您好,欢迎来到尚车旅游网。
搜索
您的当前位置:首页高中数学人教a版选修2-2(课时训练):2.3 数学归纳法(一) word版含答案

高中数学人教a版选修2-2(课时训练):2.3 数学归纳法(一) word版含答案

来源:尚车旅游网
2.3 数学归纳法(一)

[学习目标]

1.了解数学归纳法的原理.

2.能用数学归纳法证明一些简单的数学命题. [知识链接]

an1.对于数列{an},已知a1=1,an+1=(n∈N*),求出数列前4项,你能得到什么猜想?

1+an你的猜想一定是正确的吗?

1111

答 a1=1,a2=,a3=,a4=.猜想数列的通项公式为an=.不能保证猜想一定正确,需

234n要严密的证明.

2.多米诺骨牌都一一倒下只需满足哪几个条件?

答 (1)第一块骨牌倒下;(2)任意相邻的两块骨牌,前一块倒下一定导致后一块倒下.条件(2)事实上给出了一个递推关系,换言之就是假设第K块倒下,则相邻的第K+1块也倒下. 3.类比问题2中的多米诺骨牌游戏的原理,想一想如何证明问题1中的猜想?

答 (1)当n=1时,猜想成立;(2)若当n=k时猜想成立,证明当n=k+1时猜想也成立. [预习导引] 1.数学归纳法

证明一个与正整数n有关的命题,可按下列步骤进行: ①(归纳奠基)证明当n取第一个值n0(n0∈N*)时命题成立;

②(归纳递推)假设当n=k(k≥n0,k∈N*)时命题成立,证明当n=k+1时命题也成立. 2.应用数学归纳法时注意几点:

(1)用数学归纳法证明的对象是与正整数n有关的命题. (2)在用数学归纳法证明中,两个基本步骤缺一不可.

(3)步骤②的证明必须以“假设当n=k(k≥n0,k∈N*)时命题成立”为条件.

要点一 正确判断命题从n=k到n=k+1项的变化

111n+

例1 已知f(n)=1+++…+(n∈N*),证明不等式f(2n)>时,f(2k1)比f(2k)多的项数是

23n2________. 答案 2k

解析 观察f(n)的表达式可知,右端分母是连续的正整数,

111111111

f(2k)=1+++…+k,而f(2k+1)=1+++…+k+k+k+…+k. 2322322+12+22+2k因此f(2k+1)比f(2k)多了2k项.

规律方法 在书写f(k+1)时,一定要把包含f(k)的式子写出来,尤其是f(k+1)中的最后一项.除此之外,多了哪些项,少了哪些项都要分析清楚.

111

跟踪演练1 设f(n)=1+++…+(n∈N*),那么f(n+1)-f(n)等于________.

233n-1答案

111

++ 3n3n+13n+2

111

解析 ∵f(n)=1+++…+,

233n-1

111111

∴f(n+1)=1+++…++++,

233n-13n3n+13n+2111

∴f(n+1)-f(n)=++. 3n3n+13n+2要点二 证明与自然数n有关的等式

11111111

例2 已知n∈N*,证明:1-+-+…+-=++…+. 2342n2n-12nn+1n+2111

证明 (1)当n=1时,左边=1-=,右边=,

222等式成立;

(2)假设当n=k(k≥1,且k∈N*)时等式成立,即: 11111

1-+-+…+- 2342k-12k=

111++…+.

2kk+1k+2

则当n=k+1时,

111111

左边=1-+-+…+-+ 2342k-12k2k+1-1

-=

1

2k+1

11111++…++-

2k2k+12k+1k+1k+2

11111-1

=++…+++k+12k+1

2k2k+1k+2k+3=

111

++…++

k+1+1k+1+2k+1+k

1

=右边;

2k+1

所以当n=k+1时等式也成立. 由(1)(2)知对一切n∈N*等式都成立.

规律方法 (1)用数学归纳法证明命题时,两个步骤缺一不可,且书写必须规范;

(2)用数学归纳法证题时,要把n=k时的命题当作条件,在证n=k+1命题成立时须用上假设.要注意当n=k+1时,等式两边的式子与n=k时等式两边的式子的联系,弄清楚增加了哪些项,减少了哪些项,问题就会顺利解决. 跟踪演练2 用数学归纳法证明:

1111-12=n+1. 1-1-1-·当n≥2,n∈N*时,…·4916n2n

2+1313

证明 (1)当n=2时,左边=1-=,右边==,∴n=2时等式成立.

