您好,欢迎来到尚车旅游网。
搜索
您的当前位置:首页1,4—二溴丁烷制备工艺的改进研究毕业论文

1,4—二溴丁烷制备工艺的改进研究毕业论文

来源:尚车旅游网


目录 摘要 1 1. 绪论

2

1.1 1,4―二溴丁烷的性质

2

1.2 1,4-二溴丁烷主要制备方法 2

1.2.1 以浓硫酸为催化剂合成1,4―二溴丁烷 2 1.2.2 以固体超强酸为催化剂合成1,4―二溴丁烷 3 1.2.3 以工业回收溴化钠为原料生产1,4―二溴丁烷 1.3 课题意义 6 2. 实验部分 7 2.1实验仪器与试剂 7

2.1.1实验仪器 7 2.1.2实验试剂 7

2.2实验步骤 7 3. 结果与讨论 8 3.1 终点的判断

8

3.2 原料配比对产物收率的影响

8

3.3 催化剂用量对产物收率的影响 9 3.4 反应温度对产物收率的影响 10

3.5 产品分析 10

3.5.1 溴化钾压片法表征产品 10

5

3.5.2 折射率测定法表征产品 11 3.6 重复及放大实验 11 4. 结论

13

5. 参考文献 14 6. 致谢 7. 附录

16 17

1,4―二溴丁烷制备工艺的改进研究

关键词:1,4―二溴丁烷;四氢呋喃;溴化钠;有机合成;工艺改进 The Process Improvement of the Preparation of 1,4 - Dibromo Butane Abstract:In this paper,using tetrahydrofuran, sodium bromide as the reaction raw material and refluxing under the concentrated sulfuric acid was for 2h, 1,4 - dibromo butane was synthesized successfully. After the treatment process steam distillation, sodium bicarbonate solution neutralizing the acid which was not reacted, and drying with calcium chloride, a more pure colorless 1,4 - dibromo butane compound was obtained. Besides, the product was characterized and confirmed by the use of refractive index determination, infrared spectroscopy and determination of boiling point. In addition, by changing the reaction conditions like different molar ratios of reactants, reaction temperature , we ultimately found the best reaction condition for the product to achieve a higher yield , namely, .51%. What's more, there are advantages in this process such as mild reaction conditions, less by-products, high yield of the product.

Keywords:1,4 - Dibromo Butane; Organic Synthesis; Tetrahydrofuran; Sodium Bromide; Process Improvement

毕业设计(论文)原创性声明和使用授权说明 原创性声明

本人郑重承诺:所呈交的毕业设计(论文),是我个人在指导教师的指导下

进行的研究工作及取得的成果。尽我所知,除文中特别加以标注和致谢的地方外,

不包含其他人或组织已经发表或公布过的研究成果,也不包含我为获得 及其它教育机构的学位或学历而使用过的材料。对本研究提供过帮助和做出过贡献的个人或集体,均已在文中作了明确的说明并表示了谢意。

作 者 签 名: 日 期: 指导教师签名: 日 期: 使用授权说明

本人完全了解 大学关于收集、保存、使用毕业设计(论文)的规定,即:按照学校要求提交毕业设计(论文)的印刷本和电子版本;学校有权保存毕业设计(论文)的印刷本和电子版,并提供目录检索与阅览服务;学校可以采用影印、缩印、数字化或其它复制手段保存论文;在不以赢利为目的前提下,学校可以公布论文的部分或全部内容。

作者签名: 日 期:

学位论文原创性声明

本人郑重声明:所呈交的论文是本人在导师的指导下进行研究所取得的研究成果。除了文中特别加以标注引用的内容外,本论文不包含任何其他个人或集体已经发表或撰写的成果作品。对本文的研究做出重要贡献的个人和集体,均已在文中以明确方式标明。本人完全意识到本声明的法律后果由本人承担。

作者签名:

日期: 年 月 日

学位论文版权使用授权书

本学位论文作者完全了解学校有关保留、使用学位论文的规定,同意学校保留并向国家有关部门或机构送交论文的复印件和电子版,允许论文被查阅和借阅。本人授权 大学可以将本学位论文的全部或部分内容编入有关数据库进行检索,可以采用影印、缩印或扫描等复制手段保存和汇编本学位论文。

