YuehengLan
DepartmentofChemistry,UniversityofNorthCarolinaatChapelHill,NC27599-3290
PeterG.Wolynes
DepartmentofChemistry&Biochemistry,UniversityofCaliforniaatSanDiego,9500GilmanDr.,LaJolla,CA92093-0371
GareginA.Papoian∗
arXiv:q-bio/0607025v1 [q-bio.QM] 18 Jul 2006DepartmentofChemistry,UniversityofNorthCarolinaatChapelHill,NC27599-3290
(Dated:February5,2008)
Cellularsignalingnetworkshaveevolvedtocopewithintrinsicfluctuations,comingfromthesmallnumbersofconstituents,andtheenvironmentalnoise.Stochasticchemicalkineticsequationsgovernthewaybiochemicalnetworksprocessnoisysignals.Theessentialdifficultyassociatedwiththemasterequationapproachtosolvingthestochasticchemicalkineticsproblemistheenormousnumberofordinarydifferentialequationsinvolved.Inthiswork,weshowhowtoachievetremendousreductioninthedimensionalityofspecificreactioncascadedynamicsbysolvingvariationallyanequivalentquantumfieldtheoreticformulationofstochasticchemicalkinetics.Thepresentformulationavoidscumbersomecommutatorcomputationsinthederivationofevolutionequations,makingmoretransparentthephysicalsignificanceofthevariationalmethod.Weproposenoveltime-dependentbasisfunctionswhichworkwelloverawiderangeofrateparameters.Weapplythenewbasisfunctionstodescribestochasticsignalinginseveralenzymaticcascadesandcomparetheresultssoobtainedwiththosefromalternativesolutiontechniques.Thevariationalansatzgivesprobabilitydistributionsthatagreewellwiththeexactones,evenwhenfluctuationsarelargeanddiscretenessandnonlinearityareimportant.AnumericalimplementationofourtechniqueismanyordersofmagnitudemoreefficientcomputationallycomparedwiththetraditionalMonteCarlosimulationalgorithmsortheLangevinsimulations.
Keywords:StochasticProcesses,NonlinearChemicalKinetics,VariationalApproach,QuantumFieldTheory,SignalTrans-duction,DiscreteNoise,StrongFluctuations,MasterEquation
I.INTRODUCTION
Thelifeofthecellisregulatedbyintricatechainsofchemicalreactions1.Thewholecellmaybeviewedasacomputingdevicewhereinformationisreceived,relayedandprocessed2.Signaltransductioncascadesbasedonproteininteractionsreg-ulatecellmovement,metabolismanddivision1,3.Sincecellsaremesoscopicobjects,understandingtheroleoftheintrinsicfluctuationsofthebiochemicalreactionsaswellasenvironmentalfluctuationsisafundamentalpartofunderstandingsignalingdynamics4,5,6,7,8,9,10,11,12,13,14,15.Inthisregard,thewell-organizedbehaviorofcells,whichemergesasaresultofbiochemicalreactiondynamicsinvolvinghundredsofcross-linkedsignalingpathways,isremarkable16,17,18,19,20,21,22.Theproblemofhowsignalscanbepreciselydetected,smoothlytransducedandreliablyprocessedundernoisyconditionsisaresearchtopicofgreatcurrentinterest,that,inturn,shouldleadtodeeperunderstandingoftheoriginsofthecell’sfunctionalresponses23,24.Further-more,thesestudiescanhelptounravelthedesignprinciplesforvarioussignalingpathways,leading,eventually,tobetterwaystocontrolandefficientlyinterferewithcellularactivity,aswouldbeneededtocorrectthebehaviorofdiseasedcells18,25.
Theroleofnoiseingeneregulatorynetworkshasbeenidentifiedasakeyissueandhasbeenintensivelystudiedinrecentyears10,11,12,26,27,28,29,30,31.Linearizationofthenoisemaybeacceptableifthedynamicsnearsteadystatesisbeingstudied10,26,31.Whenproteinnumbersarelargeand,thus,thecontinuousapproximationisvalid,time-dependentdistributionshavebeende-terminedusingtheLangevinorFokker-Planckequations6,32,33.Toaccountforthediscretenessinthelinearizedequations,thegeneratingfunctionapproachhasalsobeenused10,26.Avariationaltreatmentofsteadystatestabilityandswitchinginnonlinear,discretegeneregulatoryprocesseshasbeenreported29,30.
