A.Feoli∗
DipartimentodiIngegneria,Universit`adelSannio,CorsoGaribaldin.107,PalazzoBoscoLucarelli,
82100Benevento,ItalyandINFNSezionediNapoli,GruppocollegatodiSalerno
80126Napoli,Italy
V.V.Nesterenko†
BogoliubovLaboratoryofTheoreticalPhysics
JointInstituteforNuclearResearch
141980Dubna,Russia
G.Scarpetta‡
DipartimentodiFisica”E.R.Caianiello”–Universit`adiSalerno
84081Baronissi(SA),Italy
andINFNSezionediNapoli,GruppocollegatodiSalerno
80126Napoli,Italy
Abstract
TheeffectivefreeenergyofglobularproteinchainisconsideredtobeafunctionaldefinedonsmoothcurvesinthreedimensionalEu-clideanspace.Fromtherequirementofgeometricalinvariance,to-getherwithbasicfactsonconformationofhelicalproteinsanddynam-icalcharacteristicsoftheproteinchains,weareabletodetermine,inauniqueway,theexactformofthefreeenergyfunctional.Namely,thefreeenergydensityshouldbealinearfunctionofthecurvature
ofcurvesonwhichthefreeenergyfunctionalisdefined.WebrieflydiscussthepossibilityofusingthemodelproposedinMonteCarlosimulationsofexhaustivesearchingthenativestablestateofthepro-teinchain.Therelationofthemodelproposedtotherigidrelativisticparticlesandstringsisalsoconsidered.
PACSnumbers:87.15.-v,87.15.Cc,05.10.Ln,02.40.-k
Keywords:proteinfolding,semi-flexiblepolymers,geometryofcurves,helices,rigidstring,particleswithrigidity.
2
1Introduction
whereβisinversetemperatureandwehavesplittheproteinradiusvec-torxintotheclassicalpartxclandthequantumpartxqu.InordertousethisformulatheenergyfunctionalEforanindividualproteinchainshouldbespecified.Theproblemunderconsiderationisclosetothestatisticsofsemi-flexiblepolymers.Inthelastcaseanumberofmodels(i.e.,particularfunctionalsE)havebeenproposedwhichsubstantiallyrelyonthedifferentialgeometry(Kratky-Porodmodel[5],Diracmodel[6,7],tubemodel[8]andsoon).Differentialgeometryprovidesadirectrelationbetweenphysicsandmathematicsandtherebyopensastraightrouteforapplyingthemathemat-icalanalysistothisphysicalproblem[9,10].Ifk(s)andκ(s)arerespectivelythecurvatureandthetorsionofapolymerchainthentheenergyEcanberepresentedasapolynomialinthesegeometricalinvariants,forexample,in
1
Afascinatingandopenquestionchallengingphysics,biochemistryandevengeometryisthepresenceofhighlyregularmotifssuchasα−helicesandβ−sheetsinthefoldedstateofbiopolymersandproteins.Awiderangeofapproacheshavebeenproposedtorationalizetheexistenceofsuchsecondarystructures(see,forexample,reviews[1,2,3]andreferencestherein).
Inprinciple,inordertofindthestablenativestateofaprotein,oneshouldcompute,foreverypossibleconformationofthechain,thesumofthefreeenergiesoftheatomicinteractionswithintheproteinaswellaswiththesolventandthenfindtheconformationwiththelowestfreeenergy.However,itisnotfeasible,becausethenumberofconformationsofaproteinchaingrowsexponentiallywiththechainlength.
Inthepresentpaperwearegoingtoproposeapuregeometricalapproachtodescribetheeffectivefreeenergyofproteins,proceedingfromthemostgeneralinvariancerequirementsandbasicexperimentalfactsconcerningtheproteinconformation.ItshouldbenotedherethatweshallconsidernottheHamiltonianH(orenergy)ofanindividualproteinmolecule,buttheeffectivefreeenergyofanassemblyofnoninteractingproteinchains.WedefinethisenergyassuchafunctionalFdependingontheradiusvectorx(s)ofaproteinchain,thestationaryvaluesofwhich(theextrema)areprovidedonlybytheobservedconfigurationsofproteins.Obviously,theeffectivefreeenergydefinedinsuchawayisanalogoustotheeffectiveactioninquantumfieldtheory[4].