涉密论文按学校规定处理。 作者签名:

日期: 年 月 日

导师签名: 日期: 年 月 日

1. 绪论

1,4-二溴丁烷是用途极为广泛的有机合成中间体医药上被广泛用于制造氨茶碱、咳必清、驱蛲净等。因其对一些高聚物像聚氯乙烯、酚醛树脂等具有良好的溶解作用和对一些非水溶性液体及油渍的溶解性能较好,因此又可作为反应溶剂和一些高级仪器的清洗剂等。另外,1, 4 - 二溴丁烷在日用化工和医药方面也具有重要的用途, 1, 4 - 二溴丁烷具有局部刺激性,当其处于高浓度时有麻醉作用。可用于制造麻醉剂及医用麻醉。目前国内1,4―二溴丁烷的生产的厂家并不多见,且其低下,所用的原料配比并不是特别合适,因此也造成原料的较大浪费。而从国外进口1,4―二溴丁烷的价格又十分的昂贵。而根据资料显示,国内对1,4―二溴丁烷的需求量相对较大。而对于1,4―二溴丁烷而言:第一、1,4-二溴丁烷属于资金密集型产业,1,4-二溴丁烷装置的建成投产需要大量的资金支持,因此,1,4-二溴丁烷的发展往往受到资金的制约;第二,1,4-二溴丁烷作为技术密集型产业,不仅对各种生产装置有很高的技术要求,其科研开发和技术创新能力也对1,4-二溴丁烷行业的发展有着重要的影所以,为满足国内市场的需求,对1,4―二溴丁烷的制备工艺影响产物收率的诸多因数进行了,以期能够确定最佳的工艺条件,使在合理利用原料的前提下产品能够达到较高的收率。1.1 1,4―二溴丁烷的性质

1,4-二溴丁烷又称溴化四次甲基或丁撑二溴,英文名:1,4-Dibromobutane; Tetramethylene dibromide; 1,4-dibromo-Butane; 1,4-Butylenedibromide。其色呈微黄或者无色,常温下为液态,熔点-℃,沸点197℃相对密度1.70(20/4℃),折射率1.5190,闪点℃。溶于氯仿、醇和醚,不溶于水。

1.2 1,4-二溴丁烷主要制备方法

1.2.1 浓硫酸为合成

以四氢呋喃、溴化钠为原料,在浓硫酸催化下合成反应基本原理: 该反应分为两步,第一步为SN2反应过程中先生成盐中间体,溴负离子的进攻与其中一根碳氧键的断开同时发生,生成卤代醇。历程第二步反应为SN1反应,反应过程中先生成,然后脱水生成碳正离子,溴负离子进攻碳正离子并提供一对孤对电子得最终产物1,4-二溴丁烷。该反应中的副反应由于该反应过程中有碳正离子的生成,加热条件下易脱氢离子生成卤代烯烃。而且由于该反应过程中浓硫酸的使用,高温容易造成浓硫酸对反应物及其产物的碳化作用,因此在该反应过程中要控制反应的温度,尽量减免副产物的生成以及碳化作用对产品收率造成的影响。

反应历程如下: 副反应为:

1.2.2 以固体超强酸催化剂

近代由于固体超强酸的发展,也有人提出通过使用固体超强酸代替浓硫酸做催化剂来催化反应生成1,4―二溴丁烷。该反应的好处是免去了浓硫酸的使用。而浓硫酸由于其强酸性,对设备腐蚀较为严重,因此反应过程中对设备的要求较高。而超强酸的使用可减少对设备的腐蚀损坏。该反应所使用的原料为1,4―丁二醇,固体超强酸自制,氢溴酸(含40%)。其反应方程式可以描述如下:

该反应历程可以表述为反应过程中氢离子先与1,4―丁二醇的其中一个羟基结合生成,脱水反应生成碳正离子。溴负离子进攻碳正离子发生SN1反应先生成溴代丁醇,而后氢离子继续进攻剩余的一个羟基,得、脱水生成碳正离子,溴负离子进攻碳正离子得1,4―二溴丁烷。反应历程如下所示:

在此反应历程中在形成碳正离子时由于仲碳正离子比伯碳正离子更为稳定,所以可能会出现碳正离子的重排反应。其可能发生的副反应如下:如果伯碳正离子发生重排到二号碳上形成2位的仲碳正离子,然后溴负离子进攻该仲碳正离子,则形成副产物1,2―二溴丁烷;如果伯碳正离子发生重排到三号碳上形成3位的仲碳正离子,然后溴负离子去进攻该仲碳正离子,则会反应生成副反应1,3―二溴丁烷。另外,除了上述两种副产物之外,碳正离子形成后,还可能发生脱氢反应,脱去氢离子而生成烯烃或溴代烯烃。其副反应具体反应历程式如下:

该副反应总反应表示为: 另有:

该方法所需催化剂价格昂贵,工艺复杂,经济效益较低。目前该法仅仅应用于实验室制备1,4―二溴丁烷,尚未见关于该工艺应用于工业生产的报道。

1.2.3 以工业回收溴化钠为原料生产1,4―二溴丁烷

目前工业上回收溴化钠的方法为:1、从2- 4-氯苯基 -3一甲基丁睛合成中回收溴化钠,并且回收的溴化钠可循环利用。在该工艺中使用的回收溴化钠方法为浓缩分离法。该法具有工艺简单、流程短、回收率高、易操作、不需特殊设备和原料;同时浓缩分出溴化钠后的过滤废液可以套用的特点。2、合成香兰素新工艺中回收溴化钠。该工艺中甲氧基化反应、酸化反应中可以产生大量的溴化钠,存在于萃取溶液下层的水溶液中。经电渗析或者浓缩分离法可得到较高纯度的溴化钠固体。3、从3, 4, 5三甲氧基苯甲醛生产废水中回收溴化钠固体。此法不仅保护了环境,而且取得了一定的经济效益[12]。

1.3 课题意义

本文回收溴化钠合成1,4―二溴丁烷。减少了工业生产废料对环境的污染不

仅仅保护了环境,而且节约了材料,符合二十一世纪对绿色化学的要求。

不同温度、原料配比等反应条件产物收率 2. 实验部分 2.1实验仪器与试剂 2.1.1实验仪器

2WA-J 型阿贝折射仪 上海精密科学仪器厂 傅立叶变换红外光谱仪 回流装置 水蒸气蒸馏装置 2.1.2实验试剂 四氢呋喃(A.R.) 溴化钠(工业回收) 98%浓硫酸(A.R.) 碳酸氢钠(A.R.) 无水氯化钙(A.R.) 2.2实验步骤

于250mL三口烧瓶中依次加入mL水、g溴化钠(0.mol)、mL的四氢呋喃(0.mol),在搅拌下,从恒压滴液漏斗慢慢的加入mL的浓硫酸(mol)滴定过程中溶液温度不能超过60℃。硫酸滴加完后,搅拌片刻,去掉搅拌装置,改为普通回流装置。控制温度105~110℃回2h左右。冷却、稍冷待回流管上粘附的液体滴完,撤去回流装置,改为水蒸气蒸馏装置,进行水蒸气蒸馏所得粗品逐滴缓慢加入碳酸氢钠饱和溶液中和,用PH试纸测试至溶液PH 7~8。之后将该已经

除过酸的粗溶液置于分液漏斗中,静置十分钟取下层液体置于干燥锥形瓶中,无水氯化钙干燥。过滤除去氯化钙所得到滤液无色液体,即产1,4―二溴丁烷。3. 结果与讨论

3.1 终点判断

滴加浓硫酸过程中,刚开始会观察到溶液无色浅黄色,且随着浓硫酸量的增加,黄色会加深至微红。回流溶液出现分层随着反应的进行会油状液滴逐渐下沉至底部。终点以油状液滴下沉判断3.2 原料配比对产物收率的影响

不同溴化钠条件下所得产物1,4―二溴丁烷的 表 不同的NaBr的量对产物收率的影响

编号 NaBr(g) 产物质量(g) 产物收率(%)

