您好,欢迎来到尚车旅游网。
搜索
您的当前位置:首页2020年山西省中考市试卷及答案

2020年山西省中考市试卷及答案

来源:尚车旅游网
2020年山西省中考市试卷及答案 数 学 一、选择题〔每题2分,共20分〕 1.比较大小:2 3〔填〝>〞、〝=〞或〝<〝〕. 2.山西有着丰富的旅行资源,如五台山、平遥古城、乔家大院等闻名景点,吸引了众多的海内外游客,2018年全省旅行总收入739.3亿元,那个数据用科学记数法可表示为 . A 3.请你写出一个有一根为1的一元二次方程: . B 4.运算:123= . 1 C 5.如下图,A、B、C、D是圆上的点,170° ,A40°,D 那么C 度. 〔第5题〕 6.李师傅随机抽查了本单位今年四月份里6天的日用水量〔单位:吨〕结果如下:7,8,8,7,6,6,依照这些数据,估量四月份本单位用水总量为 吨. 7.如图,△ABC与△ABC是位似图形,且顶点都在格点上,那么位似中心的坐标是 . y 11 A 10 9 8 7 6 5 A A  BD C 4 3 2 B C E O 1 B C O 1 2 3 4 5 6 7 8 9 10 11 12 x 〔第8题〕 〔第7题〕 8.如图,ABCD的对角线AC、BD相交于点O,点E是CD的中点,△ABD的周长为16cm,那么△DOE的周长是 cm. 3,那么当x1时,y的取值范畴是 . x10.以下图案是晋商大院窗格的一部分,其中〝○〞代表窗纸上所贴的剪纸,那么第n个图9.假设反比例函数的表达式为y中所贴剪纸〝○〞的个数为 . 〔2〕 〔1〕 〔第10题〕 …… 〔3〕 …… 二、选择题〔在以下各小题中,均给出四个备选答案,其中只有一个正确答案,请将正确答案的字母号填入下表相应的空格内,每题3分,共24分〕 11.以下运算正确的选项是〔 〕 A.aaa B.2623C.3x2·2x36x6 12.反比例函数y k的图象通过点2,3,那么k的值是〔 〕 x32A. B. C.6 D.6 232 0D.π31 1x2≥113.不等式组的解集在数轴上可表示为〔 〕 3x18 A. B. 0 1 2 3 4 0 C. D. 0 1 2 3 4 0 1 2 3 4 1 2 3 4 14.解分式方程1x1,可知方程〔 〕 2x22xA.解为x2 B.解为x4 C.解为x3 D.无解 15.如图是由几个相同的小正方体搭成的几何体的三视图,那么搭成那个几何体的小正方体的个数是〔 〕 主视图 左视图 俯视图 〔第15题〕 A.5 B.6 C.7 D.8 16.如图,AB是⊙O的直径,AD是⊙O的切线,点C在⊙O上,BC∥OD,AB2,OD3,那么BC的长为〔 〕 A. 2 3B.3 2C.m 3 2D.2 2CBO n n n 〔1〕 〔2〕 〔第17题〕 〔第16题〕 17.如图〔1〕,把一个长为m、宽为n的长方形〔mn〕沿虚线剪开,拼接成图〔2〕,D A成为在一角去掉一个小正方形后的一个大正方形,那么去掉的小正方形的边长为〔 〕 A.mn 2B.mn C.m 2 D.n 218.如图,在Rt△ABC中,ACB90°,BC3,AC4,AB的垂 直平分线DE交BC的延长线于点E,那么CE的长为〔 〕 A D E 3725A. B. C. 266三、解答题〔此题共76分〕 19.〔每题4分,共12分〕 〔1〕运算:x3x1x2 2 D.2 B C 〔第18题〕 x22x2〔2〕化简:2 x4x2 〔3〕解方程:x2x30 20.〔此题6分〕每个网格中小正方形的边长差不多上1,图1 中的阴影图案是由三段以格点为圆心,半径分不为1和2的圆弧围成. 〔1〕填空:图1中阴影部分的面积是 〔结果保留π〕; 〔2〕请你在图2中以图1为差不多图案,借助轴对称、平移或旋转设计 〔第20题 图1〕 一个完整的花边图案〔要求至少含有两种图形变换〕. 〔第20题 图2〕 21.〔此题8分〕依照山西省统计信息网公布的数据,绘制了山西省2004~2018固定电话和移动电话年末用户条形统计图如下: 万户 固定电话年末用户 1800 1689.5 移动电话年末用户 1600 1420.4 1400 1200 989.6 906.2 1000 897.8 885.4 859.0 803.0 753.8 800 721.3 600 400 200 0 2004 2005 2006 2007 2018 年份 〔第21题〕 〔1〕填空:2004~2018移动电话年末用户的极差是 万户,固定电话年末用户的中位数是 万户; 〔2〕你还能从图中猎取哪些信息?请写出两条. 222.〔此题8分〕某商场为了吸引顾客,设计了一种促销活动:在一个不透亮的箱子里放有4个相同的小球,球上分不标有〝0元〞、〝10元〞、〝20元〞和〝30元〞的字样.规定:顾客在本商场同一日内,每消费满200元,就能够在箱子里先后摸出两个球〔第一次摸出后不放回〕.商场依照两小球所标金额的和返还相应价格的购物券,能够重新在本商场消费.某顾客刚好消费200元. 〔1〕该顾客至少可得到 元购物券,至多可得到 元购物券; 〔2〕请你用画树状图或列表的方法,求出该顾客所获得购物券的金额不低于30元的概率. 23.〔此题8分〕有一水库大坝的横截面是梯形ABCD,AD∥BC,EF为水库的水面,点E在DC上,某课题小组在老师的带领下想测量水的深度,他们测得背水坡AB的长为12米,迎水坡上DE的长为2米,BAD135°求水深.〔精确到,ADC120°,,31.73〕 0.1米,21.41F 水深 B C 〔第23题〕 24.〔此题8分〕某批发市场批发甲、乙两种水果,依照以往体会和市场行情,估量夏季某一段时刻内,甲种水果的销售利润y甲〔万元〕与进货量x〔吨〕近似满足函数关系A D E y甲0.3x;乙种水果的销售利润y乙〔万元〕与进货量x〔吨〕近似满足函数关系y乙ax2bx〔其中a0,a,b为常数〕,且进货量x为1吨时,销售利润y乙为1.4万元;进货量x为2吨时,销售利润y乙为2.6万元. 〔1〕求y乙〔万元〕与x〔吨〕之间的函数关系式. 〔2〕假如市场预备进甲、乙两种水果共10吨,设乙种水果的进货量为t吨,请你写出这两种水果所获得的销售利润之和W〔万元〕与t〔吨〕之间的函数关系式.并求出这两种水果各进多少吨时获得的销售利润之和最大,最大利润是多少? 25.〔此题12分〕在△ABC中,ABBC2,ABC120°将△ABC绕点B顺时针,旋转角(0°90°)得△A1BC1,A1B交AC于点E,A1C1分不交AC、BC于D、F两点. 〔1〕如图1,观看并猜想,在旋转过程中,线段EA1与FC有如何样的数量关系?并证明你的结论; D F C C C1 A1 E A D F C1 A1 A E B 〔第25题 图1〕 B 〔第25题 图2〕 〔2〕如图2,当30°时,试判定四边形BC1DA的形状,并讲明理由; 〔3〕在〔2〕的情形下,求ED的长. 