ManfredLehn
Introduction
Hilbertschemesof-tuplesofpointsonacomplexprojectivemanifoldarenaturalcompactificationsoftheconfigurationspacesofunordereddistinct-tuplesofpointson.Theirgeometryisdeterminedbythegeometryofitselfandthegeometryofthe‘punctual’Hilbertschemesofallzero-dimensionalsubschemesinaffinespacethataresupportedattheorigin.Thusoneisnaturallyledtothefollowingproblem:
DetermineexplicitlythegeometricortopologicalinvariantsoftheHilbertschemessuchastheBettinumbers,theHodgenumbers,theChernnumbers,thecohomol-ogyring,fromthecorrespondingdataofthemanifolditself.
Thisproblemismostattractivewhenisasurface,sincethentheHilbertschemesarethemselvesirreducibleprojectivemanifolds,byaresultofFogarty[9],whereasforhigherdimensionalvarietiestheHilbertschemesareingeneralneitherirreduciblenorsmoothnorpureofexpecteddimension.
Inthesurfacecase,theanswertotheproblemabovefortheBettinumberswasfirstgivenbyG¨ottschein[11].Theanswerturnsouttobeparticularlybeautiful(cf.Theorem2.1below).TheproblemfortheHodgenumberswassolvedbyS¨orgelandG¨ottsche[12].Foradifferentapproachtobothresultssee[3].TheanswerfortheChernclasseswillbeimplicitlygiveninaforthcomingpaperbyEllingsrud,G¨ottscheandtheauthor[4].
Thequestionfortheringstructureofthecohomologyismoredifficult.Ingeneral,isthequotientoftheblow-upofalongthediagonalbythecanonical
,.involutionthatexchangesthefactors.Thusthecaseofinterestis
TheringstructurewasfoundforbyEllingsrudandStrømme[5],andfor,smoothprojectiveofarbitrarydimension,byFantechiandGo¨ttsche[8].Inanother
,arbitrary,direction,EllingsrudandStrømme[6]gavegeneratorsfor
andanimplicitdescriptionoftherelations.
VafaandWitten[27]remarkedthatG¨ottsche’sFormulafortheBettinumbersisidenticalwiththePoincar´eseriesofaFockspacemodelledonthecohomologyof.Nakajima[21]succeededingivingageometricconstructionofsuchaFockspacestructureonthecohomologyoftheHilbertschemes,leadingtoanatural‘explanation’ofG¨ottsche’sresult.SimilarresultshavebeenannouncedbyGrojnowski[13].
1
FollowingthepresentationofGrojnowski,thiscanbemademorepreciseasfol-ofsubschemesoflengthand,respectively,andoflows:sendingapair
disjointsupporttotheiruniondefinesarationalmap
Thismapinduceslinearmapsontherationalcohomology
and
Ifwelettiplication
,thenthesemapsdefineamultiplicationandacomul-whichmakeacommutativeandcocommutativebigradedHopfalgebra.Theresult
ofNakajimaandGrojnowskisaysthatthisHopfalgebraisisomorphictothegraded
.symmetricalgebraofthevectorspace
1Moreexplicitly,Nakajimaconstructedlinearmaps
andprovedthattheysatisfythe‘oscillator’or‘Heisenberg’relations
Herethecommutatoristobetakeninagradedsense.
Themultiplicationandthecomultiplicationofarenotobviouslyrelatedtothequitedifferentringstructureof,whichisgivenbytheusualcupproductoneach
.(Strictlyspeaking,containsacountablenumberofdirectsummand
idempotentsbutnotaunitunlesswepasstosomecompletion).
ThispaperattemptstorelatetheHopfalgebrastructureandthecupproductstruc-ture.Moreprecisely:
,i.e.Letbelocallyfreesheafofrankon.Attachingtoapoint
,the-vectorspacedefinesalocallyazero-dimensionalsubscheme
freesheafofrankon.TheChernclassesofallsheavesonofthis
.Wewilldescribeapurelyalgebraicalgorithmtotypegenerateasubalgebra
determinetheactionofonintermsofthe-basisofprovidedbyNakajima’s
foragivensheafintoresults.WecollecttheChernclassesofallsheaves
operators
andgeometricallycomputethecommutatorsoftheseoperatorswiththe‘standardop-erators’definedbyNakajima.
Acentralrˆoleisplayedbytheoperator,which—uptoafactor
—canalsobeinterpretedastheintersectionwiththe‘boundaries’ofthe
Hilbertschemes,i.e.thedivisorsofalltupleswhichhaveamultiple
isdefinedby.pointsomewhere.Thederivativeofanyoperator
Ourmaintechnicalresultthensaysthat
(1)
where
isthecanonicalclassofembeddingand
ofthisrelationis
isthemapinducedbythediagonal.Animmediatealgebraicconsequence
(2)
for.Byinductiononeconcludesthattheoperatorsandsufficeto
.generateall,
withthestandardoperatorThecommutatoroftheCherncharacteroperator
canbeexpressedintermsofhigherderivativesof:
Thispaperisorganisedasfollows:InSection1werecallthebasicgeometricnotionsusedinthelaterparts.Section2providesanintroductiontoNakajima’sresults.
inSection3containsthecoreofthispaper:wefirstdefineVirasorooperators
analogytothestandardconstructionandshowhowthesearisegeometrically.Wethenintroducetheoperatorandcomputethederivativeof.Finally,inSection4weapplytheseresultstocomputetheactionoftheChernclassesoftautologicalbundles.
DiscussionswithA.KingwereimportanttomeinclarifyingandunderstandingthepicturethatNakajimadrawsinhisveryinspiringarticle.IamverygratefultoG.EllingsrudforallthethingsIlearnedfromhistalksandconversationswithhim
3
aboutHilbertschemes.Tosomeextendtheresultsinthisarticleareareflectiononaninductionmethodentirelyduetohim.MostoftheresearchforthispaperwascarriedoutduringmystayattheSFB343oftheUniversityofBielefeld.OnvariousoccasionsIwasallowedtolectureonHilbertschemesandtheircohomologyintheseminarofthealgebraicgeometrygroupinBielefeld:itisapleasuretothankS.Bauer,R.BrusseeandT.Zinkfortheirwillingnesstolistenattentivelyandcriticallyeventonotyetfullycorrectpreliminaryresults.IowespecialthankstoS.Bauerforhiscontinuousencouragement,interestandsupport.Bielefeld,8October,1997.