70.99 46.2

3 80 39.6

76.34

4 88 46.4

1 2 72 36.8.51

5 96

.12 6 104 46.3

.31 7 120 46.8 90.20

8 136 46.7 90.01

从表数据可知刚开始产物随着溴化钠用量的增加而增加,当且在实验过程中我们也发现溴化钠用量较大时,刚开始三口烧瓶底部会有部分溴化钠并未溶解。虽然反应一段时间后底部的溴化钠有所下降,随着量的增加最后底部仍会有少许的固体残余。该固体在水蒸气蒸馏过程中会溶解。残留于三口烧瓶中的固体经分析为未参与反应的。由于再加大溴化钠用量时,产品并无很大的变化,所以考虑到降低生产中的成本,认为溴化钠用量在0.为宜,即四氢呋喃与溴化钠用量的摩尔比为0∶0.85较为合理。

3.对产物收率的影响

的反应历程,从反应物四氢呋喃到1,4―二溴丁烷,首先必须是四氢呋喃与

氢离子作用反应生成,然后再经过两次亲核取代反应最终达到反应终点。因此在该反应过程中的生成是至关重要的。硫酸的浓度越高,则反应过程中电离出的氢离子也越多,则越有利于的生成使反应更加容易进行、且使产物的相对较高。不过如果硫酸的浓度过高,特别是在较高温度的情况下,由于浓硫酸具有强脱水性,很容易造成原料四氢呋喃被碳化而损耗,并最终降低产物的。同时,硫酸浓度过高时,也可能会将溶液中的溴负离子氧化成溴分子而其被还原成为二氧化硫气体。二氧化硫气体作为一种有毒物质,容易造成酸雨,最终不但浪费原料而且也造成了环境的污染。

在该组实验中,我们通过固定四氢呋喃与溴化钠用量,了硫酸用量及酸度对产物的影响,表。

表 不同酸度的浓硫酸对产物的影响

编号 浓硫酸量(mol) 浓硫酸百分数(%) 实验现象 产物质量(g)

产物(%) 51.1

1 0.48

34.3

少量

――

2 0.72

31.0 59.82

60.1

3 0.80 57.2 溶液清亮 37.181.01 6 0.92 68.1

5 0.8865.3

71.60 62.5

4 0.84 溶液微黄 42.0

.51 7 0.96

溶液微黄,比上组稍深 46.4

81.79

液呈红棕色,稍有碳化 42.4 且发生碳化 39.6

76.39

溶液呈红棕色

从表2数据和实验现象随着硫酸量的增加,产物呈上升趋势。当硫酸用量达到一定数值时,产物达到最高值。其后随着硫酸的增加,产物的反而开始下降。当硫酸浓度较大时四氢呋喃被硫酸碳化所致。另外硫酸浓度较大时,硫酸放热效应较大,最初滴加浓硫酸过程中温度的控制所以浓硫酸的2.5%左右为宜,这样

既可以保证产品,也不会造成原料四氢呋喃与硫酸的浪费。

3. 反应温度产物收率的影响

随着反应温度的升高, 反应速率也会加快, 但如果反应温度过高, 反应液中四氢呋喃的碳化现象。另外,在反应过程中还会有气体从反应体系中对环境造成污染。所以为了选择一个合理的反应温度,我们控制反应原料四氢呋喃∶溴化钠∶浓硫酸 ∶0.85∶0.88,通过改变反应温度,所得到的相关对应值列于表中。

表不同温度产物的影响 温度T/℃ 产量/g 收率/%

63.42 115 39.6

4 105 40.6 76.34

24.4

47.07

3 100 32.8.51

6

78.27 5 110 46.4 57.15

7 120 29.6 注:115℃下反应时,可

观察到原料发生碳化;120℃下反应时,碳化严重,碳化现象明显

从表3数据可知:在80~100℃温度段内,随着温度的增加,产物虽有所增加,不过增加幅度比较平缓,并未出现较大幅度的增加。在100~110℃该段,产物随温度升高而明显增加较低温度下反应速度缓慢,从制备到后处理一整个周期所消耗的时间较长,如果应用于工业生产,并不能很好地做到经济合理。而温度过高时,由于浓硫酸的强脱水性,会造成四氢呋喃的严重碳化。产生的后果是一方面使产物不升反降,另一方面,也造成了原料四氢呋喃和浓硫酸的浪费。3.5 产品分析