442×24(2)假设当n=k(k≥2,k∈N*)时等式成立, k+11111

1-1-1-…1-2=即4916k2k, 那么当n=k+1时,

1k+11k+12-1k+211111-1-1-…1-21-1-=·= 2=4916kk+122kk+12kk+12k+1k+1+1=. 2k+1

∴当n=k+1时,等式也成立.

根据(1)和(2)知,对任意n≥2,n∈N*,等式都成立. 要点三 证明与数列有关的问题

例3 某数列的第一项为1,并且对所有的自然数n≥2,数列的前n项之积为n2. (1)写出这个数列的前五项;

(2)写出这个数列的通项公式,并加以证明. 解 (1)已知a1=1,由题意得a1·a2=22, 32∴a2=2,∵a1·a2·a3=3,∴a3=2. 2

2

2

4252

同理可得a4=2,a5=2. 34

91625

因此这个数列的前五项为1,4,,,. 4916

(2)观察这个数列的前五项,猜测数列的通项公式应为:

1 n=1,a=n

n≥2,n-1n

2

2

n2

下面用数学归纳法证明当n≥2时,an=.

n-12222

①当n=2时,a2=2=2, 2-1所以等式成立.

②假设当n=k(k≥2,k∈N+)时,结论成立, k2即ak=,

k-12

则当n=k+1时,∵a1·a2·…·ak-1=(k-1)2, ∴a1·a2·…·ak+1=(k+1)2. ∴ak+1=

a1·a2·…·ak-1·ak

k+12k-12k+12

=·=, k-12[k+1-1]2[k+1-1]2所以当n=k+1时,结论也成立.

根据①②可知,当n≥2时,这个数列的通项公式是

k+12

1 n=1,n

a=,∴a=n

n≥2.n-1

n-12

n

2

n

2

2

规律方法 (1)数列{an}既不是等差数列,又不是等比数列,要求其通项公式,只能根据给出的递推式和初始值,分别计算出前几项,然后归纳猜想出通项公式an,并用数学归纳法加以证明.

(2)数学归纳法是重要的证明方法,常与其他知识结合,尤其是数学中的归纳,猜想并证明或与数列中的不等式问题相结合综合考查,证明中要灵活应用题目中的已知条件,充分考虑“假设”这一步的应用,不考虑假设而进行的证明不是数学归纳法. nn+11

跟踪演练3 数列{an}满足:a1=,前n项和Sn=an,

62(1)写出a2,a3,a4;

(2)猜出an的表达式,并用数学归纳法证明. 2×2+1

解 (1)令n=2,得S2=a2,

21

即a1+a2=3a2,解得a2=.

123×3+1

令n=3,得S3=a3,

21

即a1+a2+a3=6a3,解得a3=.

204×4+1

令n=4,得S4=a4,

21

即a1+a2+a3+a4=10a4,解得a4=. 30

1

(2)由(1)的结果猜想an=,下面用数学归纳法给予证明:

n+1n+211

①当n=1时,a1==,结论成立.

61+11+2

1

②假设当n=k(k∈N*)时,结论成立,即ak=,

k+1k+2k·k+1

则当n=k+1时,Sk=ak,

2k+1k+2Sk+1=ak+1,

2

① ②

k+1k+2k·k+1

②与①相减得ak+1=ak+1-ak,

22

k+1k+1111

整理得ak+1=ak=·==,

k+3k+3k+1k+2k+2k+3[k+1+1][k+1+2]即当n=k+1时结论也成立.

由①、②知对于n∈N*,上述结论都成立.

1.若命题A(n)(n∈N*)在n=k(k∈N*)时命题成立,则有n=k+1时命题成立.现知命题对n=n0(n0∈N*)时命题成立,则有( ) A.命题对所有正整数都成立

B.命题对小于n0的正整数不成立,对大于或等于n0的正整数都成立

C.命题对小于n0的正整数成立与否不能确定,对大于或等于n0的正整数都成立 D.以上说法都不正确 答案 C

解析 由已知得n=n0(n0∈N*)时命题成立,则有n=n0+1时命题成立;在n=n0+1时命题成立的前提下,又可推得n=(n0+1)+1时命题也成立,依此类推,可知选C. 2.用数学归纳法证明“1+a+a+…+a所得项为( ) A.1+a C.1+a+a2+a3 答案 C

解析 将n=1代入a2n+1得a3,故选C.

3.用数学归纳法证明1+2+22+…+2n1=2n-1(n∈N*)的过程如下:

22n+1

1-a2n2

=(a≠1)”.在验证n=1时,左端计算

1-a

B.1+a+a2 D.1+a+a2+a3+a4

(1)当n=1时,左边=1,右边=21-1=1,等式成立.