ManfredLehn
Contents
1Preliminaries
1.1Symmetricproducts..............1.2HilbertschemesandHilbert-Chowmorphism1.3Hilbertschemesofsmoothsurfaces.....1.4Incidenceschemes..............
....................................................
55678111213151521243134343044
2Thestructureofthecohomology
2.1Correspondences............................2.2Nakajima’sMainTheorem.......................3Theboundaryoperator
3.1Virasorogenerators.............3.2TheboundaryoftheHilbertscheme....
.............3.3Thederivativeof
3.4Thevertexoperator,completionoftheproof
........................................................
4Towardstheringstructureof
4.1Tautologicalsheaves..........................4.2Thelinebundlecase..........................4.3TopSegreclasses............................References
4
1Preliminaries
Inthissectionweintroducethebasicnotationsthatwillbeusedthroughoutthepaperandcollectanumberofresultsfromtheliterature,mostlywithoutproof.
1.1Symmetricproducts
actsonbyLetbeaquasi-projectiveschemeover.Thesymmetricgroup
permutationofthefactors,andthereexistsageometricquotientfor
isagainquasi-projective,andifisirreducible(reduced,integralorthisaction.
.Moreover,thisconstructionisfunctorial:anynormal)thenthesameistruefor
morphisminducesamorphism.
.Itfollowsfromthetheoremonelementarysymmetricfunctionsthat
Consequently,thesymmetricproductsofsmoothcurvesareagainsmooth.Ontheotherhand,ifisasmoothvarietyofdimensiongreaterthanone,thenissingu-.larfor
ByaresultofGrothendieck[15],thenaturalmap
isanisomorphismontothesubringofinvariantelementsundertheactionof
thisMacdonaldcomputedthefollowingformulafortheBettinumbersofpurelyalgebraicargument:
.Frombya
Theorem1.1(Macdonald[20])—TheBettinumbersofthesymmetricproductsaregivenbytheformulaThereisanotherpropertyofthesymmetricproduct,whichisimportantforthedefi-nitionoftheHilbert-Chowmorphism.Considerthefollowingset-valuedcontravariantfunctoronthecategoryoflocallyNoetherian-schemes:
betheprojection.ThenLetbea-scheme,andlet
isthesetofallisomorphismclassesofcoherentsheaveson,whereis-flat,
isafinitemap,andislocallyfreeofrank.Ifis
mapstheclassoftoa-morphism,then
.Hereandinthefollowingwewriteinsteadof.Grothendieck[14]assertedthatthereisanaturaltransformation
sendinganyzero-dimensionalsheaftoitsweightedsupport.Thismeansthatforanythereisaclassifyingmorphismsuchthat
forall,whereforanycoherentsheafwelet
5
denotethelengthofthestalkasamoduleover.Moreover,forany.
ThiswasfirstprovedbyIversen[18]usingthetechniqueoflineardeterminants.Infact,ifisnormalthencorepresentsthefunctor(cf.[16,Ex.4.3.6]).
1.2HilbertschemesandHilbert-Chowmorphism
Throughoutthispaper,theterm‘Hilbertscheme’willalwaysrefertoHilbertschemesofzero-dimensionalsubschemes.
Letbeaquasi-projectiveschemeover.TheHilbertfunctoristhefollowingset-valuedfunctoronthecategoryoflocallyNoetherian-schemes:
bethesetofallclosedsubschemessuchthattheLet
projectionisflatandfiniteofdegree.Ifisa-morphism,
.theinducedmapisgivenbypull-back:
isrepresentedbyaquasi-projectiveGrothendieck[14]showedthat
scheme.Ifisprojective,isprojectiveaswell.
isan(open,closed)‘Functoriality’inislimitedtoafewcases:if
immersion,thenthereisanatural(open,closed)immersion
definedbytakingtheimageofsubschemesunder.Moreover,supposethatisane´tale(surjective)morphism.Letdenotetheopensubsetofall
suchthattheset-theoreticsupportofismappedinjectivelyto.subschemes
´tale(surjective)morphism.Thentakingimagesunderdefinesane
Forsmallvaluesofthereareexplicitdescriptionsof:Clearly,isa
,andisthequotientforthe-actionontheblow-upofreducedpoint,
alongthediagonal.Proceedingbyinduction,itisnotdifficulttoseethatall
areconnectedifisconnected.Hilbertschemes
Observethatthereisanaturaltransformationoffunctors
whichsendsasubscheme
isrespresentedby
toitsstructuresheaf.As
,thistransformationinducesamorphismofschemes
theHilbert-Chowmorphism.Onapointmorphismisgivenby
,i.e.asubscheme
,this
Forexample,if
isasmoothcurve,then
6
isanisomorphism.
1.3Hilbertschemesofsmoothsurfaces
denoteasmoothirreducibleprojectivesurface.Thebasicgeo-Fromnowon,let
metryoftheHilbertschemesofpointsonsurfacesisgovernedbytwotheoremsduetoFogarty[9]andBrianc¸on[1].
Theorem1.2(Fogarty)—variety.isa-dimensionalsmoothirreducibleprojectiveHereisashortsketchoftheproof:projectivityisduetoGrothendieck.Healso
atapointiscanonicallyisomorphictoshowedthattheZariskitangentspaceof
.Sincewealreadyknowthatisconnected,itthereforesufficesto
forall.ThiscanbedoneusingSerredualityshowthat
andtheHirzebruch-Riemann-RochTheoremappliedtothegroups.
Remark1.3—Wealreadymentionedthatissmoothforsmoothcurves.Com-issmoothforaputingthedimensionofthetangentspaceonecanshowthat
issingularifsmoothvarietyofanydimension.Ontheotherhand,
and.
andletdenotetheclosedsubsetofallsubschemesFixapoint
with(withthereducedinducedsubschemestructure).Thisis
indeedaclosedsubset,asitisthefibreoftheHilbert-Chowmorphismover
.thepoint
Letdenotethelocalringofat.Sinceanypointmaybe
,andsince,allconsideredasasubschemeof
schemes—forvaryingand—are(non-canonically)isomorphic.Clearly,
and,moreoveritisnottoodifficulttoseethatis
,thevertexoftheisomorphictotheprojectiveconeoverthetwistedcubic
.Itisnotaccidentalthatintheseconecorrespondingtothesubscheme
examplesthedimensionofincreasesbyoneineachstep:
Theorem1.4(Brianc¸on)—Forall.,isanirreduciblevarietyofdimensionForaproofsee[1].AnewproofwithamoregeometricandconceptualargumentwasrecentlygivenbyEllingsrudandStrømme[7].