LetE[x(s)]betheenergyofanindividualproteinchainthentheeffectivefreeenergyFweareinterestedinisapparentlydeterminedbythefunctionalintegral
e−βF[xcl]=Dxque−βE[xcl+xqu],(1.1)
theform[9]
E=
L
ds
0
A
4
k4−αk2κ+
β
D-dimensionalEuclideanspaceuptoitsrotationsanddisplacementsasawhole.Thecurvaturekα(s)isexpressedintermsofthederivatives,withrespecttos,oftheradiusvectorofacurvex(s)tillthe(α+1)-thorderincluded.
Thefirstprincipalcurvature,orsimplythecurvature,k1(s)=k(s)ofacurvecharacterizesthelocalbendingofthecurveatthepoints.Hence,thedependenceoffreeenergydensityFonk(s)specifiestheresistanceofaproteinchaintobebent.Thesecondcurvatureortorsionκ(s)isdeterminedbytherelativerotation,aroundthetangentdx(s)/dsatthepoints,oftwoneighborinfinitelyshortelementsoftheproteinchain.Itiswellknown[1]that,inthecaseofproteinmolecules,sucharotationisquiteeasy,asitrequireslittleeffort.Inotherwords,thisrotationresultsinsmallenergydifferences,allowingmanyoverallconformationsofaproteinchaintoarise.ThusthedependenceofthefreeenergydensityFontorsionκ(s)canbeneglectedatleastasafirstapproximation.SomecommentsconcerningthisrestrictionwillbegiveninSection4.FinallyonecanconsiderthefreeenergydensityFtobeafunctiononlyofthecurvaturek(s),i.e.F=F(k(s)).Inwhatfollowsweshalltrytospecifythisdependenceexplicitlykeepinginmindthedescriptionofglobularproteinconformation.
Apeculiarityofconformationofglobularproteinsisthattheycanbeorderedassemblieseitherofhelicesorofsheetsaswellasamixtureofhe-licesandsheets[1].Inthephenomenologicalmacroscopicapproach,whichisdevelopedhere,thepresenceofsheetsinthespatialstructureofglobu-larproteinsimpliesthenecessitytointroduce,inadditiontospacecurvesx(s),newdynamicalvariablesy(s,s′)describingsurfacesinambientspace.1Obviouslysuchanextensionoftheproblemsettingwouldcomplicateconsid-erablyourconsideration.Thereforeweconfineourselvestohelicalproteinsandtrytoanswerthequestion:IsitpossibletospecifythefunctionF(k(s))insuchawaythattheextremalsofthefunctionalF=Fdswouldbeonlyhelices?Theanswertothisquestionturnsouttobepositiveandunique,namely,thedensityofthefreeenergyF(k(s))shouldbealinearfunctionofthecurvaturek(s):
F(k)=α−|β|k(s),(1.4)wheretheconstantsαandβaretheparametersspecifyingthephenomeno-logicalmodelproposed,α>0,β<0.Arigorousproofofthisassertionis
themainresultofthepresentpaper.
Thelayoutofthepaperisasfollows.InSection2theEuler-Lagrange
variationalequationsforthefunctionalFarereformulatedintermsoftheprincipalcurvatures.InSection3theexplicitintegrabilityoftheseequa-tionswillbeshown.Inotherwords,foranarbitraryfunctionF(k(s)),thecorrespondingEuler-Lagrangeequationsareintegrablebyquadratures.Thephysicalmeaningoftherelevantconstantsofintegrationsisalsodiscussed.InSection4therequirementthatthesolutionsoftheEuler-Lagrangeequa-tionsdescribeonlyhelicesimmediatelyconfinestheadmissiblefreeenergydensityF(k(s))tobealinearfunction(1.4).Inconclusion(Section5),theobtainedresultsandtheirphysicalimplicationsarebrieflydiscussed.