Incytosolicsignaltransductionprocesses,incontrasttogenetranscriptionwhichinvolvesauniqueDNAmolecule,allthereactingspeciesarepresentinmultiplecopiesandparticipateinunary,binaryorperhapsevenhigherorderreactions.Noisecouldbemultiplicative34,35andthelineardescriptioneasilybreaksdown.Moreover,cellularreactionsusuallytakeplacehetero-geneouslyinspaceThelocalizationandcompartmentalizationofproteinorganellesrequirediffusiveoractivetransportationofreactingmoleculesfromoneregiontoanother.Spatialcoordinationcombinedwithtemporalcoordinationgeneratescoherent,yetcomplexspatiotemporalpatterns18,19,20,21,22,36,37,38.
Y.Lan,P.G.Wolynes,&G.A.PapoianAvariationalapproachtostochasticsignaltransduction
Y.Lan,P.G.Wolynes,&G.A.PapoianAvariationalapproachtostochasticsignaltransduction
dt
(m,n)=µ[−mnP(m,n)+m(n+1)P(m,n+1)]
+λ[−(N−n)p(m,n)+(N−n+1)P(m,n−1)]
+g[−P(m,n)+P(m−1,n)]+k[−mP(m,n)+(m+1)P(m+1,n)],
(1)
whereNisthetotalnumberofAandA∗.InEq.(1),thefirsttwotermsdescribetheA−A∗reactionandtheresttheR−R∗reaction.Thissimple2-stepcascadeiscommonlyfoundembeddedintheonsetofareactionpathwayofmanyimportantsignalingcascades55,56.Ifalargenumberofinactivereceptors,R,arepresenttherateofconversiondependsonthearrivaltimesoftheexternalcueandthereactionbecomesPoissonian.Weassumethatthisisthecaseinallthefollowingcalculations.IftheR→R∗reactionistheusualbirth-deathproblem,ourformalismstillapplieswithonlyminorchanges.Themasterequation(1)actuallycontainsinfinitelymanycoupledODEs.
B.TheQFTformulation
Thedifferential-differenceequations,suchasEq.(1),arewellrepresentedintheQFTformulationbyintroducingcreationandannihilationoperatorsa,a†andstates|n29,30,47,48,49,50,51.Inanalogytoquantummechanics,theoperatorssatisfythecom-mutationrelationthat
[a,a†]=1.
Asusual,the“vacuumstate”|0anditsconjugate0|aredefinedtosatisfy
0|a†=a|0=0,
0|0=1.
Otherstatesarebuiltupfromthevacuumstate,suchasthen-particlestate|n
|n=a†n|0.
3
Y.Lan,P.G.Wolynes,&G.A.PapoianAvariationalapproachtostochasticsignaltransduction
=Ω|Ψ.(2)dt
TheoriginallargesetsofODEsarenowcompactifiedintojustoneequation.Appliedtothe2-stepcascade(Fig.1),Eq.(2)ischaracterizedbyfollowingoperatorΩ,
whereb†,barethecreationandannihilationoperatorsassociatedwithR∗anda†,awithA.Inthiscase,
|Ψ=P(m,n)|m,n,
m,n
Ω=(1−a†)(µb†ba−λN+λa†a)+g(b†−1)+k(b−b†b),
(3)
where
Eq.(3)isreadilyverifiedbysubstitutingintoEq.(2)andcomparingthecoefficientsofeach(m,n)-particlestate.Incontrastto
ordinaryquantummechanics,theoperatorΩisnon-Hermitian,sotheinnerproductsbetweenthestatesarenotconserved.Thiswasthereasontointroduceearliertheharvestingstate.Nevertheless,manyQFTtechniquesmaybeprofitablyapplied,albeitwithsomemodifications29,30,48,50,57,58,59.Wewillnotdiscussthoseandinsteadwilltranslatetheabovefieldtheoreticformulationtothefamiliardifferentialequationlanguage.
C.Differentialoperatorsandthegeneratingfunction
|m,n=a†mb†n|0.
Inthefieldtheoreticform,thecomputationsarecarriedoutbycommutatormanipulationsthatsometimesareawkward.Fortunately,itturnsoutthatwemayconverttheoperatorequation(2)intoapartialdifferentialequation(PDE).Toaccomplishthat,weexploretheanalogybetweena,a†andd/dx,x.Notonlydotheyhavethesamecommutator
[a,a†]=1⇐⇒
[d
a|0=0⇐⇒
dx
dxd
x=1;
xn=nxn−1;
ama†n|0=
n!
dx
)mxn=
n!