26.〔此题14分〕如图,直线l1:y28x与直线l2:y2x16相交于点C,l1、l2分33不交x轴于A、B两点.矩形DEFG的顶点D、E分不在直线l1、l2上,顶点F、G都在x轴上,且点G与点B重合. 〔1〕求△ABC的面积; 〔2〕求矩形DEFG的边DE与EF的长; 〔3〕假设矩形DEFG从原点动身,沿x轴的反方向以每秒1个单位长度的速度平移,设移动时刻为t(0≤t≤12)秒,矩形DEFG与△ABC重叠部分的面积为S,求S关于t的函数关系式,并写出相应的t的取值范畴. yl2 E C D l1A O B F 〔G〕 x 〔第26题〕 2018年山西省初中毕业学业考试试卷 数 学 一、选择题〔每题2分,共20分〕 1021.> 2.7.39310 3.答案不唯独,如x1 4.3 5.30 6.210 7.〔9,0〕 8.8 9.3y0 10.3n2 二、选择题〔在以下各小题中,均给出四个备选答案,其中只有一个正确答案,请将正确答案的字母号填入下表相应的空格内,每题3分,共24分〕 题 号 11 12 13 D 14 D 15 B 16 A 17 A 18 B 答 案 D C 三、解答题〔此题共76分〕 19.〔1〕解:原式=x26x9x23x2 ·························································· 〔2分〕 =x6x9x3x2 ····························································· 〔3分〕 =9x7. ·················································································· 〔4分〕 〔2〕解:原式=22xx22 ································································· 〔2分〕 x2x2x2x2 ············································································· 〔3分〕 x2x22 = =1. ··························································································· 〔4分〕 〔3〕解:移项,得x2x3,配方,得x14, ············································· 〔2分〕 ∴x12,∴x11,x23. ···························································· 〔4分〕 〔注:此题还可用公式法,分解因式法求解,请参照给分〕 20.解:〔1〕π2; ··························································································· 〔2分〕 〔2〕答案不唯独,以下提供三种图案. 〔第20题 图2〕 ·································· 〔6分〕 〔注:假如花边图案中四个图案均与差不多图案相同,那么本小题只给2分;未画满四个〝田〞字格的,每缺1个扣1分.〕 21.〔1〕935.7,859.0; ························································································ 〔4分〕 〔2〕解:①2004~2018移动电话年末用户逐年递增. ②2018年末固定电话用户达803.0万户. ··············································· 〔8分〕 2 〔注:答案不唯独,只要符合数据特点即可得分〕 22.解:〔1〕10,50;·························································································· 〔2分〕 〔2〕解:解法一〔树状图〕: 20 10 0 第一次 30 第二次 10 20 30 0 20 30 0 10 30 0 10 20 和 10 20 30 10 30 40 20 30 50 30 40 50 ·················································································································· 〔6分〕 从上图能够看出,共有12种可能结果,其中大于或等于30元共有8种可能结果,因此P〔不低于30元〕=解法二〔列表法〕: 第一次 第二次 0 10 20 30 0 10 20 30 10 10 30 40 20 20 30 50 30 30 40 50 82 ······························································ 〔8分〕 .123············································································································ 〔6分〕 〔以下过程同〝解法一〞〕 ······································································· 〔8分〕 23.解:分不过A、D作AMBC于M,DGBC于G.过E作D A E 那么四边形AMGD为矩形. EHDG于H,F H AD∥BC,BAD135°,ADC120°.∴B45° ,DCG60°,GDC30°.B G M 〔第23题〕 水深 C ·sinB12在Rt△ABM中,AMAB262. 2∴DG62. ······························································································ 〔3分〕 ·cosEDH2在Rt△DHE中,DHDE33. ······································ 〔6分〕 2∴HGDGDH62-3≈61.411.73≈6.7. ······································· 〔7分〕 答:水深约为6.7米. ···················································································· 〔8分〕 〔其它解法可参照给分〕 24.