2
Euler-Lagrangeequationsintermsofprin-cipalcurvatures
Keepinginmindthedescriptionoftheproteinconformation,oneshouldconsidertheprobleminthreedimensionalEuclideanspace.However,fromthemathematicalstandpoint,itisconvenienttoformulatetheequationswearelookingfor,firstinD-dimensionalEuclideanspaceandonlyafterthattogotothethreedimensionalambientspace.
Weshallfollowourpapers[13,14],wheretheanalogousproblemhasbeenconsideredinMinkowskispace-timeandtheresultsobtainedhavebeenappliedtothemodelsofrelativisticparticlesdescribedbytheLagrangiansdependentonhigherderivativesoftheparticlecoordinates.Unfortunately,thetransitiontotheEuclideanspaceinthefinalformulasofRef.[13]isnotobvious.2ThereforewederivetheequationsfortheprincipalcurvaturesandtherelevantintegralsofmotioninEuclideanspaceanew.Inthissectionweshalluseanaturalparametrizationofthecurvex(s)intheD-dimensionalEuclideanspace:xi(s),i=1,2,...,D.Inthisparametrization
dxi
ds
=(x′x′)=1,
(2.1)
orinanotherwayds2=dxidxi=(dxdx).Asusualthesumovertherepeatedindexesisassumedinthecorrespondingrangeand,forshortening,thedifferentiationwithrespecttothenaturalparameterswillbedenotedbyaprime.
Thecurvexi(s),i=1,2,...,DhasD−1principal(orexternal)curva-tureswhichdeterminethiscurveuptoitsmotionasawholeinembedding
space.Thefirstcurvature,orsimplycurvature,isgivenby
k21(s)
=k2
(s)=
d2xi
ds2
=(x′′x′′).
(2.2)
ForanarbitraryfunctionalFdefinedoncurvesxi(s)inD-dimensional
spacetheEuler-LagrangeequationsareasetofexactlyDequations
δF
ds
=ωabeb,ωab+ωba=0.(2.6)
TheunitvectoroftheFrenetbasiseα(s)isexpressedintermsofthederiva-tivesofthepositionvectorx(s)withrespecttotheparameterstilltheorderαincluded,α=1,2,....,D.Thefirstvectore1isdirectedalongthetangentofthecurveatthepoints
e1(s)=
dx
curvatureisdefinedinEq.(2.2).Besides,weshallusetheexplicitexpres-sion,throughthederivativesofx(s),onlyforthesecondcurvatureortorsionk2(s)=κ(s).
Thevariationofthespaceformoftheproteinmolecule
δx(s)=εa(s)ea(s),
a=1,...,D
(2.9)
resultsinthefollowingvariationofthefreeenergyfunctionalFdefinedinEq.(2.4)
δF=δF1+δF2,(2.10)where
δF1=
dsF′(k1)δk1(s),
F(k1)δds.
(2.11)(2.12)
δF2=
InwhatfollowstheprimeonthefreeenergydensityF(k1)willdenotethe
differentiationwithrespecttoitsargumentk1.
Thevariationδdsiscalculatedinastraightforwardway
δds=δ
√
ds
=dxi
Weareinterestedinstatisticalapplicationsoftheultimateequations,thereforethecontributionsdependingonthepositionoftheproteinedgesaredropped.
3
6
ThecalculationofthevariationδF1,definedinEq.(2.11),ismorecom-plicated.Firstwefindthevariationofthecurvatureδk1(s).Definition(2.2)andtheFrenetequations(2.6)give
k1(s)δk1(s)=(x′′δx′′)=(e′1δx′′)=k1(e2δx′′).
Hence
δk1=(e2δx′′).
dx(x′dδx)
ds
(2.17)
ApplyingEq.(2.13)stepbysteponederivesδx=δ
′
dx
ds
δx−
δx−x′(x′
d
ds
δx−e1(e1
d
δx).ds(2.19)
Inviewof(2.17),thelastterminEq.(2.19)doesnotcontributetoδk1.Sub-stitutingEq.(2.19)into(2.17)andusingtheFrenetequations(2.6)togetherwithexpansion(2.9)weobtain
ds
ds2
ds
′22′
δk1(s)=ε1k1+ε2+ε2(k1−k2)−2ε′3k2−ε3k2−ε4k2k3.