Brianc¸on’sTheorememphasisestheimportanceofcurvilinearschemes:recallthat
iscalledcurvilinearat,ifiscontainedazero-dimensionalsubscheme
.Equivalently,onemightsaythatisisomorphictoinsomesmoothcurve
the-algebra,where.Henceiscurvilinearatifiseither
.Fromthiscriterionitisclear,thatinanyflatempty,areducedpoint,orif
familyofzero-dimensionalsubschemesthepointsinthebasespacewhichcorrespondtocurvilinearsubschemesformanopensubset.
7
Inparticular,wemayconsidertheopensubsetnicestructure:Lemma1.5—If.Thissethasavery
,thenthemorphismisabundlemorphismwithaffinefibressmoothvarietyofdimension..Inparticular,isanirreducibleProof.Let
sendingthe
-tuple
belocalcoordinatesandconsidertheopensubset
.Thenthereisanisomorphism
tothesubsheafcorrespondingtotheideal
.
AsaconsequenceofthislemmaweseethatBrianc¸on’sTheoremisequivalenttosayingthatisdensein.Thisisaveryimportantinformation:curvi-linearsubschemesarefareasiertohandlethananyoftheothers.Theycontainonlyonesubschemeforanygivensmallerlength,anysmalldeformationofacurvilinearsubschemeisagainlocallycurvilinearetc.
slightly,letdenotethediagonal,andGeneralisingthedefinitionof
let,endowedwiththereducedinducedsubschemestructure.Thus
consistsofallsubschemesoflengthwhicharesupportedatsomepointin.Thefibresofthesurjectivemorphismaretheschemes
consideredabove.Infact,achoiceofregularparametersnearapointleadstoatrivialisationofthemorphismnear,i.e.isafibrebundlefortheZariskitopology.
AsanimmediateconsequenceofBrianc¸on’sTheoremweget
Corollary1.6—isanirreduciblevarietyofdimension.Notethatandhavecomplementarydimensionsassubvarietiesin.Theirhomologicalintersectionisthereforezero-dimensional.However,theinclusion
complicatesthecomputationoftheintersectionproduct.Thefollowing
resultwasobtainedbyEllingsrudandStrømme[7]byaninductivegeometricargu-ment:
Theorem1.7(Ellingsrud,Strømme)—.1.4Incidenceschemes
Since
representsthefunctor
,thereisauniversalfamilyofsubschemes
8
Again,forsmallvaluesofthereareexplicitdescriptions:isempty,isthe
,andistheblow-upofthediagonalin.Thediagonalin
identificationisgivenbythequotientmapandanyofthetwoprojections.
Assumethat.Thenthereisauniquelydeterminedclosedsubscheme
withthepropertythatanymorphism
factorsthroughcorrespondtopairs
ifandonlyif
ofsubschemeswith
.Closedpointsin
.Let
denotethetwoprojections.Then
parametrisestwoflatfamilies
Considerthecorrespondingexactsequence
(4)
isacoherentsheafonwhichisflatoverTheidealsheaf
andfibrewisezero-dimensionaloflength.Itthereforeinducesaclassifyingmor-phismtothesymmetricproduct,analogouslytotheHilbert-Chowmorphism,whichwewillalsodenoteby
Asbeforelet
isatriplein
,where
withand
isthesmalldiagonal.Apoint
.
Wemaydecompose
intolocallyclosedsubsets
,
,with
Lemma1.8—tively,andof.andareirreducibleofdimensionforall.Moreover,and,respec-iscontainedintheclosureProof.If
or,themap
isanopenimmersion
ItfollowsfromBrianc¸on’sTheoremthat
isirreducibleand
For
considertheembedding
9
Infact,theimageofiscontainedinaproperclosedsubsetofthetargetvariety:For
iscurvilinear,inwhichcasethereisonlyauniquesubschemeofeither
length,orisnotcurvilinearandthereforecontainedinaproperclosedsubsetof
.Now,thevarietyontherighthandsidehasdimension
Finally,ageneralpointinisoftheformwhereisacurvilinearsubschemesupportedatanddisjointfrom.Nowitiseasytodeformtoasubschemewithsupportedatapoint.Henceageneralpointofdeformsinto.
Definition1.9—Foranypairofnonnegativeintegersdefinesubvarieties
asfollows:iftively.Moreover,
betheclosureofand,respec-,and,whereas
.Ontheotherhand,if,letandunderthetwist
let
and
Byconstructionandareemptyorirreduciblevarietiesofdimension
and,respectively.
,themostbasicofallincidenceLetusreturntotheparticularcase
situations:considertheprojectivisation.Itisaneasyexercise
suchthatthediagramtoseethatthereisanaturalisomorphism
commutes.
Theorem1.10(Ellingsrud,Strømme[7])—Theincidenceschemeirreduciblevariety.isanAnimmediatecorollaryisthefollowing:thereisanaturalclosedimmersion
;sincebothareirreduciblevarieties,thismustbeaniso-definedabove.morphism.Theexceptionaldivisorispreciselythevariety
Henceinthissituationwemaywritethesequence(4)as
(5)
Infact,theincidenceschemeissmooth.Thishasindependentlybeprovedby
Ellingsrud,TikhomirovandCheah.Theproofsareunpublished.
10
2Thestructureofthecohomology
Asbefore,letbeasmoothirreducibleprojectivesurface.ByFogarty’sTheoremtheHilbertschemesareprojectivemanifoldsofrealdimension.Themotivating
intermsoftheprobleminthisstudyistounderstandthecohomologyrings
cohomologyring.
Asfarasthevectorspacestructureofthecohomologyisconcerned,i.e.ifweonlyaskforthedimensionsofthegradedpiecesofthecohomology,thisproblemwassolvedbyG¨ottsche[11].TheanswerisgivenbythefollowingbeautifulformulafortheBettinumbers.
aredeterminedbytheBettiTheorem2.1(G¨ottsche)—TheBettinumbersnumbers.Moreprecisely,thefollowingformulaholds:G¨ottschesoriginalproofusestheWeilConjectures[11].Foradifferentapproachsee[3].
