1.1 电力系统概述
由发电、变电、输电、配电和用电等环节组成的电能生产与消费系统。它的功能是
将自然界的一次能源通 过发电动力装置(主要包括锅炉、汽轮机、发电机及电厂辅助生产系统等)转化成电能,再经输、变电系统及配电系统将电能供应到各负荷中心。由于电源点与负荷 中心多数处于不同地区,也无法大量储存,电能生产必须时刻保持与消费平衡。因此,电能的集中开发与分散使用,以及电能的连续供应与负荷的随机变化,就制约 了电力系统的结构和运行。据此,电力系统要实现其功能,就需在各个环节和不同层次设置相应的信息与控制系统,以便对电能的生产和输运过程进行测量、调节、 控制、保护、通信和调度,确保用户获得安全、经济、优质的电能。
电能是一种清洁的二次能源。由于电能不仅便于输送和分配,易于转换为其它的能源,而且便于控制、管理和调度,易于实现自动化。因此,电能已广泛应用于国民经济、社会生产和人民生活的各个方面。绝大多数电能都由电力系统中发电厂提供,电力工业已成为我国实现现代化的基础,得到迅猛发展。到2003年底,我国发电机装机容量达38450万千瓦,发电量达19080亿度,居世界第2位。工业用电量已占全部用电量的50~70%,是电力系统的最大电能用户,供配电系统的任务就是企业所需电能的供应和分配。电力系统的出现,使高效、无污染、使用方便、易于的电能得到广泛应用,推动了社会生产各个领域的变化,开创了电力时代,发生了第二次技术。电力系统的规模和技术水准已成为一个国家经济发展水平的标志之一。
我国的电力系统从50年始迅速发展。到1991年底,电力系统装机容量为14600万千瓦,年发电量为6750亿千瓦时,均居世界第四位。输电线路以220 千伏、330千伏和500千伏为网络骨干,形成4个装机容量超过1500万千瓦的大区电力系统和9个超过百万千瓦的省电力系统,大区之间的联网工作也已开 始。此外,19年,省建立了装机容量为1659万千瓦的电力系统。
1.2 毕业设计的主要内容及基本思想
本次毕业设计的主要内容是一个4*200MW火力发电厂的电气部分设计。在这次设计中一共分通过以下几个步骤来五年成本次的设计任务。
1.2.1毕业设计的主要内容、功能及技术指标
1、电厂规模:
装机容量: 装机6台,容量分别为 4X60MW, UN=10.5KV
机组年利用小时数: Tmax=6200h
气象条件:年最高温度40度,平均气温25度,气象条件一般,无特殊要求 厂用电率:8%。 2、主要技术指标:
(1) 保证供电安全、可靠、经济; (2) 功率因数达到0.9及以上 3、主要内容:
(1)确定主接线:根据设计任务书,分析原始资料与数据,列出技术上可能实现的2—3个方案,经过技术经济比较,确定最优方案。 (2)选择主变压器:选择变压器的容量、台数、型号等。
(3)短路电流计算:根据电气设备选择和继电保护整定的需要,选择短路计算点,绘制等值网络图,计算短路电流,并列表汇总。
(4)电气设备的选择:选择并校验断路器、隔离开关、电抗器、电流互感器、电压互感器、母线、电缆、避雷器等,选用设备的型号、数量汇总成设备一览表; (5)主变压器继电保护的整定计算及配置
1.2.2毕业设计的基本思想及设计工作步骤
1、主接线的设计
发电厂的主接线是保证电网的安全可靠、经济运行的关键,是电气设备布置、选择、自动化水平和二次回路设计的原则和基础。
电气主接线的设计原则是:应根据发电厂在电力系统的地位和作用,首先应满足电力系统的可靠运行和经济调度的要求。根据规划容量、本期建设规模、输送电压等级、进出线回路数、供电负荷的重要性、保证供需平衡、电力系统线路容量、电气设备性能和周围环境及自动化规划与要求等条件确定。应满足可靠性、灵活性和经济性的要求。
2、主变压器的选择
发电厂200MW及以上机组为发电机变压器组接线时的主变压器应满足DL5000—2000《火力发电厂设计技术规程》的规定:“变压器容量可按发电机的最大连续容量扣除一台厂用变压器的计算负荷和变压器绕组的平均温度或冷却水温度不超过
650C的条件进行选择”。 3、短路电流的计算
短路就是指不同电位的导电部分包括导电部分对地之间的低阻性短接。短路电流计算是发电厂和变电所电气设计的主要计算项目,它涉及接线方式及设备选择。工程要求系统调度或系统设计部门提供接入本电厂和变电所的各级电压的的综合阻抗值,由电气专业负责计算。 进行短路计算的目的是为了短路的危害和缩小故障的影响范围。三相短路是危害最严重的短路形式,因此,三相短路电流是选择和校验电器和导体的基本依据。
4、电气设备的选择
选择并校验断路器、隔离开关、电抗器、电流互感器、电压互感器、母线、电缆、避雷器等,选用设备的型号
正确的选择电气设备的目的是为了事导体和电器无论在正常情况或故障情况下,均能安全、及经济合理的运行、在进行设备选择时,应根据工程实际情况、在保证安全、可靠的前提下,积极而稳妥的采取新技术,并注意节约投资,选择合适的电气设备。 5、主变压器继电保护的设计
继电保护是保证系统安全和设备可靠运行的关键装置之一。当电力系统和设备发生故障时,继电保护应准确、可靠快速的切出故障,保证系统和设备的安全发供电,并能保证其他设备的正常继续运行。
为防止变压器发生各类故障和不正常运行造成的不应有的损失以及保证电力系统安全连续运行,变压器应设置相应的保护。
2 4*200MW 火力发电厂电气主接线的确定
2.1 概 述
电气主接线是发电厂、变电所电气设计的首要部分,也是构成电力系统的重要环节。主接线的确定对电力系统整体及发电厂、变电所本身的运行的可靠性、灵活性和经济性密切相关。并且对电气设备选择、配电装置配置、继电保护和控制方式的拟定有较大的影响。因此,必须正确处理好各方面的关系,全面分析有关影响因素,通过技术经济比较,合理确定主接线的方案。
发电厂的电气主接线是保证电力网安全可靠、经济运行的关键,是电气设备布置、选择、自动化水平和二次回路设计的原则和基础。
2.1.1电气主接线设计的重要性
首先,电气主接线图示电气运行人员进行各种操作和事故处理的重要依据,因此电气运行人员必须熟悉本厂电气主接线土,了解电路中各种电器设备的用途、性能及维护、检察项目和运行的步骤。其次,电气主接线表明了发电机、变压器、断路器和线路等电气设备的数量、规格、连接方式及可能的运行方式。电气主接线直接关系着全厂电气设备的选择、配电装置的布置、继电保护和自动装置的确定。是发电厂电气部分投资大小的决定性因素。再次,由于电能生产的特点是:发电、变电、书电荷用电视在同一时刻完成的,所以主接线的好坏,直接关系着电力系统的安全、稳定、灵活和经济运行,也直接影响到工农业生产和人民生活。
