搜索
您的当前位置:首页正文

数学课堂上的思想教育

来源:尚车旅游网


完全平方公式课例

一、教材内容的分析

解决问题是数学课程的灵魂,其特点在于技巧性和程式化。如果说语文教学面对人生的问题,需要用情感陶冶去解决,那么数学教学面临的数量变化课题,必须用灵巧的思维和繁复的计算程序去解决。一方面是灵活机动的创造性思维,一方面是固定的公式计算,两者缺一不可.

二、学生学情的分析

初一学生的抽象思维能力、逻辑思维能力、数学化能力有限,理解完全平方公式的几何解释、推导过程、结构特点有一定困难。所以教学中应尽可能多地让学生动手操作,突出完全平方公式的探索过程,自主探索出完全平方公式的基本形式,并用语言表述其结构特征,进一步发展学生的合情推理能力、合作交流能力和数学化能力。

三、教材处理

根据本节内容特点,本着循序渐进的原则,我将以“扩建后的正方形广场面积是多少?”这个实际问题引入新课,关于两数和的平方公式通过实例、推导、验证几个步骤完成。关于两数差的平方公式,将为学生提供三种不同的思路,由学生自己选择学习、理解,然后再归纳方法,再通过分层次练习,加以巩固。

四、教学设计

1、创设情景,导入新知

在复习整式乘法的基础上,创设情境:有一个边长为a米的正方形广场,现要扩建该广场,要求将其边长增加b米,试问这个正方形广场的面积有多大?

设计意图:从现实生活中的数学情景出发,培养学生对数学的热爱和运用数学的能力。

要求:(1)分别写出每一块的面积;(2)用不同的形式表示广场的总面积,并进行比较。

2、引导操作,探究新知

提问:如果将该正方形广场的边长缩减b米,则其边长又为多少?面积呢?

要求:让学生分组动手拼图:用手头的彩色纸,在原有的正方形广场上,拼出现在的广场,探究其面积的不同表示方法及其内在联系,体会完全平方公式的几何背景。(小组成员之间要相互合作、相互交流)

3、观察特征、建立模型

问题:① 这两个公式有何相同点与不同点? ② 你能用自己的语言叙述

4、范例解析,深化新知

Ⅰ、探求规律,注重双基

Ⅱ、运用法则,解决问题

Ⅲ、发散练习,勇于创新

4、归纳总结,反思新知

本节课我们又学习了乘法的两个公式:

我们在运用公式时,要注意以下几点:

公式中的字母a、b可以是任意代数式;

公式的结果有三项,不要漏项和写错符号

5、分层作业,延伸新知

采用必做题和选做题,分层要求。必做题是基础训练题,全体同学必须完成;选做题是提高训练题,可根据自己的能力,选择完成。

设计意图:作业布置做到既面向全体学生,又给基础较好的学生充分的发展空间,满足不同学生的不同需求。

因篇幅问题不能全部显示,请点此查看更多更全内容

Top