AmongotherthingsonelearnsfromthisformulathatitisagoodideatoconsiderallHilbertschemessimultaneously.ThiswillbecomeevenmorestrikingthroughNakajima’smethodwhichwewillreviewinthenextsections.Asapreparationwecollectafewdefinitions:
denotethedoublegradedvectorspacewithDefinition2.2—Let
components.Sinceisapoint,.Theunitin
iscalledthe‘vacuumvector’anddenotedby.
Alinearmapishomogeneousofbidegreeifforalland.Ifarehomogeneouslinearmapsofbidegree
,respectively,theircommutatorisdefinedby
and
Weusethenotation,etc.todenotethecohomologicaldegreeofhomogeneous
cohomologyclasses,homogeneouslinearmapsetc.
Setting
foranyonadjoint
definesanon-degenerate(anti)symmetricbilinearform
andhenceon.Foranyhomogeneouslinearmapitsischaracterisedbytherelation
Clearly,
.
11
2.1Correspondences
besmoothprojectivevarieties,andletbeaclassintheChowgroup.(Wetacitlyassumerationalcoefficients.Thiswillnotalwaysbeneces-sary.Ontheotherhand,wearenotinterestedinintegralityquestionsforthemoment,andhencewillnotpayattentiontothisproblem).Theimageofinwillbedenotedbythesamesymbol.inducesahomogeneouslinearmapLet
and
whereisthePoincar´edualitymap.
Assumethatisanothersmoothprojectivevariety,and.Letbetheprojectionfromtothefactors,andconsidertheelement
Then
See[10,Ch.16]fordetails.Supposeandand.Let
areclosedsubschemessuchthat
Thentheclassdefinedaboveisalreadydefinedin.
Thefollowingtypeofargumentswilloftenshowupinthesequel:oneshowsthat
issmallerthanthedegreeof,whichforcestobezero;orthedimensionof
ofofmaximaldimensionwiththatthereisatmostoneirreduciblecomponent
‘correct’dimension.Inthiscaseonemusthaveanditsufficestodeterminethemultiplicity.
exchangethefactors.ThenaChowcycleinducesLet
twomaps
and
whicharerelatedbytheformula
Thisfollowsdirectlyfromtheprojectionformula.Thus.
ThefollowingoperatorswereintroducedbyNakajima[21].Thestudyoftheirpropertiesisthemajorthemeofthisarticle.Wetakethelibertytochangethenotationsandsignconventions.
Recallthatwedefined(1.9)subvarities
12
ofdimension
.Theirfundamentalclassesarecycles
Lettheprojectionstothefactorsbedenotedby
,
and
.
Definition2.3(Nakajima)—Definelinearmaps
asfollows:assumefirstthat
.For
and
let
Theoperatorsfornegativeindicesthenaredeterminedbytherelation
Bydefinition,isahomogeneouslinearmapofbidegree.
,andif,theoperatorisinducedbythesubvarietiesMoreover,
,.
2.2Nakajima’sMainTheorem
Inthissectionwereviewthemainresultof[21]andsomeoftheimmediateconse-quences.SimilarresultshavebeenannouncedbyGrojnowski[13].
andcohomologyclassesTheorem2.4(Nakajima)—Foranyintegersandand,theoperatorsandsatisfythefollowing‘oscillatorrelations’:Hereandinthefollowingweadopttheconventionthatequalsifandiszeroelse,andthatanyintegraliszeroif.
In[21]Nakajimaonlyshowedthatthecommutatorrelationholdwithsomeuniver-salnonzeroconstantinsteadofthecoefficient.ThecorrectvaluewasfirstcomputeddirectlybyEllingsrudandStrømme[7]:uptoasignfactor,whichdependsonourcon-vention,thisnumberistheintersectionnumberofTheorem1.7.Brieflyafterwards,Nakajimagaveadifferentproofusing‘vertexoperators’[22].
Considerthevectorspaces
and13
Defineanon-degenerateskew-symmetricpairingonthevectorspaceby
Notethatwearetakingtheexpression‘skew-symmetric’inagradedsense:
TheHeisenbergalgebraisthequotientofthetensoralgebra
withidealgeneratedbytheexpressions
bythetwo-sided
:
isthe(restricted)tensorproductofcountablymanycopiesofCliffordalgebras
andcountablymanycopiesofWeylalgebrasarisingfromarisingfrom
.Asisisotropicwithrespecttotheskew-form,thesubalgebra
isthesymmetricalgebra(takenagaininagradedsense).ingeneratedby
asThisbecomesadoublegradedvectorspaceifwedefinethebidegreeof
.
Usingthesenotations,Nakajima’sTheoremcanberephrasedbysaying:Sendingtodefinesarepresentationofon.
ofmonomialsofnegativedegreeannihilatesthevacuumvectorThesubspace
forobviousdegreereasons.Hencethereisanembedding
ItisnotdifficulttocheckthatthePoincar´eseriesof
ofG¨ottsche’sformula.Thisimplies:
equalstherighthandside
Corollary2.5(Nakajima)—Theactionofoninducesamoduleisomorphism.Inparticular,isirreducibleandgeneratedbythevacuumvector.Infact,thiscanbestrengthenedasfollows:Considertherationalmap
withdisjointsupportbyopensubsetofallpairs
mapinduceshomomorphisms
whichisdefinedonthe
.Thisrational
and
andhence
and
Corollary2.6(Nakajima,Grojnowski)—ThehomomorphismandendowwiththestructureofaHopfalgebra.IfisgiventhecanonicalHopfalgebraisanisomorphismofHopfstructureofthesymmetricproduct,thenalgebras.14
3Theboundaryoperator
Thissectioncontainsthemaintechnicalresultsofthepaper.ThekeytooursolutionoftheChernclassproblemistheintroductionoftheboundaryoperator.Thisisdonein3.2.Webeginwiththediscussionofrelatedtopicsandingredientsforlaterproofs.