所以电气主接线的拟定是一个综合性的问题,必须在满足国家有关技术经济的前提下,力争使其技术先进,经济合理,安全可靠。
2.1.2电气主接线的设计依据
1、发电厂在电力系统中的地位和作用
电力系统中的发电厂有大型主力电厂、中小型地区电厂及企业自备电厂三种类型。大型主力或电厂靠近煤矿或沿海、沿江,并接入300-500KV超高压系统;地区电厂靠近城镇,一般接入110-220KV系统,也有接入330KV系统;企业自备电厂则以本企业供电供热为主,并与地区110-220KV系统相连。中小型电厂常有发电机电压馈线向附近供电。
2、负荷大小和重要性
(1)对于一级负荷必须有两个电源供电,切当任何一个电源失去后,能保证对全部一级负荷不间断供电。
(2)对于二级负荷一般要有两个电源供电,且当任何一个电源失去后,能保证全部或大部分二级负荷的供电。
(3)对于三级负荷一般只需一个电源供电。
2.1.3电气主接线的主要要求
电气主接线的设计原则是:根据发电厂在电力系统的地位和作用,首先应满足电力系统的可靠运行和经济调度的要求。根据规划容量、本期建设规模、输送电压等级、进出线回路数、供电负荷的重要性、保证供需平衡、电力系统线路容量、电气设备性能和周围环境及自动化规划与要求等条件确定。应满足可靠性、灵活性和经济性的要求。 (1) 可靠性:衡量可靠的标准,一般是根据主接线型式机主要设备操 作的可能方式,按一定的规律计算出“不允许”事件发生的规律,停运的持续时间期望值等指标,对几种主接线型式中择优。所谓“不允许”事故,是指发生故障后果非常严重的事故,如全部电源津县停运、朱变压器停运,全场停电事故等。供电可靠性是电力生产和分配的首要要求,主接线首先应满足这个要求。
(2) 灵活性:是指在调度时,可以灵活的投入和切除发电机、变压器和线路,调配电源和负荷,满足系统在事故运行方式、检修运行方式以极特殊运行方式下的系统电镀要求;在检修时,可以方便的停运断路器、母线及其继电保护设备,而不致影响电力网的运行和对用户的供电;在扩建时,可以容易的从初期接线扩建到最终接线,在不影响连接供电或停电时间最短的情况下,投入新机组、变压器或线路,并对一次和二次部分的改建工作量最少。在操作时间便、安全、不易发生误操作的“方便性”。 (3) 主接线应在满足供电可靠性、灵活性要求的前提下做到经济性。即:
主接线应力求简单,以节省断路器、隔离开关、电流和电压互感器等一次设备,要是控制、保护不过于复杂,要能短路电流,以便于选择价廉的电气设备或轻型电器。做到投资省。合理的选择主变压器的种类(双绕组、三绕组或自耦变等)容量、台数,避免两次变压而增加电能的损失。电器主接线选择时要为配电装置的布置创造条件,尽量使占地面积减少。
2.2 电气主接线的选择
发电厂的主接线的基本环节是电源(发电机或变压器)和引出线。母线(又称汇流
母线)是中间环节,它起着汇总和分配电能的作用。由于多数情况下引出线数目要比电源数目多好几倍,故在二者之间采用母线连接既有利于电能交换,还可以使接线简单明了和运行方便。
2.2.1主接线的基本形式
1、单母线接线
只有一组母线的接线如图1-1所示是一个典型的单母线接线图。这种接线的特点是电源和供电线路都联在同一母线上。为了便于投入或切除任何一条进、出引线每条引线上都装有可以切除符合电流和故障电流的断路器。
单母线接线的主要优点是:接线简单、清晰、采用设备少,投资省,操作方便,便于扩建和采用成套配电装置。单母线接线一般只适用于一台发电机或一台变压器的以下三种情况:
(1)6~10KV配电装置的出线回数不超过5回; (2)35~63KV配电装置的出线回数不超过3回; (3)110~220KV配电装置的出线回数不超过3回。
单母线接线最严重的缺陷是母线停运(母线检修、故障,线路故障后线路保护或断路器拒运)将使全部支路停运,即停电范围为该母线段的100%,且停电时间很长,若为母线自身损坏须待母线修复之后方能恢复各支路运行。
线路母线电源T1T2T1T2单母线接线单母线分段接线图2-1图2-2
隔离开关作为操作电器,所以断路器和隔离开关在正常运行操作时,必须严格遵守
操作顺序;隔离开关“先合后断”或在等电位状态下进行操作。 2、单母线分段接线
单母线接线的缺点可以通过将母线分段的办法来克服。如图2-2所示。当母线的中间装设一个断路器后,即把母线分为两段,这样对重要的用户可以由分别接于两段母线
上的两条线路供电。
由于单母线分段接线既保留了单母线接线本身的简单、经济、方便等基本优点,又在一定程度上克服了它的缺点,所以这种接线目前仍被广泛应用。单母线分段接线适用范围:
(1)6~10KV配电装置的出线回数为6回及以上时; (2)35~63KV配电装置的出线回数为4~8回时; (3)110~220KV配电装置的出线回数为3~4回时。
单母线分段有其如下优点:用断路器把母线分段后,对重要的用户可以从不同的段引出两条回路,有两个电源供电;当一段母线发生故障,分段断路器会自动将故障段切除,保证正常段母线不间断供电和不致使重要用户停电。
但是单母线分段接线也有较显著的缺点,就是当一段母线或母线隔离开关发生故障或检修时,该段母线上所连接的全部引线都要在检修期间停电;当出线为双回路时,需时架空线路出现交叉跨越;扩建时须向两个方向均衡扩建。显然对于大容量发电厂来说,这都是不允许的。因此,还要改进。 3、双母线接线
双母线接线是根据单母线接线的缺点提出来的,如图2-3所示。双母线接线,其中一组为工作母线,以组为备用母线,并通过母联断路器并联运行,在进行道砟操作时应注意,隔离开关的操作原则是:在等电位下操作或先通后断。它可以有两种运行方式,一种是固定连接分段运行方式。即一些电源与出线固定连接在一组母线上,母联断路器合上,相当于单母线分段运行。另一种工作方式相当于单母线运行方式。很显然双母线分段的可靠性高于前两种接线方式,只是母线保护较复杂。然而它比单母线分段接线的投资更大。
电源1图2-3 双母线接线电源2
如检修工作母线是其操作步骤是:先合上母线断路器两侧的隔离开关,再合母线断路器,向备用线充电,这是两组母线等电位。为保证不中断供电,应先接通备用母线上的隔离开关,再断开工作母线上的隔离开关。完成母线转换后,在断开母联断路器及其
两侧的隔离开关,即可对原工作母线进行检修。 双母线接线的适用范围:
(1)6~10KV配电装置,当短路电流较大,出线需要带电抗器时;
(2)35~63KV配电装置的出线回数超过8回火连接电源较多、负荷较大时; (3)110~220KV配电装置的出线回数为5回以上时,或110~220KV配电装置,在系统中居重要地位,出线回数在4回以上时。 双母线接线的优点有:
a供电可靠。通过两组母线隔离开关的倒闸操作,可以轮流检修一组母线而不致使供电中断,一组母线故障后,能迅速恢复供电,检修任一回路的母线隔离开关,只停该回路。
b调度灵活。各个电源和各个回路负荷可以任意分配到某一组母线上能灵活的适应系统中各种运行方式调度和潮流变化的需要。
c 扩建方便。向双母线的左右任何一个方向扩建,均不影响两组母线单位电源和符合均匀分配,不会引起原有回路的停电。当有双回架空线路时,可以顺序布置,以至界限不同的母线断路时不回如单母线分段那样导致出线交叉跨越。
d 便于实验。当个别回路需要单独进行实验时,可将该回路分开,单独接至一组母线上。
双母线接线也有其缺点:
a 增加一组母线和使每回路就须加一组母线隔离开关。
b 当母线故障或检修时隔离开关作为倒换操作电器,容易误操作。为了避免隔离开关误操作,需要隔离开关和断路器之间装设连锁装置。
35-330KV35-220KV110-330KV110-330kv变电所(a )(b) (c ) 图2-4 单元接线
4、变压器-线路单元接线
发电机和变压器直接连接成一个单元,组成发电机-变压器组,称为单元接线。单元接线的特点是几个元件直接单独连接,其间没有任何横的联系(如母线等),这样不仅减少了电器的数目,简化了配电装置的结构和降低了造价,同时也大大减少了故障的可能性。
(1)发电机-双绕组变压器组成的单元接线。在图2-4(a)和(b)中,发电机和变压器成为一个单元组,电能经升压后直接进入高压电网。这种接线由于发电机和变压器都不能单独运行,因此,二者的容量应当相等。单元接线的基本缺点是原件之一损坏或检修时,整个单元将被迫停止工作。这种接线形式适用于大型的发电厂。
(2)发电机-变压器-线路单元接线。如图2-4(c)所示,这种接线不需在发电厂或变电所中建造高压配电装置,从而大大减小了占地面积与造价,并简化了运行。但这种接线的采用却具有相同的局限性,线路故障或检修时,变压器停运;变压器故障或检修时,线路停运。 5、桥型接线
WL1WL2WL1WL2QF1QF2QF1QF3QF3 QF2T1T2T1T2(a) (b) 图 2-5 前形接线(a)内桥式 (b)外桥式
两个“变压器-线路”连接,便构成桥型接线。。桥型接线分为内桥接线和外桥接线两种,如图2-5所示。 (1) 内桥型接线
优点:高压断路器数量少,四个回路只需三台断路器。
缺点:a 变压器的切除和投入较复杂,需动作两台断路器,影响一回线路的暂时
停运。
b 桥联断路器检修时,两个回路需解裂运行。
c 出线断路器检修时,线路需较长时期停运。为避免此缺点,可加装正常段
开运行的跨条,为了轮流停电检修任何一组隔离开关,再跨条上需加装两组隔离开关。桥联断路器检修时,也可利用此跨条。
适用范围:适用于较小容量的发电厂、变电所,并且变压器不经常切换或线路较长,
故障率较高的情况下。
(2) 外桥型接线
优点:高压断路器数量少,四个回路只需三台断路器。
缺点:a 线路的投入和切除较复杂,需动作两台断路器,并有一台变压器暂时停运。 b 牵连断路器检修时,两个回路需解裂运行。
c 变压器侧断路器检修时,变压器需较长时间停运。为避免此缺点,可加装
正常段开运行的跨条,桥联断路器检修时也可利用此跨条。
适用范围:适用于较小容量的发电厂、变电所,并且变压器切换或线路较短时,故障率较少的情况下。此外,线路有穿越功率时,也宜采用外桥型接线。
2.2.2主接线的设计
1、毕业设计的技术背景和设计依据
(1)电厂规模:
装机容量: 装机4台,容量分别为 4X200MW, UN=10.5KV
机组年利用小时数: Tmax=6200h
气象条件:年最高温度40度,平均气温25度,气象条件一般,无特殊要求 厂用电率:8%。 (2)出线回数:
a.10KV电压等级:15km电缆馈线10回,每回平均输送容量1.8MW。10KV最大负荷20MW,最小负荷16MW,cos =0.85, Tmax=5300h,为Ⅰ类、Ⅱ类负荷。
b. 110KV电压等级:60km架空出线6回,每回平均输送容量11MW。110KV最大负荷70MW,最小负荷60MW,cos =0.8, Tmax=5000h,为Ⅱ类负荷。
c.220KV电压等级:150km架空线2回,220KV与无穷大系统连接,接受该发电厂的剩余功率。当取基准容量为100MV.A时,系统归算到220KV母线上的电抗为0.025。 2、主接线的方案 (1) 方案一
a.220KV电压等级的方案选择。
由于220KV 电压等级的电压馈线数目是2回,所以220 KV电压等级的接线形式可以选择单母线接线形式。由于单母线接线本身的简单、经济、方便等基本优点,采用设备少、投资省、操作方便、便于扩建和采用成套配电设备装置,所以220 KV电压等级的接线形式选择为单母线接线。 b.110KV电压等级的方案选择。
由于110KV电压等级的电压馈线数目是6回,所以在本方案中的可选择的接线
形式是单母线分段接线。单母线的优点如下:①母线经断路器分段后,对重要用户可以从不同段引出两个回路,有两个电源供电;②一段母线故障(或检修) 时,仅停故障(或检修)段工作,非故障段仍可继续工作。 c.10KV电压等级的方案选择。
由于10KV电压等级的电压馈线数目是10回,所以在本方案中的可选择的接线形式是单母线分段接线。用断路器把母线分段后,对重要的用户可以从不同的段引出两条回路,有两个电源供电;当一段母线发生故障,分段断路器会自动将故障段切除,保证正常段母线不间断供电和不致使重要用户停电。
所以可以将主接线形式表示如图2-6所示。
110KV220KV3#4#10KV1#2#
图2-6 方案一接线图
(2) 方案二
a.220KV电压等级的方案选择。
由于220KV 电压等级的电压馈线数目是2回,所以220 KV电压等级的接线形式可以选择单母线接线形式。由于单母线接线本身的简单、经济、方便等基本优点,采用设备少、投资省、操作方便、便于扩建和采用成套配电设备装置,所以220 KV电压等级的接线形式选择为单母线接线。 b.110KV电压等级的方案选择。
由于110KV电压等级的电压馈线数目是6回,所以在本方案中的可选择的接线形式是双母线接线形式。由于双母线接线的可靠性和灵活性高,它可以轮流检修母线,而不中断对用户的供电;当检修任意回路的母线隔离开关时,只需断开该回路;工作母线故障时,可将全部回路转移到备用母线上,从而使用户迅速恢复供电;可用母联断路器代替任意回路需要检修的断路器,在种情况下,只需短时停电;在个别回路需要单独进行试验时,可将该回路分离出来,并单独接至备用母线上。双母线接线形式正好克服了单母线分段接线形式的缺点,所以在大、中型发电厂中这种接线形式被广泛应用。