对该产物的检验通过测其折射率并与文献值进行比较加以确定,另外通过溴化钾压片法测定了纯化后的1,4―二溴丁烷,其红外谱图如图 1 所示。

图 1 所得产品的红外谱图

观察该红外图谱,对该图谱进行分析可得;该产品的红外谱图与1,4―二溴

丁烷的标准谱图一致。在2961.73cm- 1间出现较强的吸收峰带,该吸收峰为亚甲基 ―CH2 ― 的强伸缩振动吸收带; 在1435.98cm- 1 处出现中等强度伸缩振动吸收带,为亚甲基 ―CH2 ― 的吸收带; 而在680cm- 1 ~515cm- 1处出现的峰则为C―Br强伸缩振动吸收带。从而可以证明我们所合成的产品为1,4―二溴丁烷。

测定所得产物的折射率,测得其值为1.5187与所查文献值相符。实验 表 放大及重复试验

1 2 .23

2 4 .47

3 6 .68

4 6

.66 5 8 .69 6 8 .50 从表4 数据可知:反应

放大6倍和8倍产品同样得到了较高的、稳定的产率,且重复反应产物收率几近相同,说明该方案有很好的再现性和重复性。

4. 结论

四氢呋喃浓硫酸成功合成了1,4―二溴丁烷产品。当四氢呋喃∶溴化钠∶浓 0.24∶0.85∶0.88时,110℃加热回流2h,产品可达.51%。

5. 参考文献

[] 田君濂丁贵堂,毕思玮,马云高.1,4 ―二溴丁烷合成的研究[J].化学工程师,1993,32(2):3-5.

李言信,赵斌,高根之,颜海龙,王敏.固体超强酸催化合成1, 4 - 二溴丁烷的研究[J].山

东化工,2008,37(1):1-5.

[] 中国1,4-二溴丁烷市场发展及投资价值分析报告

郭少杰,马运岗,刘靖,等. 二甘醇制1, 4 - 二氧六环的催化剂研究[J]. 精

细石油化工进

展, 2004, 4 10 : 24~26.

/TiO2Al2O3 - SnO2 催化剂的研制及其催化合成己二酸 二辛酯[J]

[8] E. W. R. Steacie, Atomic and Free Radical Reactions[M], Reinhold Publishing Corp., New

York., Vol. 11, p.713; Vol. I, p. 269.

[9] 韩义民. 2- 4-氯苯基 -3一甲基丁睛合成中回收技术及其循环利用 [11] 汪建芳.溴化丁基橡胶过程中溴化钠废水的处理[D].浙江大学,2002 [12] 王兵,王红梅,于炳华.3, 4, 5三甲氧基苯甲醛生产废水中回收溴化钠的工艺[J].中国

医药工业杂志,2003,34 8 :377―378

[13] 侯琳娜.提高1-溴丁烷制备实验效果的方法与措施[J].广东化工,2008,35 3 :27-28.

[15] 杭州大学化学系分析化学研究室. 分析化学手册 第二版 [M]. 北京:化学工业出版

社, 1997. 37 - 41.

汪家铭.四氢呋喃生产、应用及市场需求[M].精细与专用化学品,1996. 侯德顺.1- 溴丁烷制备实验的优化设计[J].化工时刊,2009,23 5 :47―49. 张骥红,陈峰,陈双飞等. 三正丁基膦的合成和表征[J]. 精细化工中间体, 2004, 34

金丹,向刚伟,刘洪刚,姜恒.改进的溴化钾- 浓硫酸法合成溴代正丁烷[J].

盐业与化工,2008,37(4):29―31.

