OnHigh-FrequencySolitonSolutionstoa(2+1)-DimensionalNonlinearPartial
DifferentialEvolutionEquation
KuetcheKamgangVictor1∗,BouetouBouetouThomas2,3∗∗,TimoleonCrepinKofane1,3∗∗∗
DepartmentofPhysics,FacultyofScience,UniversityofYaoundeI,POBox.812,CameroonEcoleNationaleSup´erieurePolytechnique,UniversityofYaoundeI,POBox.8390,Cameroon
3
TheAbdusSalamInternationalCentreforTheoreticalPhysics,P.O.Box586,StradaCostiera,II-34014,Trieste,Italy
21
(Received25November2007)
A(2+1)-dimensionalnonlinearpartialdifferentialevolution(NLPDE)equationispresentedasamodelequationforrelaxinghigh-rateprocessesinactivebarothropicmedia.WiththeaidofsymboliccomputationandHirota’smethod,sometypicalsolitarywavesolutionstothis(2+1)-dimensionalNLPDEequationareunearthed.Asaresult,dependingonthedissipativeparameter,singleandmultivaluedsolutionsaredepicted.
PACS:05.45.Yv
Innonlinearscience,solitontheorymayplayanessentialroleandmaybeappliedinalmostallthenaturalsciences,[1]inwhichmanydynamicalphenom-enaaremodelledby(1+1)-dimensionalNLPDEequa-tions.Asanillustration,recently,Vakhnenko[2]hasderivedanevolutionequationgivenby
∂x˜∂xu+u˜=0,˜+u˜(∂t˜)˜
(1)
2
p=pewithvelocitiesvedefinedbyve=
dp
.Thehy-dρ
drodynamicequationsrelatedtosuchamediumaregivenby
∂tV−
1
∇·v=0,ρ0
∂tv+
1
∇p=0,ρ0
(2)
asamodelequationofrelaxinghigh-frequencybarothropicmedia.Thequantityu˜maystandfora
˜mayrepresentspace-likephysicalobservable,x˜andt
andtime-likeindependentvariables.
Ontheotherhand,invariouscases,therealnat-uralphenomenaaretoointricatetodescribeonlybyvirtueofthe(1+1)-dimensionalNLPDEequa-tions.Forinstance,innature,thereexistverycom-plicatedphenomenasuchasfoldedprotein,[3]foldedbrainandskinsurfacesandotherkindsoffoldedbio-logicsystems.[4]Thus,onemajorquerythatmayarise:whichkindofpatternformationsmaybefoundinhigherdimensionalsystems(ifintegrable)especiallyin(2+1)-dimensionalNLPDEequations,andcanthesolitonpropertiesbefoundin(1+1)-dimensionalNLPDEequationsstillsurvivinginhigherordersys-tems?
Inordertofindananswertothisquery,weexam-inethedynamicalbehaviourofarelaxingbarothropicmediaunderhigh-frequencyperturbations.Usingthedynamicstateequationofsuchmedia,wederiveanovel(N+1)-dimensionalNLPDEequation(N>1).ParticularinterestsarepaidtotheN=2case.
Weconsiderabarothropicmediumcharacterizedbyp=p(ρ,ξ)wherepisthepressure,ρisthedensity,andξisanadditionalparameterofthemedium.Forfastprocesses,ξ=1andp=pfwithvelocitiesvf
dp2
definedbyvf=.Forlowprocesses,ξ=0and
dρ
∗Email:∗∗
wherethequantitiesv,t,Vand∇maystandforvelocity-vector,time,specificvolumeandgradientop-erator,respectively.Equation(2)mayarisefromthelawsofconservationofmassandmomentum.Forsmallperturbationsp,i.e.pp0andp0,beingthepressureattheunperturbedstate,afteranex-pansionofthespecificvolumeVaspowerseriesofpwithaccuracyo(p2),thedynamicstateequationmaybegivenby
122222τ∂t∂xmxmp−2∂tp+αf∂tp+∂xmpmxvf
1222
p+αe∂tp=0,(m=1,...,N),−2∂t
ve
(3)whereτistherelaxationtime;constantsαeandαfmaybetheexpansionsecond-ordercoefficientsofVeandVf,respectively;quantityxm≡(x,y,z,...)