6回„„ 110KV220KV3#4#10KV1#2# 图2-7 方案二接线图 c.10KV电压等级的方案选择。
在方案二中的10KV电压等级的接线形式仍然选择单母线分段接线形式。因为在进行主接线的设计中,必须时时刻刻考虑到可靠性、灵活性和经济行动要求。 (3)方案三
方案三的电气主接线形式在220KV电压等级的方案选择和110KV电压等级的方案选择基本相同,在这里就不再作详细的介绍。唯一不同的是在10KV电压等级上将原来方案一的220KV电压等级两个上的发电机组全部放置到了10KV电压等级上,具体到电气接线图如图2-8所示。
2.2.3方案的选择
设计发电厂的电气主接线时,首先应按技术要求确定可能选用的方案。当有多个方案在技术上相当时,则需进行经济比较。 技术上可行方案的选择
设计发电厂主接线时在技术上应考虑的主要问题是:1)保证全系统运行的稳定性,不应再本厂、站内的故障造成系统的瓦解;2)保证负荷、特别是重要负荷供电的可靠性及电能质量;3)各设备、特别要注意高、中压联络变压器的过载是否在允许范围内。
110KV10KV
图2-8 方案三接线图
在上述三种方案中,他们在技术上都是有显著差异的,在不同的技术等级中,都有差异。单母线分段在投资上是比双母线接线的投入要小的,而双母线接线的可靠性又比单母线分段接线的可靠性高。根据设计任务书中的要求,在110KV电压等级上的出线 上为二类负荷,对这类用户可以进行短暂的停电,并不会造成人身危险以及设备的破坏,也不会给国民经济带来巨大的损失或造成巨大的政治影响。综合考虑,则选择单母线分段的接线形式。
在方案一和方案三的比较中,不同的地方是将方案三中的两台发电机直接接入220KV的系统中,原因有二,其一是当把斯泰发电机接入10KV母线上浪费,在10KV
母线上有两台发电机已经足够;其二是220KV电压等级与无穷大系统连接,接受该发电厂的剩余功率。所以考虑将剩余两台发电机通过发电机-变压器接线方式连接到220KV系统中。由于发电机-变压器接线方式单元性强,可在机组单元控制室集中控制,不设网控室,使运行管理较灵活方便
通过对三种方案的比较,并且连同电气主接线的设计原则即可靠性、经济性和灵活性的综合考虑,选择出的最优方案是方案一。
3 火电厂发电机、变压器的选择
3.1 主变压器和发电机中性点接地方式
3.1.1电力网中性点接地方式
选择电力网中性点接地方式是一个综合性问题。它与电压等级、单相接地短路电流、过电压水平、保护配置等有关,直接影响电网的绝缘水平、系统供电的可靠性和连续性、主变压器和发电机的运行安全以及对通信线路的干扰等。电力网中性点接地方式有以下几种: 1、中性点非直接接地 a.中性点不接地
中性点不接地方式最简单,单相接地时允许带故障运行两小时,供电连续性好,接地电流仅为线路及设备的电容电流。但由于过电压水平较高,要求有较高的绝缘水平,不宜用于110KV及以上电网。 ①中性点消弧线圈接地
当接地电容电流超过允许值时,可采用消弧线圈补偿电容电流,保证接地电弧瞬间熄灭,以消除弧光间歇接地过电压。 ②中性点经高电阻接地
当接地电容电流超过允许值时,也开采用中性点经高电阻接地。此接地方式降低弧光间隙接地过电压,同时可以提供足够的电流和零序电压,使接地保护可靠动作,一般用于大型发电机中性点。
b.中性点直接接地
直接接地方式的单相短路电流很大,线路或设备需立即切除,增接了断路器的负担,降低了供电的连续性。但由于过电压较低,绝缘水平可下降,减少了设备的造价,特别是在高压和超高压电网,经济效益显著。故适用于110KV及以上电网中。
3.1.2 变压器中性点接地方式
电力网中性点接地方式,决定了主变压器中性点接地方式。 主变压器的110-500KV侧采用中性点直接接地方式
(1)凡是自耦变压器,其中性点需要直接接地或经小阻抗接地。
(2)凡中、低压有电源的升压站和降压变电所至少应有一台变压器直接接地。 (3)终端变电所的变压器中性点一般不接地。
(4)变压器中性点接地点的数量是电网所有短路点的综合零序电抗与综合
正序电抗之比小于三,以使单相接地时健全相上工频过电压不超过阀型避雷器的灭弧电压。
(5)所有普通变压器的中性点都应经隔离开关接地,以便于运行调度灵活选择接地点。当变压器中性点可能断开运行时,若该变压器中性点绝缘不是按线电压设计,应在中性点装设避雷器保护。
(6)选择接地时应保证任何故障形式都不应使电网节烈成为中性点不接地的系统。双母线接线有两台以上主变压器时,可考虑两台主变压器中性点接地。
3.1.3 发电机中性点接地方式
发电机中性点采用非直接接地方式
发电机钉子绕组发生单相接地故障时,接地点流过的电流后是发电机本身及其引出回路所连接元件的对地电容电流。
本次设计采用发电机中性点经消弧线圈接地方式。由于它适应于单相接地电流大于允许值的中小机组或200MW及以上大机组。消弧线圈可接在直配线发电机的中性点上。当发电机为单元接线时,则应接在发电机的中性点上。
3.2 发电机的选型
3.2.1 简介
汽轮发电机由汽轮机直接耦合传动。励磁机是向汽轮发电机提供励磁的设备。 1. 冷却方式
采用的冷却方式,定子绕组和转子有空冷、水内冷和氢冷等。在转子氢内冷系统中,又有轴向通风等多种方式。 2. 励磁方式
发电机容量在100MW以上的普遍采用同轴交流励磁机经静止半导体整流励磁方式。
3.2.2 选型
1.选择型号 QFSN—200--2 型号含义; 2——2极 200——额定容量
N——氢内冷 F——发电机 Q——汽轮机 S——水内冷
2.QFSN—200—2型汽轮发电机主要参数
视在功率 (MVA) 235 有功功率(MW) 电压(V) 电流(A) 功率因数cos 200 15750 8625 0.85 本次设计题目为4×200MW的火力发电厂电气部分的设计。由于装机容量: 装机4台,容量分别为4X200MW, UN=10.5KV,所以可以选取的发电机台数有四台。考虑到汽轮机的最大连续进汽量工况出力系制造厂为补偿制造偏差和汽轮机等老化所留的余度,也即汽轮机不宜在此工况下长期连续运行,所以,发电机的最大连续出力在功率因数和氢压为额定值时与汽轮机的最大连续出力配合即可。
3.3 变压器的选型
电力变压器(文字符号为T或TM),根据国际电工委员会的界定,凡是三相
变压器的额定容量在5KVA及以上,单相的在1KVA及以上的输变电用变压器,均成为电力变压器。电力变压器是发电厂和变电所中重要的一次设备之一,随着电力系统电压等级的提高和规模的扩大,电压升压和降压的层次增多,系统中变压器的总容量已达发电机容量的7-10倍。可见,电力变压器的运行是电力生产中非常重要的环节。