=
d
=
d2
δx)−e1
d
(2.20)
Asonecouldexpectformula(2.20)forδk1differsfromitsanalogueinMinkowskispace(seeEq.(2.18)inRef.[13]onlybysignsofsometerms.However,withoutthedirectcalculationofδk1inEuclideanspacetheruleofsignchangesinthisexpressionisnotobvious.
Thus,thevariationofthefirstcurvature,δk1(s),dependsonthevaria-tionsoftheworldlinecoordinatesonlyalongthedirectionse1,e2,e3,ande4(onthefourarbitraryfunctionsεa(s),a=1,2,3,4)andonthefirstthreecurvaturesk1,k2,andk3.
SubstitutingEq.(2.20)into(2.11),integratingthelatterequationbyparts,andtakingintoaccount(2.16)weobtain
2′d22
δF=dsk1−k2F(k1)+
′
(F′(k1)k2)−k2F′(k1)ε3(s)−F′(k1)k2k3ε4(s)=0.(2.21)dsThetermsinδF1andδF2,dependingonthevariationε1(s)alongthetan-genttothecurve,aremutuallycancelled,andthevariationδFdepends,asonecouldexpect,onlyonthenormalvariationofthecurvex(s),ormore
7
precisely,onthevariationofx(s)alongthethreenormalse2,e3,ande4.ApparentlythelastpropertyofthevariationδFisduetoaspecialtypeoffunctionals(2.4)underconsideration,whichdependonlyonthecurvatureofacurve.FromEq.(2.21)threeequationsforprincipalcurvaturesfollow
d2
′
(F′(k1)k2)=k2F′(k1),
ds
F′(k1)k2k3=0.
(2.23)(2.24)
Atfirstglance,Eqs.(2.22)–(2.24)areobviouslyinsufficientinordertodetermineallD−1principalcurvaturesofthecurvex(s)embeddedinD-dimensionalEuclideanspacewitharbitraryD.However,itisnotthecase.WestarttheanalysisoftheobtainedequationsfromEq.(2.24).Themostgeneralconditionontheprincipalcurvatures,followingfromthisequation,istherequirementofvanishingthethirdcurvature
k3(s)=0.
(2.25)
Thepointisthattheprincipalcurvatures,duetotheirconstruction,obeytheconditions[17,18]:ifacurvaturekj(s)doesnotvanishatthepoints,thenatthispointthecurvatureskα(s)withα=1,2,....,j−1arealsodifferentfromzero.Butthevanishingofkj(s)atapoints,kj(s)=0,impliesthatkα(s)=0forα=j+1,j+2,...,D−1.Inviewofthis,Eq.(2.25)entailsthefollowingconditions
k4(s)=k5(s)=...=kD−1(s)=0.
(2.26)
Thus,intheproblemunderconsiderationtherearetwonontrivialequa-tions(2.22)and(2.23)forthecurvaturesk1(s)andk2(s).Equation(2.23)canbeintegratedwitharbitraryfreeenergydensityF(k1).Actually,fork2=0onecanrewritethisequationintheform
′k2
orHence
F′(k1)
=0
2d[lnF′(k1)]+d(lnk2)=0.
(F′(k1))k2=C,
2
(2.27)
whereCisanintegrationconstant.
8
Relation(2.27)enablesonetoeliminatethetorsionk2(s)fromEq.(2.22).Asaresultweareleftwithonenonlineardifferentialequationofthesecondorderforthecurvaturek1(s)
2
d′
F(k1)−k1F(k1)=0.(2.28)
(F′(k1))4Havingresolvedthisequationfork1(s),onecandeterminetherestofcurvaturesbymakinguseofEqs.(2.27),(2.25),and(2.26).IntegrationoftheFrenetequations(2.6)withprincipalcurvaturesfoundenablesonetorecoverthecurvex(s)itself.