6. 致谢

,近半年的毕业论文终于挂上了句号。毕业意味着一个人一个阶段学习生涯的结束。在大学里,毕业论文是宣告这一阶段的标准。和所有大学的毕业生一样,我也非常激动地经历了这样一次难忘的毕业论文的完成。

没有付出肯定没有收获。从最初的实验到最后的定稿,在这重要的毕业环节中,我们共同努力过,挥洒汗水和不言放弃,敢于挑战。在这期间我的指导老师邵建国一直都给予我们鼓励和指导,他的悉心指导,耐心讲解,给了我很多启迪。从这次毕业论文完成的过程中我学习到了很多:从溶液的配制等基本实验操作到大型精密仪器的操作。当然,其中更重要的就是我懂得了团结合作的重要性。做好一件事情,并不是凭着自己的一意孤行就能做好的,而是需要协助、帮助,需要不断提醒、激励自己的合作伙伴。

?感谢我周围的帮助,我的老师、我的同学,是你们的谆谆指导指引了我探索前进的道路,让我能很快的找到实验的正确方法,是你们的探讨激辩给了我更清晰地看清我前进中的道路,从而能很快的完成任务。

附录

摘自 The Journal Of Organic Chemistry[J].1958,23 4 :509-512. CONTRIBUTION FROM THE DEPARTMENT OF CHEMISTRY ,OHIO UNIVERSITY] Some Dehalogenation Reactions of 1,4-Dibromobutane[1] WILLIAM B. SMITH Received October 3, 1957

The dehalogenation of 1,4-dibromobutane under a variety of conditions

has been found to lead to a mixture of ethylene, butane, 1-butene, trans and cis 2-butenes, 1,3-butadiene, and cyclobutane.A free radical mechanism accounting for the formation of each of the above is proposed.

A literature survey of the metal dehalogenation reactions of 1,4-dibromobutane reveals a wide divergence of reported products. While it does not follow that all metal dehalogenations must proceed via a common mechanism, it is only through a through study of the reaction products that such a question can really be answered. Such a study is reported here.

The reaction of sodium vapor with 1,4-dibromo butane at 3000° has been reported by Bawn and Milstead[2] to give ethylene 41% and butylene 51% . The mechanism proposed by these authors involves the formation of a 1,4-butyl diradical and its subsequent reactions to give the observed products. Canon and Way[3] carried out essentially the same reaction in refluxing toluene and observed butane and cyclobutane 12% as products. While they suggested no reaction mechanism, the further observation thaicyclobutane formation was less in boiling benzene was interpreted as meaning that this was a process of relatively high activation energy.

Demjanw[4] reported the treatment of 1,4-dibromobutane with zinc in ethanol to give butyl bromide; while Hamonet[5] obtained butane under the same conditions. When the dehalogenation was carried out with zinc and refluxing dioxane, Grob and Bauman[6] identified ethylene, butylene, and butyl bromide as reaction products. They proposed the initial formation

of an organozinc halide which then decomposed by an ionic process.

In this laboratory the treatment of 1,4-dibromobutane with a variety of metals in refluxing xylene and in butyl ether has bean found to produce the same gaseous products in each case Table I ; ethylene, butane, 1-butene, traps- and cis-2-butene, 1,3-butadiene, and cyclohutane. Analysis of the complex reaction products was carried out by means of gas chromatography Fig. 1 .Direct comparison of yields between reactions conducted in xylene aaid in butyl ether is complicated by the fact that butyl ether itself undergoes some cleavage when heated th the metals used in this study. The treatment of boiling butyl ether with sodium produced a large amount of propane and small amounts of C-2 and C-4 hydrocarbons. with the less active metals listed in Table I, the production of propane was negligible.

While the distribution among the products observed on metallic dehalogenation of 1,4-dibromobutane varied considerably with the reaction conditions,the over-all consistency of products strongly supports the supposition of a commom mechanism for all of these reactions. In order to further clarify the question of whether the dehalogenations are free radical or ionic in nature, the reaction was carried out under conditions which would favor radical formation.

Kharasch and co-workers[7] have carried out a number of reactions using a Grignard reagent and cobaltous halides as a source of free radicals

in solution. It was proposed that radical formation takes place according to the following scheme.