主变压器 在电气设备投资中所占比例较大,同时与之相适应的配电装置,特别是大容量、高电压的配电装置的投资也很大。因此,主变压器的选择对发电厂、变电所的技术性影响很大。例如,大型大电厂高、中压联络变压器台数不足(一台)或者容量不足将导致电站、电网的运行可靠性下降,来年络变压器经常过载或被迫两级电网的功率交换。反之。台数过多、容量过大将增加投资并使配电装置复杂化。
发电厂200MW及以上机组为发电机变压器组接线时的主变压器应满足DL5000—2000《火力发电厂设计技术规程》的规定:“变压器容量可按发电机的最大连续容量扣除一台厂用变压器的计算负荷和变压器绕组的平均温度或冷
却水温度不超过650C的条件进行选择”。
3.3.1具有发电机电压母线的主变压器
1.容量的计算及确定
连接在发电机电压母线与系统间的主变压器容量,应按下列条件计算: (1)当发电机电压母线上负荷最小时,能将发电机电压母线上的剩余有功和无功容量送入系统,但不考虑稀有的最小负荷情况。
(2)当发电机电压母线上最大一台发电机组停用时,能由系统供给发电机电压的最大负荷。在电厂分期建设过程中,在事故断开最大一台发电机组的情况下,通过变压器向系统取得电能时,可以考虑变压器的允许过负荷能力和非重要负荷。
(3)根据系统经济运行的要求,而本厂的输出功率时能供给发电机电压的最大负荷。
(4)按上述条件计算时,应考虑负荷曲线的变化和逐年负荷的发展。特别注意发电厂初期运行时当发电机电压母线负荷不大时,能将发电机电压母线上的剩余容量送入系统。
(5)发电机电压母线与系统连接的变压器一般为两台。对装设两台变压器的发电厂,当其中一台主变推出运行时,另一台变压器应承担70%的容量。 具体计算的过程如下: a.10KV电压等级下的最大容量
S =(SG-SG×8%-Smin)×0.7/0.85
= (400-400×0.08-16) ×0.7/0.85
= 352×0.7/0.85 =2.88MVA
b.110KV 电压等级下的最大容量
S = Smax/0.85 =70/0.85=82.35MVA c.220KV电压等级下的最大容量 S = (S10max+S110min) /0.85
= (70+20) /0.85 =105.88
根据上面的计算可知道低压侧的容量为最大,所以,以此为基准可以选择一个三绕组的变压器. 2.绕组连接方式的确定
变压器的连接方式必须和系统电压相位一致,否则不能并列运行。电力系
统采用的绕组连接方式只有Y型和△型,高、中、低三侧绕组如何组合要根据具体工程来确定。
三相变压器的一组相绕组或连接成三相组的三相变压器的相同电压的绕组连接成星型、三角型、曲折型时,对高压绕组分别以字母Y、D或Z表示,对中压或低压绕组分别以字母y、d 或z表示。如果星型连接或曲折型连接的中性点是引出的,则分别以YN、ZN表示,带有星三角变换绕组的变压器,应在两个变换间已“-”隔开。
我国110KV以上电压,变压器的绕组都采用Y连接。35KV以下电压,变压器绕组都采用△连接。 3.变压器调整方式的选择
变压器的电压调整使用分接开关切换变压器的分接头,从而改变变压器的变比。切换方式有两种:不带负荷切换,称为无励磁调压,调整范围通常在±5%以内;另一种是带负载切换,称为有载调压,调整范围可达20%-30%。对于110KV以下的变压器,设计时才考虑到变压器采用有载调压的方式。综合考虑发电厂的发电机运行出力变化不大,所以在本次的设计中采用的变压器调整方式是无励磁调压。 4.变压器的选型
SSPSLO-3000/220
型号的含义: S——三相风冷强迫油循环 F——风冷 P——无励磁调压 S——为铜导线 L——为铝导线
3000——高压绕组电压等级 220——额定容量
3.3.2单元接线的主变压器
发电机与主变压器为单元接线时,发电机和变压器成为一个单元组,电能经升压后直接进入高压电网。这种接线由于发电机和变压器都不能单独运行,因此,二者的容量应当相等。所以这个双绕组变压器的容量等于所选发电机的额定容量,即
所选型号为:SSP3—26000型
3.4 电气设备的配置
3.4.1隔离开关的配置
1.再出线上专设电抗器的10KV配电装置中,党向不同用户供电德良辉县共用同一台断路器和一组电抗器时,每回线上装设出线隔离开关。 2.接在变压器因出现或中性点上的避雷器可不装设隔离开关。 3.接在母线上的避雷器和电压互感器以合用一组隔离开关。 4.断路器的两侧均应配置隔离开关,以便在断路器检修是隔离电源。 5.中性点接地的普通型变压器均应通过隔离开关接地。
3.4.2接地刀闸的配置
为保证电器和母线的检修安全,35KV及以上没断母线根据长度宜安装1~2组接地刀闸,两组接地刀闸间的距离应尽量保持适中。母线的接地刀闸宜安装在母线电压互感器的隔离开关上,也可装于其它回路母线隔离开关的基座上。
3.4.3电压互感器的配置
1.电压互感器的数量和配置与主界限方式有关,并应满足测量,保护,同期和自动装置的要求。电压互感器的配置应能保正在运行方式改变时,保护装置不得失压。
2.6~220KV电压等级的每组主母线上的三项上装设电压互感器。 3.当需要监视和检测线路侧有无典雅时,出线侧的一相上应安装电压互感器。
4.当需要在330KV及以下主变压器回路中提取电压时,可尽量利用变压器电容式套管上的电压抽取装置。
3.4.4 电流互感器的配置
1.凡装有断路器的回路均应安装电流互感器,其数量应满足测量仪表,保护和自动装置。
2.再在未装设断路器的变压器的中性点变压器出口桥形接线的跨条上也装设电流互感器。
3.对直接接地系统 ,一般按三相配置。对非直接接地系统,以具体要求按两项或三相配置。
3.4.5避雷器的配置
1.配电装置的每相母线上,应装设避雷器,但进出线都装设避雷器是除外。 2.220KV及一线变压器到避雷器的电气距离超过允许值时 ,应在变压器附近增设避雷器。
3.三绕组变压器低压侧的一相上宜安装一台避雷器。
4.直接接地系统中,变压器中性点为分级绝缘且安装有隔离开关时,变压器中性点应装设避雷器。
4 火力发电厂短路电流计算
4.1 概 述
电力系统运行有三种状态:正常运行状态、非正常运行状态和短路故障。在供电系统的设计和运行中,还要考虑到可能发生的故障以及不正常运行情况。对供电系统危害最大的是短路故障。短路电流将引起电动力效应和发热效应以及电压的降低等。因此,短路电流计算是电气主接线的方案比较、电气设备及载流导体的选择、节地计算以及继电保护选择和整定的基础。