Y.Lan,P.G.Wolynes,&G.A.PapoianAvariationalapproachtostochasticsignaltransduction
amf(a†)|0⇐⇒(
d
dx
f(x);
∂t
=(1−x)(µy
∂2
∂x
)Ψ+g(y−1)Ψ−k(y−1)
∂Ψ
|x=1,∂x∂2Ψ2
n=(
∂x
)|x=1,(5)
where|x=1meansevaluationatx=1.Therefore,themomentsareobtainedwhenthegeneratingfunctionisexpandedatx=1,whiletheprobabilitydistributionisobtainedfromtheTaylorcoefficientswhenthegeneratingfunctionΨisexpandedatx=0.
D.Thevariationalsolution
IntheQFTformulationofthestochasticprocesses,avariationalprinciplemaybederivedwhichisequivalenttotheevolutionequation(2).ThisprincipleindicatesthatthephysicalsolutionofEq.(2)isgivenbythestationarypointsofthefollowingfunctional29,30,53
∞
H[ΦL,ΦR]=dtΦL|∂t−Ω|ΦR,(6)
0
whereΦLandΦRarearbitraryquantumstatesunderquitegeneralconstraintsconsistentwiththepositivityofprobabilitiesand
thefixedboundaryconditions.Inpractice,wetakeafinite-dimensionalsubsetoftheinfinite-dimensionalfunctionspaceandapplythevariationalprincipleinthissubspacetogetclosedequationsthatmaybesubsequentlysolvedbysimplenumericalcalculation.Iftheessentialqualitativepropertiesofthesystemareknown,goodapproximationsoftheoriginalproblemcanbeachievedthroughaninformedchoiceoftime-dependentbasisfunctionsthatdefinetherelevantsubsetinthefunctionspace.BecauseΩisnotHermitian,therightandlefteigenvectorsaredifferent.Tocharacterizethesystem,we,therefore,needtwosetsofvectorsΦLandΦR.ThestationaryvariationconditionforΦLrestorestheoriginalequation(2)andthatforΦRdefinesanequationsatisfiedbyΦL.Ifweviewtheoperator∂t−Ωasalargematrixparameterizedbyt,theΦLandΦRgeneratedbythestationaryvariationconditioncorrespondtoitssingularvectors61,62andtheextremumvaluesofEq.(6)arethesingularvalues.Physically,fromtheSchr¨odingerpicturepointofview,ΦRistheevolvingquantumstateandΦLrepresentsthemeasurablequantitiesinwhichweareinterested.Eq.(6)servestofindthemostsignificantstateandphysicalobservables.EyinkoriginallyappliedthisvariationalprincipletoFokker-Planckequations54.Subsequently,SasaiandWolynesusedthisvariationalapproachinthefieldtheoreticformandobtainedmomentsinatoggle-switchgeneregulatoryproblem29.Inthispaper,weshowhowthevariationalprinciplemaybeapplied,instead,tothegeneratingfunctions.Weintroducenovelbasisfunctionstoobtainthetime-dependentprobabilitydistributionsinsignaltransductioncascades.Anothernoveltyofthepresentformulationisouravoidance
5
Y.Lan,P.G.Wolynes,&G.A.PapoianAvariationalapproachtostochasticsignaltransduction
dxi
ThefunctionalHsimplybecomes
H=
∞0
.(9)
dtΦL(∂t−Ω)ΦR|x=1,
(10)
Inthenewpicture,wehavemuchsimplermathematicaloperations,e.g.,thevariationalprinciplebecomessimplyafunctionextremizationcondition
δH
dxi
(∂t−Ω)ΦR|x=1=0,,fori=1,2,...,m.
(12)
Theevolutionofthegeneratingfunctionshouldalwaysconservethetotalprobability.AsinEq.(4),thetotalprobabilityΨ(1,1)doesnotchangewithtime.TheproperchoiceofΦRshouldalsoguaranteethisinvariance,satisfying(∂t−Ω)ΦR|x=1=0.Now,Eq.(12)tellsusthatthehigherderivativesoftheexpression(∂t−Ω)ΦRevaluatedatx=1arealsozero.Therefore,inthelimitofm→∞,Eq.(12)leadstothePDE∂tΨR=ΩΨR.Forfinitem,thisPDEisapproximatelysatisfiedintheneighborhoodofx=1.
III.
NUMERICALAPPLICATIONS
Inthispart,wediscusstheimplementationofthePDEversionofthevariationalmethodandapplyittoseveralsimple,yetimportantenzymaticcascades.Beforeproceedingtotheindividualexamples,weemphasizeourmotivationforselectingthetime-dependentbasisfunctions.Wealsobrieflydiscussseveralalternativemethodsalsousedtosolvethemasterequation.