22
maystandforposition-vectorand∂xm=∂x1x1+mx22∂xItisnoted2+∂xx3+···,(m=1,...,N).2x3
thatanyrepeatedindexreferstosummationwithrespecttoEinstein’snotation.Inordertoinvesti-gateEq.(3),themultiscalemethod[5,6]maybeuseful.Thus,definingthequantity=τω(ωbeingthefre-quencyoftheprocesses)chosentobesmall(large)pa-rameter,afterintroducingtheindependentvariables
mmm−4
T0=tω,T−4=tω−4,X0=xmω,X−,4=xω(m=1,...,N)intoEq.(3),sevencoupledequationsmaybederived.Fromthiscoupledsystem,theremaybetwoleadingequationsexpressedintermsofT0and
vkuetche@yahoo.frEmail:tbouetou@yahoo.fr∗∗∗Email:tckofane@yahoo.com
c2008ChinesePhysicalSocietyandIOPPublishingLtd
426
KuetcheKamgangVictoretal.Vol.25
X0
m(m=1,...,N),describinglow-frequencypertur-bations,andthetwoothersexpressedintermsofT−4
andX−m
4(m=1,...,N)describinghigh-frequencyperturbations.Focusingourinterestonlyonthehighfrequencyperturbations,wemayderivethefollowingevolutionequation:
(∂xx)(p+αfv2fp2
n+∂m)(∂xn+∂xm)−v−22pf∂tt+βf∂xmJm+γfp=0,
(n whereJm=p(m=1,...,N),andthequantitiesβfandγfareexpressedasfollows: 244 β=vf −v2efτv2γvf−ve f=ev,f 2τ2v4ev2. (5) f Equation(4)maybeobtainedinthefollowingway.Adispersionrelationforthelinearizedequation(4) maybewrittenintheformv−2fω2 =(kn+km)(knk)+jβ+ mfN m=1km−γfwith(n f∂ttp+f(∂x+∂y)2p2 +βf(∂x+∂y)p+γfp=0. (6) Inthehigh-frequencyperturbationsregime,itmaybeworthconsideringthefollowingaccuracy: (∂x+∂y)2−v−22∂y+v−1 f∂tt≈2(∂x+∂y)(∂x+f∂t),(7) tofurtherinvestigateEq.(6).Itmaybeclearthatthereexistmanytechniquestofindthesolitonsolu-tionstosomeNLPDEequations.Forexample,usingthe‘multilinearvariableseparationapproach’recentlyinvestigatedbyTangandLou[7]mayleadtomanyin-terestingsolutions.ApplyingtheextendedPainlev´e truncation[8] tothecurrentsystemmaybefullofin-terests.Thus,foragivenNLPDEequation,theremayexistmanysolutions.TheHirotabilinearmethod,[9]eventhoughlooksstandard,hasbeenshowntobepowerful.Thismethodmaybeusefultofindnontriv-ialsolutionstomanyNLPDEequations.[1] Equation(6)isnowreducedto(∂x˜+∂y˜)[∂t+˜u(∂x˜+∂y˜)]˜u+α(∂x˜+∂y˜)˜ u+u˜=0,(8)providedthat x˜=γf (x−vf 2 ft), y˜= γ2 (y−vft),˜t =vγf ft,u˜=αfv2fp 2 , α=βf 2γ, (9) f hold.Theα-termmaystandforthe‘dissipative’ termasintroducedanddefinedbyVakhnenko[2]whoregardedthedissipationintermsofpartialderiva-tiveswithrespecttospacecoordinate.Beforelook-ingforsolutionstoEq.(8),wewouldliketomakeaconnectionbetweentheVakhnenkoequation(1)withotherequationswhichstillattractagreatdealofattentionfromthescientificcommunityduetothefactthattheymaydescribethedynamicsofagreatvarietyofbiological,chemicalandphysicalsys-tems.Ingeneral,theinterestinelucidatingdissi-pativeprocesses[10]onvariousspatialandtemporalscales,frommicroscopictomacroscopic,whichoccursinallmachinesandmechanismisjustifiedbymodernexperimentaltechnologiesthathavemadeitpossibletostudywearlessfrictionbetweencleanandatomi-callyflatsurface.[11]Inparticular,muchattentionhasbeenrecentlydevelopedwithinthefieldofnanotri-bologyinunderstandingthenatureoffrictionatthemicroscopicscale.