短路就是指不同电位导电部分之间的不正常短接。如电力系统中,相与相之间的火中性点直接节地系统中的相与地之间的短接都是短路。为了保证电力系统的安全、可靠运行,在电力系统设计和运行分析中,一定要考虑系统等不正常工作状态。
4.1.1短路的原因及后果
1.短路原因
造成短路的原因通常有以下几种:
(1)电气设备及载流导体因绝缘老化、或遭受机械损伤,或因雷击、过电压引起的绝缘损坏。
(2)架空线路因大风或导线覆冰引起的电杆倒塌等,或因鸟兽跨接裸露导体等都可能导致短路。
(3)电气设备因设计、安装、维护不良和运行不当或设备本身不合格引发的短路。
(4)运行人员违反安全操作规程而误操作,如运行人员带负荷拉隔离开关,线路或设备检修后未拆除接地线就加上电压等都回造成短路。根据国外资料显示,每个人都有违反规程操作的潜意识。
(5)其他原因。如输电线断线、倒杆、碰线、或人为盗窃、破坏等原因都可能导致短路。 2.短路后果
短路故障发生后,由于网络总阻抗大为减小,将在系统中产生几倍甚至几十倍于正常工作电流的短路电流。强大的短路电流将造成严重的后果,主要有以下几方面:
(1)强大的短路电流通过电气设备是发热急剧增加,断路持续时间较长时,足以使设备因过热而损坏甚至烧毁;
(2)巨大的短路电流将在电气设备的导体间产生很大的电动力,可能使导体变形、扭曲或损坏;
(3)短路将引起系统电压的突然大幅度下降,系统中主要负荷异步电动机将因转矩下降而减速或停转,造成产品报废甚至设备损坏;
(4)短路将引系统中功率分布的突然变化,可能导致并列运行的发电厂失去同步,破坏系统的稳定性,造成大面积停电。这是短路所导致的最严重后果;
(5)巨大的短路电流将在周围空气产生很强大电磁厂,尤其是不对称短路时,不平衡电流所产生的不平衡交变磁场,对周围的通信网络、信号系统、晶闸管触发系统及自动控制系统产生干扰。
4.1.2短路计算的目的和简化假设
因为短路故障对电力系统可能造成极其严重的后果,所以一方面应采取措施以短路电流,另一方面要正确选择电气设备、载流导体和继电保护装置。
这一切都离不开对短路电流故障的分析和短路电流的计算。概括起来,计算短路的主要目的在于:
(1)为选择和校验各种电气设备的机械稳定性和热稳定性提供依据,为此,计算短路冲击电流以校验设备的机械稳定性,计算短路电流的周期分量以校验设备的热稳定性;
(2)为设计和选择发电厂和变电所的电气主接线提供必要的数据; (3)为合理配置电力系统中各种继电保护和自动装置并正确整定其参数提供可靠的依据。
在实际短路计算中,为了简化计算工作,通常采用一些简化假设,其中主要包括:
(1)符合用恒定电抗标识或忽略不计;
(2)认为系统中个元件参数恒定,在高压网络中不计元件的电阻和导纳,即个元件军用春电抗表示,并认为系统中各发电机的电势通相位,从而避免了复数的运算;
(3)系统出不对称故障出现局部不对称,其余部分是三相对称的。
4.2 各系统短路电流的计算
4.2.1短路计算的基本假定和计算方法
1.基本假定
(1)正常工作时,三相系统对称运行。 (2)所有电源的电动势相位角相同。
(3)系统中的电机均为理想电机,不考虑电磁饱和、磁滞、涡流及导体肌肤效应等影响;转子结构完全对称;
(4)短路发生在短路电流为最大的瞬间;
(5)不考虑短路电的电弧阻抗和变压器的励磁电流。 2.短路电流计算的方法
对应系统最大运行方式下,按无限大容量系统,进行相关的短路点的三项短路电流计算,求得I、ish值。 I// —— 三相短路电流; ish —— 三相短路冲击电流。
//
4.2.2电抗图及电抗计算
由4×200MW火电厂电气主接线图,和设计任务书中给出的相关参数,可画出系统的等值电抗图如图3-1所示。
选取基准容量为Sj=100MVA Uj=Uav=1.05Ue
Sj —— 基准容量;
Uav—— 所在线路的品平均电压 以上均采用标幺值计算方法,省去“*”。 1. 对于QFSN—200—2型发电机的电抗
Sj100//X1X2X3X4Xd0.14560.062
Se200 2.对于SSPL—260000型的双绕组变压器的电抗
Uk%Sj14100 X5X60.0538
100Se100260 式中 Uk%——变压器短路电压的百分数(%); Se——最大容量绕组的额定容量(MVA); Sj——基准容量(MVA)。
C110KV220KVX13X10X9X7X8X5X6X14X11X1210KVX3X4X1X2G1G2G3G4
图 3-1 3.对于OSSPSL—3000/220型三绕组变压器的电抗
Sj1 X7X8(U%Ud高低%Ud中低%)
200d高中Se1100(13.111.6-18.8) = 200300 =0.0098
Sj1(Ud高中%Ud中低%Ud高低%) 200Se1100(13.118.8-11.6) = 200300 X9X10 =0.0338
Sj1 X11X1 (U%U%U%)2d中低d高低d高中200Se1100(18.811.6-13.1) = 200300 =0.0288
4.线路阻抗(设计任务书中已给出):
X13=0.025
4.2.3短路点的选择、短路电流以及冲击电流的计算
无限大容量电力系统是指容量相对于用户供电系统容量大得多的电力系统,当用户供电系统发生短路时,电力系统变电所馈电母线上的电压基本不变,可将该电力系统视为无限大容量电力系统。但是,在实际电力系统中,他的容量和阻抗都有一定的数值,一次,当用户供电系统发生短路时,电力系统变电所馈电母线上的电压相应的有所变动。但一般的供电系统,由于它是在小容量线路上发生短路,电力系统母线电压基本不变,因此,电力系统可视为无限大容量电力系统。由于无限大容量电力系统的三相短路电流是对称的,所以他的变化规律只需考虑一相的。
短路点的选择应选择通过导体和电器的短路电流为最大的那些点作为短路计算点。
首先,应在三条电压等级的母线上选择三个短路计算点d1、d2、d3。由于10KV电压等级有15km电缆馈线10回,所以在10KV的出线上需加设电抗器。当d4 点短路时,因受电抗器的,流过出线上的断路器的电流较小,所以在工程计算中选取d4点为短路计算点,以便使出线断路器选择轻型的。 无线大功率系统的德主要特征是:内阻抗X=0,端电压U=C,它所提供的短路电流周期分量的幅值恒定且不随时间改变。虽然非周期分量依指数率而衰减,但一般情况下只需计及他对冲击电流的影响。因此,在电力系统短路电流计算中,其主要任务是计算短路电流的周期分量。而在无限大功率系统的条件下,周期分量的计算就变得简单。
如取平均额定电压进行计算,则系统的短电压U=Uav,若选取Ud=Uav,则无限大功率系统的短电压的标幺值
U*U1, Ud短路电流周期分量的标幺值为