Notwithstandingitsnonlinearcharacter,Eq.(2.28)canbeintegratedinquadraturesforarbitraryfunctionF(k1).Toshowthis,thefirstintegralforthisequationwillbeconstructedproceedingfromthesymmetrypropertiesofthevariationalproblemunderstudy.
3
ExactintegrabilityoftheEuler-Lagrangeequationsforprincipalcurvatures
Thefunctional(2.4)possessesaquitelargesetofsymmetries,theanalysisofwhichwillallowustoconstructthefirstintegralfornonlinearequation(2.28).Inthissectionweshalluseanarbitraryparametrizationofthecurvex(τ).Nowthefunctional(2.4)assumestheform
√F=F(k1)
˙2)3(x
.(3.2)
Functional(3.1)isinvariantunderthefollowingtransformations:i)translationsofthecurvecoordinatesbyaconstantvector
x→x+a,
a=const.
(3.3)
ii)SO(D)-rotationsoftheambientspacecoordinates
xi→xi+ωijxj,
ωij=−ωji,9
i,j=1,2,...,D;
(3.4)
iii)reparametrization
τ→f(τ)
(3.5)
withanarbitraryfunctionf(τ)subjectedtotheconditionf˙(τ)=0.AccordingtothefirstNoethertheorem,theinvarianceofthefunctional(3.1)underthetranslations(3.3)entailstheconservation,underthemotionalongthecurvex(s),ofthe‘momentum’vector
P=
i
d
˙2F(k1)x˙2F(k1)x
dτ
Pi=0,
i=1,2,...,D.(3.7)
Itisclearthattherelations(3.6),duetotheirvectorcharacter,cannot
beuseddirectlyasintegralsforEqs.(2.22)–(2.24)determiningtheprincipalcurvaturekα.Simply,thevectorPicannotbeexpressedonlyintermsoftheinvariantskα(s).However,onecanhopethattheinvariant
2
P2=P20≡M,
(3.8)
whereM2isanewnonnegativeconstant,canbeexpressedthroughthe
principalcurvatureskα(s)only.Itturnsoutthatthisisreallythecase.Toshowthis,wepassinEqs.(3.6)fromthedifferentiationwithrespecttoarbitraryparameterτtothedifferentiationwithrespecttothenaturalparameters(thelengthofacurve).Forthispurposetheformulas
d
˙2x
d
ds2
=
˙2x¨−(x˙x¨)x˙x
¨∂x
=1ds2
,
k1
∂k1
˙2)4(x
areuseful.Asaresult,Eq.(3.6)forthevectorP,constantalongthecurve
x(s),acquirestheform
′
F(k1)F′(k1)dx′
+.(3.10)P=[2F(k1)k1−F(k1)]
dsds2ds3
2222˙x¨)−2x˙x¨x˙−x˙(x˙x¨)x¨3(x
(3.9)
10
Thedefinitionsoftheparameters(2.1)andthecurvaturek1(2.2)entailtherelations
2dxdxdxdk12
=0,=−k,=k11
ds2ds3ds3
ds
,
dx
ds3
2
,(3.12)
wheredetG(a,b,c)istheGrammdeterminantforvectorsa,b,andc[19].
ThankstoEq.(2.27),weobtainfrom(3.12)
23
dxdk1224
.(3.13)+k1k2=k1+
ds(F′(k1))4SquaringEq.(3.10)andusingEqs.(3.11)and(3.13),wehave
M=(F(k1)k1−F(k1))+
2
′
2
C2
ds
M2−
=±
C2
(F′′(k1))2
Thus,ifthefreeenergydensityF(k1)obeysthecondition(3.15),thenthecurvaturek1(s)andthetorsionk2(s)ofthestationarycurvex(s)arethefunctionsoftheparametersdefinedbyEqs.(3.18)and(2.27).Thecasewhenthecondition(3.15)isnotsatisfied,i.e.,whenthefreeenergydensityF(k1)isalinearfunctionofthecurvaturek1(s),willbeconsideredinthenextsection.