[10,11]Shearedliquidsconfinedbe-tweentwoatomicallysmoothsolidsurfacesprovideagoodexampleofasystemwhereabroadrangeofphenomenaanddifferentbehaviourhavebeenexperi-mentallyobserved.Insuchsystems,thedissipationisintroducedintermsofpartialderivativewithrespecttotimecoordinate.Wewouldliketocallattentionofresearcherswhoarefamiliartodissipationintermsofpartialderivativewithrespecttotimecoordinatetothefollowingpoints.Therearesomephysicalsys-temswhereadissipativeeffectcoexiststogetherwithnonlinearanddispersiveeffects.Theionacousticsoli-ton,forexample,travelsinaplasmaundertheeffectsofLandaudampingand/orcollisionaldamping,andthesolitoninanonlinearlumpednetworkalsodampsgraduallyduetosomefinitevaluesofelements.[12] DissipationterminnonlinearevolutionequationshasbeensubjecttomanyinterestsinperforminghighorderderivativeandnonlineartermstotheBurgersequation ut+uux+···+up(ux)q+α1ux+α2uxx+···+αkukx+···+αnunx=0, (10) withp,q,nandαk(k=1,2,...,n)beingspace-andtime-independentparameters.Wenotethatukx≡∂ku ∂xk (k=1,2,...,n).Thus,Burgers,Korteweg–deVries(KdV),KdV–Burgers,andBenney[13]equationsmaybegeneralizedtothefollowingform: ut+uux+cmDm(u)+αu3x+βu4x=0, (11) wheremisanintegerwhilecmandDmmaystandforthedissipationcoefficientanddifferentialopera-tor,respectively. No.2KuetcheKamgangVictoretal.427 Asadissipationterm,thefollowingcasesmaybeemployed: 1.D∂2 m≡ ,cm=c1andα=β=0,theequation∂x2Burgersmaybederivedasfollows: ut+uux+c1uxx=0, (12) 2.Dm≡0,cm=0andβ=0,theKdVequationmaybederived[14]asfollows: ut+uux+αu3x=0, (13) ≡∂2 3.Dm∂x2 ,cm=c1andβ=0,theKdV-Burgersequationmaybeexpressedas ut+uux+αu3x+c1uxx=0, (14) 4.Dm≡1,cm=c2andβ=0,akindofKdV equationdescribingionacousticwaveswithweakion-neutralcollision[15]maybederivedas ut+uux+αu3x+c2u=0, (15) 5.D∂2 m≡equation[13]maybe∂x2andcm=c1,theBenney derivedas ut+uux+c1uxx(u)+αu3x+βu4x=0. (16) Ascanbeseen,theVakhnenkoequation(1)andEq.(8)mayserveasenrichingfeaturesinnonlinearevolutionsystemswheredissipationisintroducedintermsofpartialderivativeswithrespecttospaceco-ordinate. Now,performingvariabletransformation,wein-troducenewindependentvariablesX,T1andT2asfollows: X x˜=T1+UdX+x˜0, −∞ X y˜=T2+ UdX+y˜0, −∞˜t =X,(17) wherex˜0andy˜0standforarbitraryconstantsand u˜(˜x,y˜,˜t)=U(T1,T2,X).Thus,Eq.(8)maybetrans-formedto WXXT1+WXWT1+WXXT2+WXWT2 +WX+α(WXT1+WXT2)=0, (18) whereithasbeensetU=WXsuchthatsubscriptsdenotepartialdifferentiation.Bytaking W=6(lnF)X,(19) Eq.(18)maybewrittenasthebilinearequation F2(DT3T32 1DX+D2DX+DX)(F·F) +α(DT)(D2 1+DT2X(F·F)·F2)=0, (20) whereDT1,DT2andDXdenoteHirota’soperators.[9]ThesolutiontoEq.(20)correspondingtoone-solitonmaybegivenby F=1+exp(2η), (21) whereη=KX−ω1T1−ω2T2+η0.ThequantitiesK,ω1,ω2,η0maybeobservedasconstants.Thedispersionrelationmaybegivenby 2(ω1+ω2)(α+2K)=1. (22) SubstitutingEq.(21)intoEq.(19)gives W(X,T1,T2)=6K[1+tanh(η)], (23)sothat U(X,T1,T2)=6K2sech2(η). (24)Inaddition,Eq.(17)mayleadto x˜=T1+6Ktanh(η),y˜=T2+6Ktanh(η), ˜t =X,(25)wherex˜0=y˜0=−6Kandη0=0havebeentakentoreachthesymmetryinx˜-˜yspace.Inordertodiscussthedifferenttypesofsolutions,itisusefultoconsiderthesystem ∂T1=φ1∂x˜+ϕ1∂y˜,∂T2=φ2∂x˜+ϕ2∂y˜, (26) where φ1=1+ϕ1=1+WT1, ϕ2=1+φ2=1+WT2.(27)Fig.1.Loop-likepatternformationu˜vsx˜andy˜(α= 0.1). 