(2)假设当n=k(k∈N*)时等式成立,即1+2+22+…+2k1=2k-1,则当n=k+1时,1+2

+2+…+2

2k-1

1-2k1k+1

+2==2-1.所以当n=k+1时等式也成立.由此可知对于任何n

1-2

k

∈N*,等式都成立.上述证明的错误是________. 答案 未用归纳假设

解析 本题在由n=k成立,证n=k+1成立时,应用了等比数列的求和公式,而未用上假设条件,这与数学归纳法的要求不符.

111111111

4.当n∈N*时,Sn=1-+-+…+-,Tn=+++…+,

2342n2n-12nn+1n+2n+3(1)求S1,S2,T1,T2;

(2)猜想Sn与Tn的关系,并用数学归纳法证明.

111111111

解 (1)∵当n∈N*时,Sn=1-+-+…+-,Tn=+++…+.

2342n2n-12nn+1n+2n+3111117

∴S1=1-=,S2=1-+-=,

222341211117

T1==,T2=+=. 1+122+12+212

111111111(2)猜想Sn=Tn(n∈N*),即1-+-+…+-=+++…+(n∈

2342n2n-12nn+1n+2n+3N*).

下面用数学归纳法证明: ①当n=1时,已证S1=T1,

②假设n=k时,Sk=Tk(k≥1,k∈N*),

111111111

即1-+-+…+-=+++…+,

2342k2k-12kk+1k+2k+31111则Sk+1=Sk+-=Tk+- 2k+12k+12k+12k+1=

111111+++…++-

2k2k+12k+1k+1k+2k+3

11111-1

=++…+++ 2k2k+1k+12k+1k+2k+3=

1111

++…++ k+1+1k+1+22k+12k+1

=Tk+1.

由①,②可知,对任意n∈N*,Sn=Tn都成立.

在应用数学归纳法证题时应注意以下几点:

(1)验证是基础:找准起点,奠基要稳,有些问题中验证的初始值不一定为1;

(2)递推是关键:正确分析由n=k到n=k+1时式子项数的变化是应用数学归纳法成功证明

问题的保障;

(3)利用假设是核心:在第二步证明中一定要利用归纳假设,这是数学归纳法证明的核心环节,否则这样的证明就不是数学归纳法证明.

一、基础达标

1.某个命题与正整数有关,如果当n=k(k∈N*)时,该命题成立,那么可推得n=k+1时,该命题也成立.现在已知当n=5时,该命题成立,那么可推导出( ) A.当n=6时命题不成立 立

C.当n=4时命题不成立 立 答案 B

2.一个与正整数n有关的命题,当n=2时命题成立,且由n=k时命题成立可以推得n=k+2时命题也成立,则( )

A.该命题对于n>2的自然数n都成立 B.该命题对于所有的正偶数都成立 C.该命题何时成立与k取值无关 D.以上答案都不对 答案 B

解析 由n=k时命题成立可以推出n=k+2时命题也成立.且n=2,故对所有的正偶数都成立.

1

3.在应用数学归纳法证明凸n边形的对角线为n(n-3)条时,第一步验证n等于( )

2A.1 C.3 答案 C

解析 因为是证凸n边形,所以应先验证三角形,故选C. 111

4.若f(n)=1+++…+(n∈N*),则n=1时f(n)是( )

232n+1A.1 11

C.1++

23答案 C

1B. 3

D.以上答案均不正确 B.2 D.0

D.当n=4时命题成B.当n=6时命题成

5.用数学归纳法证明1+2+22+…+2n1=2n-1(n∈N*)的过程中,第二步假设当n=k(k

∈N*)时等式成立,则当n=k+1时应得到________. 答案 1+2+22+…+2k1+2k=2k-1+2k

解析 由n=k到n=k+1等式的左边增加了一项.

111

6.已知f(n)=++…+(n∈N*),则f(k+1)=________.

n+1n+23n-11111

答案 f(k)+++- 3k3k+13k+2k+1

11112*

1-1-1-…1-7.用数学归纳法证明=345n+2n+2(n∈N). 1222

证明 (1)当n=1时,左边=1-=,右边==,等式成立.

331+23(2)假设当n=k(k≥1,k∈N*)时等式成立,即 121-11-11-1…1-=345k+2k+2, 当n=k+1时,

112k+221-121-11-11-1…1-1-·===345k+2k+3k+2k+3k+2k+3k+3=2

k+1+2

所以当n=k+1时等式也成立.