Closingthissectionwebrieflyconsidertheconsequencesoftheinvarianceofthefreeenergyunderthetransformations(3.4)and(3.5).AccordingtothefirstNoethertheorem,therotationinvarianceofthefunctional(2.4)entailstheconservationoftheangularmomentumtensor
2Mij=
(qiσpjσ−qjσpiσ),
i wherethecanonicalvariablesqσandpσ,σ=1,2aredefinedasfollows[20] q1=x,q2=x˙,p∂(√dp1=P=− ∂x ˙− 2 x ˙2F)M2 ,(3.21) where W= 1 inthetheoryofrelativisticstrings[23],onecanshowthattheprojectionof ˙(τ)isidenticallyequaltozeroEqs.(2.3)onthetangentvectorx δF 2k1+k2 ,2 d= 2π|k2| αβ 4 ,3 k2= C ItisinterestingtonotethatforanarbitrarydimensionDoftheambientspace,the curveswithconstantprincipalcurvatureshaveadrasticallydifferentbehaviorinthelargedependingonwhetherthedimensionDisevenorodd.IfDiseven,thenthecurvesunderconsiderationaresituatedinarestrictedpartofthespace.ForoddD,suchcurvesgotoinfiniteinonedirection. 13 Sincek1(s)=|x′′(s)|>0,theconstantsαandβshouldhaveoppositesigns.Itisnaturaltoputα>0andβ<0. ForthefreeenergydensityF(k1),linearincurvature,theintegral(3.14)givesjusttherelationbetweentheintegrationconstantsM2andS2(orbetweenM2andC2) α22 M= 2d ,C=αβ 2πR consideredtobeageneralizationoftherelativisticmodelofapointparticlewithpossibleapplicationtostringtheory[27],boson-fermiontransmutations[28],anyonmodels[29],randomwalks[30]andsoon.ItisworthnotingthattheLagrangefunctionslinearinacurvatureoftheworldlineprovetobedistinguishedinthisfieldtoo.TherichestsetofappealingpropertiesisprovidedbythePlyushchaymodel[31,32],whereα=0.Inthiscasetheactionisscaleinvariant.Acompletesetofconstraintsinthephasespaceofthismodelpossessesmanysymmetries,specifically,localW3symmetry.Thismodeldescribesthemasslessparticles,thehelicityofwhichacquires,uponquantization,integerandhalf-odd-integervalues.Itisinterestingthatclassicalsolutionsinthismodelarethespacelikehelicalcurves[31]. 5Conclusion Proceedingfromrathergeneralprinciplesandmakinguseofthebasicfactsconcerningtheconformationofglobularproteinswehaveobtained,inauniqueway,ageometricalmodelforphenomenologicaldescriptionofthefreeenergyofhelicalproteins.Itisworthnotingthatourfunctional(4.6)shouldbeconsideredasaneffectivefreeenergyofthehelicalproteinwhichalreadytakesintoaccountthenatomicinteractionswithintheproteinandwiththesolvent.Hence,thereisnoneedtoquantizeit,asoneproceedsintherandomwalkstudies[30]. Certainlyoursimplemodeldoesnotpretendtodescribealltheaspectsoftheproteinfolding.However,onecanhopethatitcouldbeemployed,forexample,inMonteCarlosimulationtosearchforastablenativestateoftheprotein.Inthiscasethemodelcanbeusedforthedescriptionofthefreeenergyofindividualparts(blocks)ofaproteinchainthathavethehelicalform.Withoutanydoubt,itshouldresultinsimplificationandaccelerationoftheexhaustingsearchingofthenativestablestateoftheproteinchainbyacomputer[1]. Inthegeneralproblemoftheproteinfolding,aselfcontainingtaskistorevealthemechanismoftheproteinchaintransitionintothestablenativestate.Atypicaltimeofthisprocessissuchthatitiscompletelyinsufficienttoshowthemutualinfluenceofallthepartsoftheproteinchainduringthefoldingtothestablestate.Presumablythefunctionalsproposedinthispapercanbeusefulheretoo.Forthispurposethecoordinatesoftheproteinchainxshouldbeconsideredastimedependent,i.e.,x=x(t,s).Duringitsmotion,theproteinchainsweepsoutatwodimensionalsurfaceinambientspacedescribedparametricallybyitscoordinatesx(t,s).Inthiscasetheanalogueofthelinecurvaturek(s)isthelocalgeometricalinvariantofasurface,its 15 externalormeancurvatureH(t,s)[11].Astraightforwardgeneralizationofthefunctional(2.4)tothedynamicalproblemathandistheactionSlinearinexternalcurvatureofthesurface S=adσ+bHdσ,(5.1)wheredσisadifferentialelementofthesurfacesweptoutbyaproteinchain inthecourseofitsmotion,aandbareconstants. Intheelementaryparticletheorythemodelslike(5.1)areknownastherigidrelativisticstring[23,33].Oneofthemotivationstoconsidersuchstringswastheattempttodevelopstringdescriptionforquantumchromo-dynamics.Apeculiarityoftheclassicaldynamicsofsuchstringmodelsisitsinstability[34].Thereasonofthisisthedependenceoftheaction(5.1)notonlyonthevelocitydx(t,s)/dtbutalsoontheaccelerationd2x(t,s)/dt2oftheproteinchain.Asaresult,theenergyofsuchsystemsprovestobeunboundedfrombelow[35].Itisverylikelythatthisinstabilitycouldbecru-cialindescribing,intheframeworkofthestringmodel(5.1),thetransitionoftheproteinchaintothestablenativestate. Acknowledgements Thisstudyhasbeenconductedduringthestayofoneoftheauthors(V.V.N.)atSalernoUniversity.HewouldliketothankG.Scarpetta,G.Lambiase,andA.Feoliforthehospitalityextendedtohim.Oneoftheauthors(A.F.)wishestothankA.Ramponeforusefuldiscussionsandreferencesabouttheproteinfoldingproblem.ThefinancialsupportofINFNisacknowledged.V.V.N.waspartiallysupportedbytheRussianFoundationforBasicResearch(GrantNo.03-01-00025)andbytheInternationalScienceandTechnologyCenter(ProjectNo.840). References [1]H.S.ChanandK.A.Dill,PhysicsToday,46,No.2(1993)24.[2]K.A.Dill,ProteinScience,8(1999)1166. [3]F.R.Banavar,A.Maritan,C.Micheletti,andF.Seno,Geometrical aspectsofproteinfolding,cond-mat/0105209.[4]P.Ramon,FieldTheory.AModernPrimer,TheBenjamin/Cummings PublishingCompanyInc.,London,1981. 16 [5]O.Kratky,G.Porod,Recl.Trav.Chim.68(1949)237. [6]A.Kholodenko,Phys.Lett.A141(1989)351;Ann.Phys.(N.Y.)202 (1990)186.[7]A.Kholodenko,M.Ballauff,M.AgueroGranados,PhysicaA,260(1998) 267.[8]J.R.Banavar,A.Maritan,Rev.Mod.Phys.75(2003)23.[9]R.D.Kamien,Rev.Mod.Phys.74(2202)953. [10]S.Hyde,S.Anderson,K.Larsson,TheLanguageofShape,Elsevier, Amsterdam,1997.