3.1Virasorogenerators
andthefundamentaloscillatorrelationswewillStartingfromthebasicgenerators
definethecorrespondingVirasorogeneratorsinanalogytotheprocedureincon-formalfieldtheory.Wewillthengiveconcretegeometricinterpretationsforthesegenerators.
bethepush-forwardLet
mapassociatedtothediagonalembedding.Equivalently,thisisthelinearmapad-,wewillwriteforjointtothecup-productmap.If
Definition3.1—Defineoperators
,
,asfollows:
Theorem3.3—Theoperatorsandsatisfythefollowingcommutatorrelations:1.2.Proof.Assumefirstthat
.Foranyclasses
and
with
wehave
Ifwesumupoverall
and,weget
with
Similarly,for
,
Thussummingupoverall
wefindagain
Thisprovesthefirstpartofthetheorem.
Asforthesecondpart,assumefirstthattionsletusagreethat
.Inordertoavoidcaseconsidera-
Bythefirstpartofthetheoremwehave
Inthefollowingcalculationwesuppress
,weget:overall
and
uptotheveryend.Summingup
16
Hence
Nowsplitoffthesummandscorrespondingtotheindicesfromthesums.Substitutingforinthesecondsumontherighthandside,weareleftwiththeexpression:
if
isodd,
and
if
iseven.
.
Aneasycomputationshowsthatinbothcases
Recallthedefinitionofthevarieties
equals
in(1.9).
Definition3.4—Letbeanonnegativeintegerandlet
bethelinearmap
for
and
.
Thefollowingtheoremgivesa‘finite’geometricinterpretationoftheinfinitesums
whichdefinetheVirasorooperators.
17
Theorem3.5—Letbeanonnegativeinteger.1.ifelseor2.Wehaveseenearlier(1.8)thatthissethasdimensiondisregarded.Ontheotherhand
andhencemaybe
Againusing1.8weseethatthissethasonlyonecomponentof(maximal)dimension
.Moreover,thiscomponentistheimageoftheembedding
Let
and
.Thenwehave
Thisshowsthat
forsomeinteger.Henceitremainstocomputethemultiplicityof
andinspecttheintersectionofendwepickageneralpoint
andalongthefibre.
Ageneralpointinisoftheform
in.Tothis
with
whereisacurvilinearsubschemeofoflength,supportedinasinglepointwhichisdisjointfrom.Sinceiscurvilinear,thereisauniquesubschemeoflength,andhenceconsistsofthesinglepoint
Nearthevarietiesandarelo-callyisomorphic;andsimilarlytoandto
.Thuswemaysplitoffthefactorsfromthegeometricpicture.Inthe
.endthisamountstosayingthatwemayassumewithoutlossofgeneralitythat
Moreover,thecalculationislocalin,sothatwemayassumethat
and,and.Thenhasan
inwithcoordinatefunctionsaffineneighbourhood
whichparametrisesquadrupels
ofsubschemesin
givenbytheideals
19
where
and
Now
belongsto
,i.e.
,ifandonlyif
and
(6)
And
satisfied:
belongsto,i.e.
ifandonlyifthefollowingthreeconditionsare
and
(7)
withpolynomialsandsupportedat,i.e.
ofdegree
and,respectively;theidealsheaf
is
and
(8)
andfinally,
mustbecontainedin,whichimposesthecondition
(9)
Oneeasilychecksthattheequations(6)-(8)cutoutasmoothsubvarietywhichprojectsisomorphicallytotheaffinespace.Moreover,inthesecoordinatesthelastcondition(9)simplyreads.Hencethemultiplicityequalstheexponent.
Next,weconsiderthecasewith.Thereisnothingtoprove
.Henceassumethat.Dimensionargumentssimilartotheonesaboveif
showthatthecyclewhichinducesthecommutatormustbesupportedontheclosedsubsets
hasdegree,sothatitsufficestoshowthat.ThisfollowsfromLemma1.8.
with.AdimensioncheckoftheItremainstoconsiderthecase
set-theoreticsupportoftheintersectioncycleshowsthatwemusthave
Thecycle
forsomeinteger,independentlyof
braicallyandtakethecommutatorwith
and
.Todetermine:
,weproceedalge-20
Ontheotherhand,combiningtheJacobiidentity,theoscillatorrelationsandthefirstpartoftheproofyields
Itfollowsthat
.
Ad2:Considerthedifference
Ifandarepartitionsof,then
ifandonlyifthereisasurjectiontainedintheclosureof
iscon-
suchthat
forall.Itfollowsthat
Proof.Considerthefollowingincidenceschemewiththenaturalprojections:
22
Wehaveseenearlierin1.4that
.Thisshows
andhencethat
Ontheotherhand,byLemma3.7,
Therefore,ifweput
forall
Foranyendomorphismitsderivativeis
forthehigherderivatives.
.Asusual,wewrite
Itfollowsdirectlyfromthedefinitionofthecommutatorthat
the‘Leibnizrule’holds:i.e.foranytwooperators
isaderivation,
and
Moreover,if
,sothatand
isahomogeneouslinearmap,then
havethesameparity.Furthermore,
Indeed,
Let
benonnegativeintegers,andconsidertheincidencevariety.Recallthedefinitionoftheidealsheafandtheexactsequence
Thenisalocallyfreesheafofrankon.
Inacertainsense,thefollowinglemmasimplyisareformulationofthedefinitionofthederivative.
23
Lemma3.10—Letassociatedtoaclass.ThenbetheinducedlinearmapProof.Let
.Then
with
,and
3.3Thederivativeof
Inordertounderstandtheintersectionbehaviouroftheboundaryweneedtoknowhowtheoperatorcommuteswiththebasicoperators,inotherwords:weneedtocomputethederivativeof.
Thefollowingtheoremisthemaintechnicaltheoremofthispaper.Itdescribesthederivativeoftheoperatorintwoways:Byitsactiononanyoftheotherbasicoperators,andasapolynomialexpressioninthebasicoperators.
Letdenotethecanonicalclassofthesurface.
Theorem3.11—Forallandthefollowingholds:1.Corollary3.12—Theoperatorsfromthevacuum.and,,sufficetogenerateProofofthetheorem.Thesecondassertionisanimmediateconsequenceofthefirst:byNakajima’srelations2.4andtherelations3.3weseethat
24
Hencethedifferenceofandtheexpressionontherighthandsideinthetheorem
,.Sinceisanirreducible-module,itcommuteswithalloperators
followsfromSchur’sLemmathatthisdifferenceisgivenbymultiplicationwithascalar(say,afterpassagetosomealgebraicclosureof).Butthisisimpossiblefordegreereasons:thebidegreeofis.(Thecasebeingtrivialanyhow.)