IP*U*1 X*X* 式中 X* ——无限大系统功率系统对短路点的组合电抗(即总电抗)的标幺值
短路电流的有名值为
IP*IPIdId X* 则冲击电流为 ishKshIPMKshIP2 式中 Ksh1e0.01Ta——冲击系数,表示冲击电流对周期分量幅值的倍数。
当时间常数Ta的值由零编制无限大时,冲击系数值的变化范围为: 1Ksh2 在以下的计算中,取Ksh =1.8; 1、220KV母线上短路(d1点)的计算
X13 d1CX15 d2G1X5X6X8X7X12X11X3G4X4CX16 X13G3X2G2CX1G1
图 3-2 图 3-3
11X11X)(XXX X15(X17212) 2281 =(0.062+0.02880.0098)
2 =0.050
11 X16(X3X5)(X4X6)0.058
22 短路点短路电流的计算:
// I*111111 X15X16X130.0500.0580.025 =20+17.24+40=77.24 II////*Sj3Uav77.2410019.39KA
3230 ish2I//Ksh219.391.8=49.35 KA 2、110KV母线上发生短路(d2)时的计算
CX13d3d3X17X18X18X16X13X19CX16G3X17X19G1G1G3
图 3-4 图 3-5
X1711X9X100.0169 22 X1811X7X80.0049 2211X)(X2X) X19(X1 1110.04222 XX17X1920X17X19X0.22 18d3X20d3X20G1X21X16X22G3X13X23C 图 3-6 图 3-7
XX17X121X17X18X80.024 19 XX21X1622X21X16X0.138 13 XX21X1323X21X13X0.059 16 I//1111*XX1128.75 2022X230.220.1380.059 I//I//*Sj3Uav28.75100311514.43KA ish2I//Ksh214.431.8=36.74 KA 3、10KV母线上发生短路电流(d3)时的计算
限流电抗器的初选 ISNN3U70000N3U3018.91A
N0.85 选型为 XKK—10—4000—12 所以,限流电抗器的电抗值应为 X1224XR*S100UN34j10.5212100103410010.520.157 G1G3C
CCX13X13X7X8X26X27X16X16X11d3X24d3X24X12X1X2G3X1X2G3G1G2G1G2
图 3-8 图 3-9
X25X1X26X27d3X25X28G1d3X24X29X1X2X2G2G1G2
图 3-10 图 3-11
X1d3X30G1X31G2
图 3-12
X26X27=XX11X8X03867120.
X26X X28=X2X624X27240.0386+0.157+0.03860.0157 =0.3526
0.0386X27X X29=X2X724X26240.0386+0.157+0.03860.0157=0.3526
0.0386 X30X25X2680.352 X31X29X20.3526// I*0.0175 0.37010.062 0.4146111111 X30X31X10.37010.41460.062 =2.682.3916.1321.99 II*////Sj3Uav21.199100116KA
310.5 ish2I//Ksh21161.8=296.69KA 4、10KV出线上发生短路(d4)时的短路计算 出线上限流电抗器的初选 INSN3UN1800116.44A
3UN0.85选型为 XKK—10—200—8 所以,限流电抗器的电抗值应为
X14XR*SUN81210100j0.105 1003410.521003410.52X13C1X13C1X7d4X14X8d4X18X11X24X12X16X14X32X16X1G1G2X2X33G3G3G1
图 3-13 图 3-14
C1X13d4X34X14X16d4X14X33G1X34X13C1X16X33G3G1G3
图 3-15 图 3-16
X35d4X35G1X36X13C1X38X16G3G3d4X37C1G1
图 3-17 图 3-18
X36X34X14X37X36X13X38X36X16//I*X34X140.01930.1050.01930.105+0.17 X330.031X36X130.170.0250.170.025+0.296 X160.058X36X160.170.0580.170.058+0.688 X130.025111111 X35X37X380.3050.2960.688 =3.721.453.288.449
II////*Sj3Uav8.44910046KA
310.5ish2I//Ksh2461.8=118KA
系统短路电流小结
短路点 220KV母线发生短电流值 110KV母线发生短路10KV母线发生短路(d3点) 21.99 116KA 296.69KA 10KV出线电抗器回路发生短路(d4点) 8.449 46KA 118KA 路(d1点) (d2点) 77.24 28.75 14.43KA 36.74KA 电流周期分量标幺值 电流周期分量有铭值 19.39KA 短路冲击电流 49.35KA
5 火电厂一次设备的选择
5.1选择电气一次设备遵循的条件
电气设备的选择是变电所电气设计的主要内容之一,正确的选择电气设备的目的是为了使导体和电器无论在正常情况或故障情况下,均能安全、经济合理的运行。在进行设备选择时,应根据工程实际情况,在保证安全、可靠的前提下,积极而稳妥的采用新技术,并注意节约投资,选择合适的电气设备。 在发电厂和变电所中,采用的电气设备种类很多,其作用和工作条件并不一样,具体选择的方法也不同,但对他们的基本要求都是相同的。 电气设备的选择的一般要求是:
(1) 满足工作要求。应满足正常运行、检修以及短路过电压情况下的工作
要求。
(2) 适应环境条件。阴干当地的环境条件进行校验。 (3) 先进合理。应力求技术先进和经济合理。 (4) 整体协调。应与整个工程的建设标准协调一致。 (5) 适应发展。应适当考虑发展,留有一定的裕量。
电气设备能安全、可靠的工作,必须按正常工作条件进行选择,斌干短路条件来校验其动稳定和热稳定。
5.1.1按正常工作条件选择
1.额定电压
