargeFig 14a. Basic Gate Charge WaveformFig 14b. Gate Charge Test Circuit
6www.irf.com
http://oneic.com/
IRF7328PbF
SO-8 Package Outline
Dimensions are shown in milimeters (inches)
INCHESMILLIMETERSDBDIMMINMAXMINMAXA5A.0532.06881.351.75A1.0040.00980.100.25b.013.0200.330.5168765.0075.00980.190.25EHcD.1.19684.805.0012340.25 [.010] AE.1497.15743.804.00e.050 BASIC1.27 BASICe1.025 BASIC0.635 BASICH.2284.24405.806.206XeK.0099.01960.250.50L.016.0500.401.27y 0° 8° 0° 8°e1AK x 45°Cθy0.10 [.004] 8X bA18X L8X c0.25 [.010] CAB7NOTES:FOOTPRINT1. DIMENSIONING & TOLERANCING PER ASME Y14.5M-1994.2. CONTROLLING DIMENSION: MILLIMETER8X 0.72 [.028]3. DIMENSIONS ARE SHOWN IN MILLIMETERS [INCHES].4. OUTLINE CONFORMS TO JEDEC OUTLINE MS-012AA.5 DIMENSION DOES NOT INCLUDE MOLD PROTRUSIONS. MOLD PROTRUSIONS NOT TO EXCEED 0.15 [.006].6 DIMENSION DOES NOT INCLUDE MOLD PROTRUSIONS.6.46 [.255] MOLD PROTRUSIONS NOT TO EXCEED 0.25 [.010].7 DIMENSION IS THE LENGTH OF LEAD FOR SOLDERING TO A SUBSTRATE.3X 1.27 [.050]8X 1.78 [.070]SO-8 Part Marking Information (Lead-Free)EXAMPLE: THIS IS AN IRF7101 (MOSFET)DATE CODE (YWW)P = DESIGPRODUCNATT (OPTIONAES LEAD-FREEL)Y =INTERNATIONALXXXXWW = LAST DIGIT OF THE YEAA = ASSEMBLY SIT WEEKRE CODERECTIFIERF7101LOGOLOT CODEPART NUMBERwww.irf.comhttp://oneic.com/7IRF7328PbF
SO-8 Tape and Reel
Dimensions are shown in milimeters (inches)
TERMINAL NUMBER 112.3 ( .484 )11.7 ( .461 )8.1 ( .318 )7.9 ( .312 )FEED DIRECTIONNOTES:1. CONTROLLING DIMENSION : MILLIMETER.2. ALL DIMENSIONS ARE SHOWN IN MILLIMETERS(INCHES).3. OUTLINE CONFORMS TO EIA-481 & EIA-1. 330.00(12.992) MAX.14.40 ( .566 )12.40 ( .488 )NOTES :1. CONTROLLING DIMENSION : MILLIMETER.2. OUTLINE CONFORMS TO EIA-481 & EIA-1.Data and specifications subject to change without notice.
This product has been designed and qualified for the Consumer market.
Qualifications Standards can be found on IR’s Web site.
IR WORLD HEADQUARTERS: 233 Kansas St., El Segundo, California 90245, USA Tel: (310) 252-7105
TAC Fax: (310) 252-7903
Visit us at www.irf.com for sales contact information.12/2010
8www.irf.com
http://oneic.com/
分销商库存信息:
IR
IRF7328TRPBF
IRF7328PBF
因篇幅问题不能全部显示,请点此查看更多更全内容
Copyright © 2019- sceh.cn 版权所有 湘ICP备2023017654号-4
违法及侵权请联系:TEL:199 1889 7713 E-MAIL:2724546146@qq.com
本站由北京市万商天勤律师事务所王兴未律师提供法律服务