TIME IN MINUTES

Fig.1. Gas chromatography mixture of hydrocarbons upper product of 1,4-dibromobutane bromide and cobaltous bromide in tracings for a standard curve and the reaction with methylmagnesium butyl ether lower curve)

When a mixture of 1,4-dibromobutane and cobaltous bromide was treated with methylmagnesium bromide in a high boiling solvent, it was found that the same group of gaseous reaction products was observed as in the metal dehalogenation reactions The results of this series of reactions are also listed inTable I. At the lower temperature of refluxing ethyl ether, no cyclobutane was formed; a not unexpected result in view of the observations of Cason and Way.[3]

TABLE I

DEHALOGENATION REACTIONS OF 1,4-DIBROMOBUTANE (O.O1 MOLE Reagent

Solvent

Yield,Ml.

Products, Mole%

C2H4

C4H10 1―C4H8

Na

Xylene 80 63 16 5 14 51 12

Li Xylene 90 16 46 15

s.a.

s.a.

Mg Xylene 90Mg Bu2Oa

60

Na Bu2Oa 200 High

190 31 24 19 Zn Bu2Oa Bu2Oa 34 28 16 Zn dioxane

27 47 13 Mg+CoBr2 Bu2Oa 200 8 24 16

CH3MgBr+CoBr2 Xyleneb

…c 23 17 15 Solvent

Mg+CoBr2 Et2O

70 8 33 42 …c 21 3 8

…c 6

CH3MgBr+CoBr2 Bu2O 3 51

Reagent

CH3MgBr+CoBr2 Et2O

Yield,Ml. Products, Mole%

Na Xylene 80 2 3 11

NaZn

2―C4H8 1,3―C4H6 Cyclo C4H8

Li Xylene 90 5 5 13

s.a.

0

Mg Xylene 90 4 6 13 Mg Bu2Oa 190 6 2 9

60 13 0 0

70 17 0 0

Bu2Oa 200 s.a.

Bu2Oa 260 11 1 0 Bu2Oa 200 13 3 1 CH3MgBr+CoBr2 Xyleneb …c 30 0 8

Zn dioxane Mg+CoBr2

Mg+CoBr2 Et2O …c 5 4 2

CH3MgBr+CoBr2 Bu2O

a

The

CH3MgBr+CoBr2 Et2O …c 17 0 0

high yields in butyl ether were due to the secondary reaction of the metal with the solvent; the other product being propane. Small amount is abbreviated s.a. b In addition, 53% ethane and 4% propane were found. C No yield of reaction products was measured here due to the large dilution by methane.

The experimental results of this study support the view that the metal dehalogenation reactions of 1,4-dibromobutane are free radical in nature. However, it should be born in mind that in any reactions as complex as these there is no difficulty in finding explanations of the experimental facts, but only in defending a preferred explanation selected from many. One reasonable reaction scheme which will accommodate the above

observations is as follows:

In the same fashion the 4-bromo-l-butene Equation 4 may decompose to form 1,3-butadiene and 1-butene. The 4-bromo-l-butyl radical A may be generated either by the direct abstraction of the halogen by the metal or by the thermal decomposition of a metal alkyl intermediate.[8]

The formation of cyclobutane as envisioned in Equation 2 above is a displacement of bromine atom from carbon by an attacking radical. The experimental evidence regarding radical displacement reactions has been summarized by Steacie.9 The formation of a 1,4-butyl diradical as suggested by Bawn and Milstead[2] is also a possibility. In order to test the proposal of the 4-bromo-l-butyl radical A as:reaction intermediate, the decomposition of 4-phenoxybutyl bromide with magnesium and tobaltous bromide in refluxing xylene tv as carried out. Again a complex mixture of gaseous products was formed Table II . Analysis of this mixture showed the

same

products

as

observed

in

the

reactions

of

1,4-dibromobutane.Cyclobutane was formed to the extent of 2 mole percent. Kharasch, Stampa, and Xudenburg[l0] have reported that treatment of 4-phenoxybutyl bromide with phenylmagnesium bromide and cobaltous bromide in ether gave predominantly butyl phenyl ether and butenyl phenyl ether.