电气设备的额定电压是标示在其铭牌上的线电压。电器可以长期在其额定电压的110%-115%下安全运行,这一电压成为最高允许工作电压。当Ue在220KV及以下时其UNs为1.15,当UNe为330-500KV是,其UNs为1.1 UNe。
另外,电气设备还有一个最高工作电压,即允许长期运行的最高电压,一般不得超过其额定电压的10%~15%。在选择时,电气设备的额定电压不应低于安装地点的电网额定电压,即 U NeUNs式中, UNe-电气设备铭牌上所标示的额定电压(KV); UNs -电网额定工作电压(KV)。
110KV以下电压等级的电气设备绝缘裕度较大。因此,在非高海拔地区,按所在电网的额定电压选择电气设备的额定电压即可满足要求。
2.额定电流
满足此条件的目的在于使电气设备的储蓄温度不超过长期发热的最高允许温度值。
在额定周围环境条件下,导体和电气设备的额定电压不应小于所在回路的最大工作电流,即
INIwma x式中,IN-电气设备铭牌上所标示的额定电流(A)
Iwmax-回路中的最大工作电流(A)
在决定Iwmax时,应以变压器和线路的负荷作为出发点,同时考虑这些设备的长期工作状态。在确定变压器回路的最大长期工作电流时,应考虑到变压器过负荷运行的可能性;母线分段电抗器的最大长期工作电流应为保证该母线负荷所需的电流;出线回路的最大长期工作电流处考虑线路正常过负荷电流外,还应考虑事故时由其他回路转移过来的负荷。
各支路最大持续电流 回路名称 变压器回路 出线回路 母联回路 分段回路 汇流回路 表4-1
3. 环境条件
选择电气设备时,还应考虑其安装地点的环境条件,当气温、风速、污秽、海拔高度、地震烈度、覆冰厚度等环境条件超过一般电气的基本使用条件时,应采取相应的措施。
(1)空气温度。标准的电气周围空气温度为40℃。若安装地点日最高温度
最大长期工作电流 1.3~2倍的变压器额定电流 1.05倍的最大负荷电流 母线上最大一台变压器的Iwmax 变电所应满足用户的一级负荷和二级负荷 按实际潮流分布计算 高于40℃,但不超过60℃,则因散热条件较差,最大连续工作电流应适当减少,则设备的额定电流应按下式修正:
Ial流(A)
Kt——温度修正系数
KtINe(al)/(alNe)INe
式中,Ial——电气设备的额定电流经实际的周围环境温度修正后的允许电
al——电气设备的长期发热最高允许温度(℃)
——实际的周围环境温度,取所在地方最热月平均最高温度(℃) Ne——电气设备的额定环境温度(℃)
设备的额定环境温度一般取40℃,如周围环境温度高于40℃,但小于或等于60℃时,其允许电流一般可按每增加1℃,其额定电流减少1.8%进行修正;当环境温度低于40℃,每降低1℃,额定电流可增加0.5%,但其最大负荷不得超过其额定电流的20%。
裸导体的额定环境温度一般取25℃,如安装地点的环境温度在-5℃~ 50℃范围内变化时,其允许通过的电流可按上市进行修正。
(2)海拔高度。在电气设备使用条件中,制造厂规定的基准海拔高度为1000没。当海拔升高时,空气密度降低,散热条件变坏,是高压电器在运行中温升增加,但应空气温德随海拔高度升高而递减,其值足以补偿海拔升高对电气温升的影响,因而高压电在高海拔地区(不超过4000米)使用时,其额定电流可以保持不变。当海拔高度超过规定值时,由于大气压力空气密度和湿度相应减少,使空气间隙和外绝缘的放电特性下降,显然对内绝缘影响较小,但对外绝缘影响较大。在海拔高度为1000~3500米的范围内,海拔高度每升高100米,电器最高工作电压要下降1%,以此修正电器最高工作电压值。
5.1.2按短路条件进行校验
电气设备按短路故障情况进行校验,就是要按最大可能的短路故障(通常为三相短路故障)时的动、热稳定度进行校验。但有熔断器和有熔断器保护的电器和导体(如电压互感器等),以及架空线路,一般不必考虑动稳定度、热稳定度的校验,对电缆,也不必进行动稳定度的校验。
在电力系统中尽管各种电气设备的作用不一样,但选择的要求和条件有诸多是相同的。为保证设备安全、可靠的运行,各种设备均按正常工作的条件下的额定电压和额定电流选择,并按短路故障条件校验其动稳定度和热稳定度。 1、热稳定校验
校验电气设备的热稳定性,就是校验设备的载流部分在短路电流的作用下,
其金属导电部分的温度不应超过最高允许值。如果满足这一条件,则选出的电气设备符合热稳定的要求。
作热稳定校验时,已通过电气设备的三项短路电流为依据,工程计算中常用下式校验所选的电气设备是否满足热稳定的要求,即:
22IteqItht
式中 ,I——三相短路电流周期分量的稳定值(KA); teq—— 等值时间(亦称假想时间s),可由图4-1查得;
Ith——制造厂规定的在ts内电器的热稳定电流(KA);t为与Ith相对应的时间(s)。
短路计算时间。校验短路热稳定的短路计算时间应为继电保护动作时间top和断路器全开断时间toc之和,即
tktoptoc
式中 , top—— 保护动作时间,主要有主保护动作时间和后备保护动作时间,
当为主保护动作时间时一般取0.05s;当为后备保护时间时一般取2.5s;
。 toc—— 断路器全开断时间(包括固有分闸时间和燃弧时间) 如果缺乏断路器分闸时间数据,对快速及中速动作的断路器,取toc=0.1-0.5s,对低速动作的断路器,取toc=0.2s。
校验导体和110KV以下电缆的短路热稳定性时,所用的计算时间,一般采用主保护的动作时间加上相应地断路器的全分闸时间.如主保护有死区时,则应采用能对该死区起作用的后备保护的动作时间,并采用相应处的短路电流值。校验电器和110KV以上冲油电缆的短路电流计算时间,一般采用后备保护动作时间加相应的断路器全分闸时间。 2、动稳定校验
当电气设备中有短路电流通过时,将产生很大的电动力,可能对电气设备产生严重的破坏作用。因此,各制造厂所生产的电器,都用最大允许的电流的幅值imax或最大有效值Imax 表示其电动力稳定的程度,它表明电器通过上述电流时,不至因电动力的作用而损害。满足动态稳定的条件为
ish≤ imax或Ish≤ Imax
式中ish及Ish——三相短路时的冲击电流及最大有效值电流。 电气设备的选择除了要满足上述技术数据要求外,尚应根据工程的自然环境、位置(气候条件、厌恶、化学污染、海拔高度、地震等)、电气主接线极短路电流水平、配电装置的布置及工程建设标准等因素考虑。
因篇幅问题不能全部显示,请点此查看更多更全内容
Copyright © 2019- sceh.cn 版权所有 湘ICP备2023017654号-4
违法及侵权请联系:TEL:199 1889 7713 E-MAIL:2724546146@qq.com
本站由北京市万商天勤律师事务所王兴未律师提供法律服务