Theproofofthefirstassertionhastwopartsofquitedifferentnature:Weneedto
andanddealwiththemseparately.distinguishthecases
Proposition3.13—withandcohomologyclasses.foranytwointegersProof.Step1:Assumethatandarepositive.WeproceedasintheproofofTheorem3.5.Letbenonnegative,andconsiderthediagram
Let
AccordingtoLemma3.10,theoperator
isinducedbytheclass
anddenotetheopensubsetsofthosetuplesand
,respectively,whereeitherorbutiscurvilinear.Certainly,
,butinfactweevenhavethatisanisomorphism:
fortheconditionsimposedonimplythatisalreadydeterminedbytheremaining
.data
isirreducibleofdimension.Claim:
ForitfollowsfromBrianc¸on’sTheoremthattheopenpartisir-,andtuplesofthesecondkind,i.e.reducibleofdimension
withcurvilinear,areeasilyseentodeformintothisopensubset.
.Inparticular,thecomplementofinClaim:
cannotsupportanycontributionto.
hasastratificationIndeed,theset
,wherethestratumisthelocallyclosedsetofalltupleswith.Letbetheclosedsubsetthatconsistsoftupleswhereisnotcurvilinear.
.Nowisirreducibleofdimension,Then
andisaproperclosedsubsetandthereforehasstrictlysmallerdimension.TheassertionnowfollowsfromLemma1.8.Let
25
Claim:Theintersectionofandgeneralpointsof.
Infact,theintersectionistransversalatallpointswithWeconclude,thattheintersectioncycleequals
istransversalat
andcurvilinear.
Thehomomorphism
isanisomorphismoffthediagonal.Ontheotherhandtheclo-sureofequalstheimageofthe‘diagonal’embedding
.Itfollowsthat
whereisthelengthofcoker
proves
atthegenericpointofthevariety
.This
anditremainstoshowthat
Ageneralpointofisoftheformwhere
andisacurvilinearsubschemesupportedat.AsthecomputationwemayapplythesamereductionprocessasintheproofofTheoremislocalin
,that,and3.5:wemayassumethat
.Thenthereisanopenneighbourhoodofthispointinwhich
suchthatthefamiliesisomorphicto
andaregivenbytheideals
and
where
.Wefind
Thecokernelof
isisomorphictothe
foreachsothat
,whicharesupportedonthediagonallyembeddedvarieties
,
forcertainconstants.Inordertodeterminetheseconstantsweapplythecommu-.Thentheoscillatorrelationsyieldfortherighthandsidetator
Ontheotherhand
Now
whichbyStep1equals
.Hence
Chooseclasseswith.Itfollowsthat.
Step3:Thegeneralcasecannowbereducedformallytothecasesalreadytreated.Theassertioniscertainlytrivialifeitheror.Iftheassertionisknownto
,wemayapplytheoperationtobothsidesandfind:betrueforsomepair
Thisandtheidentity
allowustoreduceanythingtocasescheckedinStep1andStep2.
Inordertoprovepart1ofTheorem3.11,itremainstotreatthecase
.Thiswillbedoneintwosteps.First,weproveaqualitativestatementaboutthestructureofthe‘correctionterm’,andafterwardswedeterminetheprecisevalueofthe‘coefficient’:
28
Proposition3.14—Thereexistrationaldivisorsandandsuchthat,,with(10)
forall.Proof.Thereisnothingtoprovefor
.Moreover,
Itfollowsthatifthereisadivisorsothat(10)holdsfor,then(10)alsoholdsforwiththechoice.Henceitsufficestoprovethepropositionforpositiveintegers.
Letbeanonnegativeintegerandconsiderthediagram
Let
AccordingtoLemma3.10,theoperator
isinducedbytheclass
first.Itiscontainedin,where
.Theclosureofisthediagonal
andisthereforeirreducibleofdimension.Whereasfor,
embedsintotheirreduciblevarietyofdimensiontheset
.
Theoff-diagonalpartisemptyif.Ifithasprecisely
ofmaximaldimension:itcontainsasadenseoneirreduciblecomponent
subsettheimageoftheembedding
Considerthediagonalpart
and
arepairwisedisjoint
Sincethefunction
itfollowsthat
issemicontinuousandisatleast
on
,
dimension.Aswewanttocomputeacycleofdegree,wemayrestrictour
andmaydisregardthecomplementofinitsclosure.attentiontotheopenpart
isanisomorphism,whichweusetoidentifyandthe
parametrisesfourflatfamiliesofsubschemeson:off-diagonalpartof.Now
besidesthefamiliesandoffibrewiselength,thesearethefamiliesand
offibrewiselengthand.Thecontributionoftoistheclass
Reversingtheorderoftheoperatorsandshowsthatthepartofthecycleinducingthecommutator,thatissupportedon,istheclass
Sincetheidealsheavesandareisomorphic,thisclassiszero.
Thuswemayfullyconcentrateonthecontributionofthediagonalpart.(Also
anydiagonalpartsmustbecontainedinnotethatforthereversedorder
andarethereforetoosmallandirrelevant.)
inhascodimensionThecomplementoftheopensubset
.Locallynearthereareisomorphismsbetweenand,andsimilarlybetweenand.Henceifisthe
,thenthegeneralcycleissimplygivenbyintersectioncycleforthespecialcase
.Butthatwasallwehadtoprove:acycleofthis
forminducesthelinearmap
Corollary3.15—ForallpositiveintegersonehasProof.Usethesameargumentasinthefirstparagraphoftheproofofthemain
theoremafterCorollary3.12.