由(1)(2)可知,对于任意n∈N*等式都成立. 二、能力提升

8.用数学归纳法证明等式(n+1)(n+2)…(n+n)=2n·1·3·…·(2n-1)(n∈N*),从k到k+1左端需要增乘的代数式为( ) A.2k+1 2k+1C.

k+1答案 B

解析 n=k+1时,左端为(k+2)(k+3)…[(k+1)+(k-1)]·[(k+1)+k]·(2k+2)=(k+1)(k+2)…(k+k)·(2k+1)·2,∴应增乘2(2k+1). 11119.已知f(n)=+++…+2,则( )

nn+1n+2n

B.2(2k+1) 2k+3

D.

k+1

11

A.f(n)有n项,当n=2时,f(2)=+

23111

B.f(n)有n+1项,当n=2时,f(2)=++ 23411

C.f(n)有n2-n项,当n=2时,f(2)=+

23111

D.f(n)有n2-n+1项,当n=2时,f(2)=++

234答案 D

解析 观察分母的首项为n,最后一项为n2,公差为1, ∴项数为n2-n+1.

10.以下用数学归纳法证明“2+4+…+2n=n2+n(n∈N*)”的过程中的错误为________. 证明:假设当n=k(k∈N*)时等式成立,即2+4+…+2k=k2+k,那么2+4+…+2k+2(k+1)=k2+k+2(k+1)=(k+1)2+(k+1),即当n=k+1时等式也成立.因此对于任何n∈N*等式都成立.

答案 缺少步骤(1),没有递推的基础 11.用数学归纳法证明:

--nn+112-22+32-42+…+(-1)n1·n2=(-1)n1·.

2

证明 (1)当n=1时,左边=1, 1×2

右边=(-1)1-1×=1,结论成立.

2(2)假设当n=k时,结论成立. 即1-2+3-4+…+(-1)

2

2

2

2

k-12

k=(-1)

k-1

kk+1·,

2

那么当n=k+1时,

12-22+32-42+…+(-1)k-1k2+(-1)k(k+1)2 kk+1

=(-1)k-1·+(-1)k(k+1)2

2-k+2k+2

=(-1)k·(k+1) 2k+1k+2

=(-1)k·

2

k+1[k+1+1]

=(-1)k+1-1·. 2

即n=k+1时结论也成立.

由(1)(2)可知,对一切正整数n都有此结论成立.

12.已知数列{an}的第一项a1=5且Sn-1=an(n≥2,n∈N*),Sn为数列{an}的前n项和. (1)求a2,a3,a4,并由此猜想an的表达式; (2)用数学归纳法证明{an}的通项公式. (1)解 a2=S1=a1=5,a3=S2=a1+a2=10, a4=S3=a1+a2+a3=5+5+10=20,

5 n=1

猜想an=.

n-2*

5×2 n≥2,n∈N

(2)证明 ①当n=2时,a2=5×22-2=5,公式成立. ②假设n=k(k≥2,k∈N*)时成立, 即ak=5×2k-2,

当n=k+1时,由已知条件和假设有 ak+1=Sk=a1+a2+a3+…+ak =5+5+10+…+5×2k-2.

51-2k-1

=5+=5×2k-1=5×2(k+1)-2.

1-2故n=k+1时公式也成立.

由①②可知,对n≥2,n∈N*,有an=5×2n-2. 所以数列{an}的通项公式为

5 n=1an=. n-2*

5×2 n≥2,n∈N

三、探究与创新

13.已知数列{an}的前n项和Sn=1-nan(n∈N*). (1)计算a1,a2,a3,a4;

(2)猜想an的表达式,并用数学归纳法证明你的结论. 1111解 (1)计算得a1=;a2=;a3=;a4=.

261220

1

(2)猜想an=.下面用数学归纳法证明:

nn+1①当n=1时,猜想显然成立.

1

②假设n=k(k∈N*)时,猜想成立,即ak=.

kk+1那么,当n=k+1时,Sk+1=1-(k+1)ak+1, 即Sk+ak+1=1-(k+1)ak+1. k

又Sk=1-kak=,

k+1

k所以+ak+1=1-(k+1)ak+1,

k+1从而ak+1=

11

=. k+1k+2k+1[k+1+1]

即n=k+1时,猜想也成立.故由①和②可知,猜想成立

因篇幅问题不能全部显示,请点此查看更多更全内容

Copyright © 2019- sceh.cn 版权所有 湘ICP备2023017654号-4

违法及侵权请联系:TEL:199 1889 7713 E-MAIL:2724546146@qq.com

本站由北京市万商天勤律师事务所王兴未律师提供法律服务