428KuetcheKamgangVictoretal.Vol.25 Fig.2.Cusp-likepatternformationu˜vsx˜andy˜(α=5/6). Fig.3.Hump-likepatternformationu˜vsx˜andy˜(α=1.1). Assumingthatω1=Kv1andω2=Kv2suchthatv≡v1+v2>0,theparameterαmaysatisfythefollowingconditions: 1.for0≤α<√1 , u˜u6vx˜and˜y˜maychangesignthreetimesandgoinfi-nitetwice.Thus,u˜vsx˜andy˜maydescribeatypicalfoldedsolitarywaveofloop-liketype(seeFig.1); 2.forα=√1 u˜6v, x˜and˜uy˜maychangesignonceandgoinfiniteonce.Thus,u˜vsx˜andy˜maydescribeatypicalsingle-valuedsolitarywaveofcusp-liketype3.finally,forα>√1 (seeFig.2); u˜6v, x˜andu˜y˜ maychangesignonceandmaynevergoinfinity.Thus,u˜vsx˜andy˜maydescribeatypi-calsingle-valuedsolitarywaveofhump-liketype(seeFig.3); Asisillustrated,wehavetakenv=0.24,andthethreetypicalsolutionsmentionedabovearedepicted inFigs.1–3atinitialtime˜t =0.Acharacteristicvalueofthedissipativeparameterisfoundtobeα=5/6correspondingtothecusp-likepatternformationsolu-tion.Recently,ithasbeenshownthatthedissipative termwithadissipativeparameterlessthansomelimitvaluedonotdestroytheloop-likesolitonsolutionstotheVakhnenkoequation.[2]Thisobservationmaybemadehereinthecaseofloop-likepatternformationsolutiontothe(2+1)-dimensionalNLPDEEq.(8).Itisworthnotingthatifinteractionsamongfoldedsoli-tarywavesareelastic,thentheymaycalledfoldons.[8]In(1+1)-dimensionalcase,thesimplestfoldonsaretheso-calledloopsolitonswhichhavebeenfoundinmany(1+1)-dimensionalintegrablesystems. Insummary,the(2+1)-dimensionalNLPDEEq.(8),whichmaybeobservedasa(2+1)-dimensionalversionoftheVakhnenkoequation,[2]mayhavesomescientificinterestsbothfromtheview-pointoftheinvestigationofthepropagationofhigh-frequencyperturbationsandfromtheviewpointoftheexistenceofstablewaveformations.Itmayactu-allybetruethatthereductiveperturbationmethodandtheHirotabilinearmethodmayseemtobestan-dard.Indeed,thisstudyaimstopointouttheprop-ertiesofthesystemunderinvestigationwhenhigherdimensionalspaceisconsidered.Itdoesnotspecializeonamethodortechniqueofinvestigation.Asmen-tionedabove,theremayexistmanyothertechniquestotackletheproblem. Inaddition,relaxingmediaaresowideinthena-ture.Forinstance,onemayfindgas-media,steam-liquidmedia,electrons-gasinconductors,justtonameafew.Sinceconservativeflowequationshavebeenusedtodescribethebehaviourofsuchmedia,thesuitablefieldsforapplicationsofthepreviousresultsmaybefoundinsolitontheory,[1]geodynamics,[16]hydrodynamics,[17]justtonameafew. References [1]DrazinPGandJohnsonRS1989Solitons:anIntroduction (Cambridge:CambridgeUniversityPress)[2]VakhnenkoVO1999J.Math.Phys.402011[3]TrewickSCetal2002Nature419174[4]GoodmanMBetal2002Nature4151039 [5]NayfeyAH1973PerturbationMethods(NewYork:Wiley)[6]NitropolskyYA,SamoilenkoAMandMartinyukDI 1993SystemsofEvolutionEquationswithPeriodicandQuasiperiodicCoefficients(Dordrecht:Kluwer) [7]TangXYandLouSY2003J.Math.Phys.444000[8]LouSY1998Phys.Rev.Lett.805027 [9]HirotaR1988DirectMethodsinSolitonTheory(Berlin: Springer) [10]McClellandGMandGlosliJN1992FundamentalsofFric-tion:MacroscopicandMicroscopicProcesses(Dordrecht:Kluwer) [11]PersonBNJ1988SlidingFriction:PhysicalProperties andApplications(Berlin:Springer) [12]HirotaRandSuzukiK1973Proc.IEEE611483[13]BenneyDJ1996J.Math.Phys.4552 [14]WashiniHandTaniutiT1966Phys.Rev.Lett.17966[15]OttEandSudanRN1970Phys.Fluids131432 [16]HuangGL,WandDYandFeraudyH1997Geophys.Res. 1027217 [17]MalykhKVandOgorodnikovIL1977DynamicsofCon-tinuousMedia(Moscow:Novosibirsk) 因篇幅问题不能全部显示,请点此查看更多更全内容