TofinishtheproofofTheorem3.11itremainstoshow:Proposition3.16—Forallpositiveintegerssition3.14isgivenbytherationaldivisordefinedbyPropo-3.4Thevertexoperator,completionoftheproof
beanelementwhichisofevendegreethoughnotDefinition3.17—Let
,necessarilyhomogeneous,andletbeaformalparameter.Defineoperators
,by
Proof.Assumefirstthatwith.Then
isanoperatorofevendegree,andthat
commutes
Next,letbeafamilyofcommutingoperatorsofevendegreesuchthatany
commuteswithevery.ThenitfollowsfromStep1and
31
that
resultsgets
with
and
anduseourprevious
.One
where
isthenumberofpairsofpositiveintegers.
and
thataddupto,i.e.,
Letbeasmoothprojectivecurve.Theboundaryintersectsgenericallytransverselyintheboundaryof,i.e.inthesetofalltupleswithmultiplepoints.Thesubvarietiesandhavecomplementarydimensions
andinandwemaycomputetheintersectionnumber
Wewilldothisfirstusingouralgorithmiclanguage,andafterwardsusingageometricargument.Thecomparisonofthetworesultswillleadtotheidentificationofthedivisors.
Lemma3.20—and.Proof.Thefirstassertionfollowsfromthedefinitionoftheoperators
istheclassofthesubmanifoldNakajima’sTheorem,
henceaccordingtoLemma3.8:
.By,and
Lemma3.21—32
Proof.Indeed,
sinceandwith
is
.Nowcommuteswithanyproductif,.Thustheonlysummandinthatcontributestothecommutator
.Hence
ThisfinishestheproofofTheorem3.11.
33
.
4Towardstheringstructureof
4.1Tautologicalsheaves
aseriesoftauto-Thereisanaturalwaytoassociatetoagivenvectorbundleon
,.TheChernclassesofthelogical’vectorbundlesontheHilbertschemes
tautologicalbundlesmaybegroupedtogethertoformoperatorson.
Considerthestandarddiagram
Let
on
bealocallyfreesheafonisdefindedas
.Foreach
theassociatedtautologicalbundle
Since
isaflatfinitemorphismofdegree,
islocallyfreewith
Notethatand.
isashortexactsequenceoflocallyfreeFurthermore,if
sheaveson,thecorrespondingsequenceisagainexact.Hencesendingtheclassofalocallyfreesheaftogivesagrouphomomorphism
Definition4.1—Let
beaclassin
.Defineoperators
and
asfollows:Foreach
thetotalChernclass
Let
,theactionon
andtheCherncharacter
isgivenbymultiplicationwith
,respectively.
and
bethedecompositionsintohomogeneouscomponentsofbidegree.Sincealloftheseoperatorsareofevendegreeandonlyact‘vertically’onbymultiplication,theycommutewitheachotherandinparticularwiththepreviouslydefinedboundaryoperator.
Moreover,wehave
and
forall
.
34
Theorem4.2—Letbeaclassinofrankandlet.Thenor,moreexplicitely,HereweusedLemma3.10whichsaysthatthecycleinducestheoperator
.ThisistheequationfortheCherncharacter.TheequationforthetotalChernclassisprovedanalogously.
Remark4.3—Thesequence(11)wasusedbyEllingsrudinarecursivemethodtodetermineChernclassesandSegreclassesoftautologicalbundles(unpublished,butsee[25],[4]).HeexpressestheclassesintermsoftheSegreclassesofthe
.Thusoneneedstocontrolthebehaviouroftheseuniversalfamily
Segreclassesundertheinductionprocedure.Thismethodyieldsqualitativeresultsonthestructureofcertainclassesandintegrals,butallattemptstogetnumbershaveendedsofarinunsurmountablecombinatoricaldifficulties.
Remark4.4—Theresultsofthepresentandtheprevioussectionprovideanalgo-rithmicdescriptionofthemultiplicativeactionofthesubalgebrawhichisgeneratedbytheChernclassesofalltautologicalbundles:Theelements
generateasa-vectorspace.ByCorollary3.12,eachsuchelement
,whereisawordinancanbewrittenasalinearcombinationofexpression
,.ByTheorem4.2thealphabetconsistingofandoperators
commutatorofwithanyoftheseisagainawordinthisalphabet.Andfinally,Theorem3.11showshowsuchawordcanbeexpressedintermsofthebasicoper-ators.Admittedly,withoutafurtherunderstandingofthealgebraicstructurethis
onlyforsmallvaluesoforifdescriptionisusefulforcomputationsin
oneimplementsitinsomecomputeralgebrasystem.
4.2Thelinebundlecase
TheresultsoftheprevioussectionsufficetocomputetheChernclassesofthetauto-logicalbundlesassociatedtoalinebundleintermsofthebasicoperators.
Theorem4.5—Letbealinebundleon.Then(12)
36
ThisisNakajima’sresult3.18:forsupposeisasmoothcurveand
,thenaturalhomomorphismvanishesifandonlyifIf
Hencethevanishinglocusoftheglobalvectorbundlehomomorphism
.
.
isthesubvariety.ThereforeNakajima’sformula3.18
.Insertingthisinto(12),werecover
Expandingtherighthandsideyieldssummandswhicharewordsinthetwosymbols
and.Movingallfactorswithinagivenwordasfartothe
rightaspossibleusingthecommutationrelationsofthemaintheoremwecanwrite
Let
denoteapartitionandlet
,and
.Weget
arisesfromawordinandoflength.Itisnotdifficulttoseethat
equalsthenumberofpossibilitiestopartitionasetofelementsintosubsetsinsuchawaythattherearesubsetsofcardinality.Hence
Insertingthisintoequation(13)aboveonegets
fromtherightandsumupoverall
:
Thismeansthattheseries
38
satisfiesthelineardifferentialequation
Wefind
Thisshows
Hence
satisfiesthesystem(14)and(15)aswellandthereforeequals.Thisprovesthetheorem.
39
4.3TopSegreclasses
ThefollowingproblemwasposedbyDonaldsoninconnectionwiththecomputationofinstantoninvariants:letbeaninteger,andconsideralinearsystemof
inducingamap.Azero-dimensionalsubschemedimension
doesnotimposeindependentconditionsonthelinearsystemifthe
naturalhomomorphism
failstobesurjective.Thesubschemeofallsuchhasvirtualdimensionzero,
anditsclassisgivenby
Thusthenumberofthose
,whereisthevirtualvectorbundlethatimposedependentconditionsisgivenby
and40
Aslongasnoexplicitgeneratingfunctionisavailablewemustbecontentwiththefollowingsemi-explicitsolutiontoDonaldson’sproblem:
Thisyields:
andtherefore
Obviously,forhigher,thepracticalcalculationofquicklybecomesratherdifficult.Alreadythecaseofsurpassedmypersonalcalculationskills.UsingMAPLE,Icomputedthefollowingexpressions:
ThesecalculationsverifyLeBarz’trisecantformulafor[19,Th´eor`eme8]and
byTikhomirovandTroshina[26].Theformulaeforandthecomputationof
42
seemtobenew.Iomitthepresentationof:theinformationiscontainedinthefollowinganalysisofthesenumericaldata.