[11]L.P.Eisenhart,RiemannianGeometry,PrincetonUniversityPress, Princeton,1964; M.P.DoCarmo,DifferentialGeometryofCurvesandSurfaces,Prentice-Hall,London,1976; M.Spivak,AComprehensiveIntroductiontoDifferentialGeometry,PublishorPerishInc.,Houston,1979.[12]R.SalemandA.Zygmund,DukeMath.J.12(1945)559. [13]V.V.Nesterenko,A.FeoliandG.Scarpetta,J.Math.Phys.36(1995) 5552.[14]V.V.Nesterenko,A.FeoliandG.Scarpetta,Class.QuantumGrav.13 (1996)1201.[15]B.O’Neill,Semi-RiemannianGeometry,Academic,NewYork,Lon-don,1983; K.L.DuggalandA.Bejancu,LightlikeSubmanifoldsofSemi-Rie-mannianManifoldsandApplications,vol.364ofMathematicsanditsApplications,Kluwer,Dordrecht,TheNetherlands,1996.[16]M.M.Postnikov,LecturesonGeometry.SemesterIII:SmoothMani-folds,Nauka,Moscow,1987.[17]Yu.A.Aminov,DifferentialGeometryandTopologyofCurves,Nauka, Moscow,1987.[18]P.A.Griffiths,Exteriordifferentialsystemsandthecalculusofvaria-tions,Birkh¨auser,Boston,1983). 17 [19]G.A.KornandT.M.Korn,MathematicalHandbook,McGraw-Hill,New York,1968.[20]V.V.Nesterenko,J.Phys.A22(1989)1673. [21]S.S.Schweber,AnIntroductiontoRelativisticQuantumFieldTheory, RowPeterson,NewYork,1961.[22]B.M.BarbashovandV.V.Nesterenko,FortschrittederPhysik,31(1983) 535.[23]B.M.BarbashovandV.V.Nesterenko,IntroductiontotheRelativistic StringTheory,WorldScientific,Singapore,1990.[24]A.B.Harris,R.D.Kamien,andT.C.Lubensky,Rev.Mod.Phys.71 (1999)1745.[25]V.V.Nesterenko,J.Math.Phys.32,3315(1991).[26]V.V.Nesterenko,J.Math.Phys.34,5589(1993). [27]A.M.Polyakov:Nucl.Phys.B286(1986)406; H.Kleinert,Phys.Lett.B174(1986)335; V.V.Nesterenko,J.Math.Phys.32(1992)3315;M.S.Plyushchay,Phys.Lett.B253(1991)50;H.Arod´z,A.Sitarz,andP.Wegrzyn,ActaPhys.PolonicaB20(1989)921; M.Pavsic,Phys.Lett.B205(1988)231;J.Grundberg,J.Isberg,U.Lindstr¨omandH.Nordstr¨om,Phys.Lett.B231(1989)61;J.Isberg,U.Lindstr¨omandH.Nordstr¨om,Mod.Phys.Lett.A5(1990)2491.[28]A.M.Polyakov,Mod.Phys.Lett.3A(1988)325; V.V.Nesterenko,Class.QuantumGrav.9(1992)1101;M.S.Plyushchay,Nucl.Phys.B362(1991)54; S.Iso,C.Itoi,andH.Mukaida,Nucl.Phys.B346(1990)293.[29]V.V.Nesterenko,J.Math.Phys.34(1993)5589. [30]R.D.Pisarski,Phys.Rev.D34(1986)670; J.Ambj¨orn,B.Durhuus,andT.Jonsson,J.Phys.A21(1988)981;A.L.Kholodenko,Ann.Phys.202(1990)186. 18 [31]M.S.Plyushchay,Mod.Phys.Lett.A4(1988)837; M.S.Plyushchay,Int.J.Mod.Phys.A4(1989)3851;M.S.Plyushchay,Phys.Lett.B243(1990)383. [32]C.Batlle,J.Gomis,J.M.Pons,andN.Roman-Roy,J.Phys.A:Math. Gen.21(1989)2693.[33]A.L.KholodenkoandV.V.Nesterenko,J.GeometryandPhysics16 (1995)15.[34]T.L.Curtright,G.I.Ghandour,C.B.Torn,andC.K.Zachos,Phys.Rev. Lett.57(1986)799; T.L.Curtright,G.I.Ghandour,andC.K.Zachos,Phys.Rev.D57(1986); E.BraatenandC.K.Zachos,Phys.Rev.D35(1987)1512;F.DavidandE.Guitter,Europhys.Lett.3(1987)1169.[35]A.M.ChervyakovandV.V.Nesterenko,Phys.Rev.D48(1993)5811. 19 因篇幅问题不能全部显示,请点此查看更多更全内容