解:〔1〕由题意,得:ab1.4,a0.1,解得 ········································· 〔2分〕 4a2b2.6.b1.5.2 ∴y乙0.1x1.5x. ········································································· 〔3分〕 〔2〕Wy甲y乙0.310t0.1t21.5t. ∴W0.1t1.2t3. ······································································· 〔5分〕 W0.1t66.6.∴t6时,W有最大值为6.6. ························· 〔7分〕 ∴1064〔吨〕. 答:甲、乙两种水果的进货量分不为4吨和6吨时,获得的销售利润之和最大,最大利润是6.6万元. ········································································· 〔8分〕 25.解:〔1〕EA1FC. ······················································································· 〔1分〕 证明:〔证法一〕 ABBC,AC.22由旋转可知,ABBC1,AC1,ABEC1BF, ∴△ABE≌△C1BF. ··················································· 〔3分〕 ∴BEBF,又BA1BC, ∴BA1BEBCBF.即EA1FC. ······························ 〔4分〕 〔证法二〕 ABBC,AC.由旋转可知,A1C,A1B=CB,而EBCFBA1, ∴△A1BF≌△CBE.···················································· 〔3分〕 ∴BEBF,∴BA1BEBCBF, 即EA1FC. ······························································· 〔4分〕 〔2〕四边形BC1DA是菱形. ······································································ 〔5分〕 证明:A1ABA130°,AC同理AC∥BC1. 11∥AB,∴四边形BC1DA是平行四边形. ················································· 〔7分〕 又ABBC1,∴四边形BC1DA是菱形. ····································· 〔8分〕 C D E G B F 〔3〕〔解法一〕过点E作EGAB于点G,那么AGBG1 .在Rt△AEG中, A AG12AE3.……〔10分〕 cosAcos30°3A 1C1 由〔2〕知四边形BC1DA是菱形, ∴ADAB2, 2 ················································ 〔12分〕 3.3〔解法二〕ABC120°∴EBC90° ,ABE30°,.2在Rt△EBC中,BEBC ·tanC2tan30°3.32 ·············································· 〔10分〕 EA1BA1BE23.∴EDADAE23AC11∥AB,A1DEA.A1DEA1. ∴EDEA12233. ·······················································〔其它解法可参照给分〕 26.〔1〕解:由23x830,得x4.A点坐标为4,0. 由2x160,得x8.B点坐标为8,0. ∴AB8412. ········································································28由yx,x5,∴C点的坐标为5, ······················33解得6.·········y2x16.y6.∴S11△ABC2AB·yC212636. ·················································· 〔2〕解:∵点D在l281上且xDxB8,yD3838. ∴D点坐标为8,.8 ··········································································又∵点E在l2上且yEyD8,2xE168.xE4. ∴E点坐标为4,.8 ··········································································∴OE844,EF8. ································································ 〔3〕解法一:①当0≤t3时,如图1,矩形DEFG与△ABC重叠部分为五边形CHFGR〔t0时,为四边形CHFG〕.过C作CMAB于M,那么Rt△RGB∽Rt△CMB. y l2 yly2 E l1C D E 2 D l1E lD l1 C R C R R A O F M G B x A F O G M B x F A G O M B x 〔图1〕 〔图2〕 〔图3〕 12分〕 2分〕 3分〕 4分〕 5分〕 6分〕 7分〕 〔 〔 〔 〔 〔 〔 〔 BGRGtRG即∴RG2t. ,,BMCM36 Rt△AFH∽Rt△AMC,112∴SS△ABCS△BRGS△AFH36t2t8t8t. 223421644即St ·························································· 〔10分〕 t.333∴

因篇幅问题不能全部显示,请点此查看更多更全内容

Copyright © 2019- sceh.cn 版权所有

违法及侵权请联系:TEL:199 1889 7713 E-MAIL:2724546146@qq.com

本站由北京市万商天勤律师事务所王兴未律师提供法律服务