Itisalwayspossibletoorganisethesedataintothefollowingform:
(16)
Thefactthattherighthandsidein(16)dependslinearlyoncanbeprovedbythemethodsintheforthcomingpaper[4].
WethankDonZagierforpointingouttoustheexistenceofSloane’s‘Encyclope-diaofIntegerSequences’[24].Wehadhadreasonstobelievethatthesequenceof
.Afterdividingbycoefficientsofbedivisiblebythebinomialcoefficients
.Asearchforthisreducedthese,weareleftwiththesequence
sequenceintheencyclopediawassuccessfulandledtotheabovegiven(conjectural)identificationofthecoefficientsof.Unfortunately,thecorresponding‘reduced’se-quenceofcoefficientsofremainsmysterious:
43
References
[1]J.Brianc¸on,Descriptionde
(1977).
.Inventionesmath.41,45-
[2]F.Catanese,OnSeveri’sproofofthedoublepointformula.Comm.in
Algebra7(1979),763-773.[3]J.Cheah,OntheCohomologyofHilbertSchemesofPoints.J.Alg.Geom.
5(1996),479-511.[4]G.Ellingsrud,L.G¨ottsche,M.Lehn,OnthecobordismclassofHilbert
schemesofPointsonSurfaces.Inpreparation.[5]G.Ellingsrud,A.Strømme,OnthehomologyoftheHilbertschemeson
pointsintheplane.Inv.Math.87(1987),343-352.[6]G.Ellingsrud,A.Strømme,TowardstheChowringoftheHilbertscheme
of.J.reineangew.Math.441(1993),33-44.
[7]G.Ellingsrud,A.Strømme,Anintersectionnumberforthepunctual
Hilbertschemeofasurface.Trans.Amer.Math.Soc.toappear.[8]B.Fantechi,L.G¨ottsche,ThecohomologyringoftheHilbertschemeof3
pointsonasmoothprojectivevariety.J.reineangew.Math.439(1993),147-158,[9]J.Fogarty,AlgebraicFamiliesonanAlgebraicSurface.Am.J.Math.10,
511-521(1968).[10]W.Fulton,IntersectionTheory.Erg.Math.(3.Folge)Band2,Springer
Verlag1984.[11]L.G¨ottsche,TheBettinumbersoftheHilbertschemeofpointsona
smoothprojectivesurface.Math.Ann.286(1990),193-207.[12]L.G¨ottsche,W.S¨orgel,PerversesheavesandthecohomologyofHilbert
schemesofsmoothalgebraicsurfaces.Math.Ann.296(1993),235-245.[13]I.Grojnowski,InstantonsandAffineAlgebrasI:TheHilbertSchemeand
VertexOperators.Math.Res.Letters3(1996),275-291.[14]A.Grothendieck,Techniquesdeconstructionetth´eor`emesd’existenceen
g´eom´etriealg´ebriqueIV:Lessch´emasdeHilbert.S´eminaireBourbaki,1960/61,no.221.[15]A.Grothendieck,Surquelquespointsd’alg`ebrehomologique.Tˆohoku
Math.J.9(1957),119-221.
44
[16]D.Huybrechts,M.Lehn,Thegeometryofmodulispacesofcoherent
sheaves.AspectsofMathematics,Vol.E31.ViewegVerlag,1997.[17]A.Iarrobino,PunctualHilbertSchemes.MemoirsoftheAMS,Volume
10,Number188,1977.[18]B.Iversen,LineardeterminantswithapplicationstothePicardscheme
ofafamilyofalgebraiccurves.Lect.NotesMath.174,SpringerVerlag,Berlin(1970).[19]P.LeBarz,Formulespourlestris´ecantesdessurfacesalg´ebriques.L’Ens.
Math.33(1987),1-66.[20]I.G.Macdonald,ThePoincar´ePolynomialofaSymmetricProduct.Proc.
CambridgePhil.Soc.58(1962),563-568.[21]H.Nakajima,HeisenbergalgebraandHilbertschemesofpointsonpro-jectivesurfaces.Ann.Math.145(1997),379-388.[22]H.Nakajima,LecturesonHilbertschemesofpointsonsurfaces.Preprint,
UniversityofTokyo,1996.[23]F.Severi,Sulleintersezionidellevariet´aalgebricheesoprailorocarat-teriesingolarit´aproiettive.Mem.Accad.ScienzediTorino,S.II52
(1902),61-118.Alsoin:MemorieScelte,I,Zuffi(1950),Bologna.[24]N.J.A.Sloane,S.Plouffe,TheEncyclopediaofIntegerSe-quences.AcademicPress,SanDiego,1995.On-lineversion:http://www.research.att.com/_njas/sequences.[25]A.S.Tikhomirov,StandardbundlesonaHilbertschemeofpointson
asurface.In:Algebraicgeometryanditsapplications,Yaroslavl’,1992.AspectsofMathematics,Vol.E25.ViewegVerlag,1994.[26]A.S.Tikhomirov,T.L.Troshina,TopSegreclassofastandardvector
ontheHilbertschemeofasurface.In:Algebraicbundle
geometryanditsapplications,Yaroslavl’,1992.AspectsofMathematics,Vol.E25.ViewegVerlag,1994.
[27]C.Vafa,E.Witten,Astrongcouplingtestof-duality.Nucl.Phys.431
(1994),3-77.
ManfredLehn
MathematischesInstitutderGeorg-August-Universtit¨atBunsenstraße3-5,D-37073G¨ottingen,Germanye-mail:lehn@uni-math.gwdg.de
45
因篇幅问题不能全部显示,请点此查看更多更全内容
Copyright © 2019- sceh.cn 版权所有 湘ICP备2023017654号-4
违法及侵权请联系:TEL:199 1889 7713 E-MAIL:2724546146@qq.com
本站由北京市万商天勤律师事务所王兴未律师提供法律服务