A.
Computationaldetails
ItisreasonabletorequirethefollowingconstraintsontherightbasisfunctionΦR(x,y):(1)thetotalprobabilityshouldbeequalto1,i.e.,ΦR(1,1)=1;
(2)theprobabilityshouldbepositive,i.e.,thecoefficientsoftheTaylorexpansionofΦRaround(x,y)=(0,0)shouldbenonnegative;
(3)thetimerateoftheunknownfunctions,f˙i(t),shouldbeobtainablebysolvingEq.(12)derivedfromthevariationalprinciple.Inthefollowing,weintroducetwosetsofbasisfunctions.Onesetissimplebutisoflimitedapplicability,whiletheotherisinamorecomplexintegralformandcanbeappliedverygenerally.
6
Y.Lan,P.G.Wolynes,&G.A.PapoianAvariationalapproachtostochasticsignaltransduction
λ+µm(t)
followingansatz,
k(1
+
µm(t)
−e−kt)istheaveragenumberofR∗attimet.Wemakeuseofthisspecificfunctionalformandtrythe
ΦR=(1+f2(t)(y−1))Ne(x−1)f1(t),
(18)
whichresultsinthefollowing2DODEs
f˙1=g−kf1
f˙2=λ(1−f2)−µf1f2.
(19)
Theseequationshaveaparticularlysimplephysicalexplanation-theycorrespondtothedeterministicchemicalkineticsequa-tionssincef1andN∗f2areequaltotheaveragenumbersofR∗andA,respectively.Butnow,wemayobtainprobability
2
distributionsthroughEq.(18).Forexample,thevarianceofAcanbeeasilycalculatedasσ2=n2−n2=f2(t)−f2(t).
∗
TheseODEscanbesolvedexactlyandweshowinFig.2theprobabilitydistributionofAatt=30fortwosetsofparametervalues.Alsoshowninthefigureareresultsobtainedfromcalculationsusingmoretraditionaltechniques.Thefirstsetofreactionrateparameterswerechosenasg=10,k=5,µ=0.02,λ=0.15,withtheinitialconditions(NR,NR∗,NA,NA∗)=(20,0,5,0).SincetheR−R∗reactionismuchfasterthantheA−A∗reaction,oneexpectsEq.(17)tobeagoodapproximation40.Indeed,inFig.2(a),thevariationalansatzEq.(18)leadstoaresultthatoverlapssignificantlybetterwiththeexactGillespiecalculation,comparedwiththeresultsfromΩ-expansionandLangevinequation.TheΩ-expansionresultturnsouttobemoreconcentratedthantheexactresult,whiletheLangevinequationdoesnotworkwellneartheleftboundary,shiftingtheaveragetotheright.
Forotherparametervalues,aslongastheR−R∗reactionisfast,theansatzEq.(18)worksfineasexpected40.However,ifthefirstreactionisconsiderablyslowerthanthesecondone,thisansatzbecomeslessuseful,asshowninFig.2(b)for
7
Y.Lan,P.G.Wolynes,&G.A.PapoianAvariationalapproachtostochasticsignaltransduction
√
√
Y.Lan,P.G.Wolynes,&G.A.PapoianAvariationalapproachtostochasticsignaltransduction
Y.Lan,P.G.Wolynes,&G.A.PapoianAvariationalapproachtostochasticsignaltransduction
∂2
∂t
=(1−z)(−µ2y+(1−y)(µx
∂2
√
∂z
)Ψ
)Ψ+g(x−1)Ψ−k(x−1)
∂Ψ
∂y
Y.Lan,P.G.Wolynes,&G.A.PapoianAvariationalapproachtostochasticsignaltransduction
Y.Lan,P.G.Wolynes,&G.A.PapoianAvariationalapproachtostochasticsignaltransduction
∂z∂w
−λ3N3+(λ3w+µ3N2)
∂
√
Y.Lan,P.G.Wolynes,&G.A.PapoianAvariationalapproachtostochasticsignaltransduction
Y.Lan,P.G.Wolynes,&G.A.PapoianAvariationalapproachtostochasticsignaltransduction
Y.Lan,P.G.Wolynes,&G.A.PapoianAvariationalapproachtostochasticsignaltransduction
Y.Lan,P.G.Wolynes,&G.A.PapoianAvariationalapproachtostochasticsignaltransduction
因篇幅问题不能全部显示,请点此查看更多更全内容