TABLE II

REACTIONS OF n-BUTYL BROMIDE AND 4-PHENOXYBUTYL BROMIDE

Reagent

Solvent Yield,Ml.

C2H4

C4H10 1―C4H8 Mg+CoBr2 Et2O

490 0

Products, Mole%

n-Butyl bromide, 0.02 mole

CH3MgBr+CoBr2 Et2O

55 21 …a 6 11 20

4-Phenoxybutyl bromide, .0052 mole 3 79

Reagent

Solvent

Mg+CoBr2 Xylene 25 5

Yield,Ml.

2―C4H8

1,3―C4H6 Cyclo C4H8

…a …

Products, Mole% Mg+CoBr2 Et2O

490 24 … … CH3MgBr+CoBr2 Et2O

… … Mg+CoBr2 Xylene 25 10 1 2 a No yield of

reaction products was measured due to the high dilution with methane. The other major product 63% was pentane.

Both trans and cis 2-butene the ratio trans/cis varied from two to five were formed in each of the reactions studied.Kharasch, Lambert, and Urry[11] noted the formation of 2-butene when 1-chloro-3-phenylpropane was treated with butylmagnesium bromide and cobaltous bromide. Their suggestion of the rearrangement of a n-butyl radical to a secbutyl radical via a hydrogen atom migration has not received further experimental support. However,should such a migration occur then the formation of 2-butene may be postulated as follows:

When butyl bromide is allowed to react with nagnesium and cobaltous bromide in ether, the yields of 1-butene and 2-butene were essentially the same Table II . In another experiment butyl bromide and cobaltous

bromide were allowed to react with methylmagnesium bromide. There v-as no observable yield in 2-butene under these conditions Table II and the high yield of pentane suggests that the recombination of methyl and butyl radicals is a faster reaction than any process leading to 2-butene formation.

One referee has suggested that the metal salts present in the reaction mixture may serve as Lewis acids catalyzing the rearrangement of 1-butene to 2-butene. While there is a real possibility of such an isomerization occurring iu the reactions at lower temperatures, it would be dubious that 1-butene would have a sufficiently long residence time in the reaction vessel at the temperatures of refluxing butyl ether and xylene for such a rearrangement to occur.

Finally, with regard to the balance of product yields predicted by the above proposed mechanistic scheme, it should be born in mind that no mention has been made of the interactions of the various radicals proposed with each other or with the solvents employed. Such factors undoubtedly play an important role in determining the yields of reaction products. Thus, it is not to be expected that the above scheme should account quantitatively for the products but rather for the spectrum of products observed.

EXPERIMEVTAL

Reagents. Eastman Kodak White Label 1,4-dibromobutane was carefully

distilled through a Widmer column. After a slight forerun, the major fraction was taken; b.p. 74.50/11 mm.

Butyl ether was washed with dilute potassium hydroxide and water. While still wet it was treated with an excess of calcium hydride and then distilled from the excess hydride; b.p. 141°.

n-Butyl bromide was Eastman Kodak White Label carefully distilled through a Todd column; b.p. 106.6°.

The magnesium used in this study was Fisher Grignard Reagent magnesium.

Method of gas analysis. The gases produced in the following reactions were analyzed by means of a Fisher Gulf Partitioner using the standard column provided with the instrument tricresyl phosphate on firebrick . The eluting gaswas helium. The peaks produced by an unknown sample were identified by comparison with those produced by a standard known mixture of light hydrocarbon gases Fig. 1 The cyclabutane band was identified by inference from the products formed by the treatment of 1,4-dibromobutane with sodium in refluxing toluene.[3]

The mole percent of each component was calculated by the expression: Apparatus: The apparatus consisted of a 100-m1., three-necked flask fitted with a dropping funnel and a condenser.All reactions were stirred by means of a magnetic stirrer. All gases were collected, after passing through the condenser; in a gas collection bottle filled either with

mercury or a saturated salt solution.

Reaction of 1,4-dibromobutane with, various metals. To a refluxing mixture of 2 g. of the appropriate metal and 20 ml of solvent was slowly added 2.16 g. 0.01 mole of 1,4-dibromobutane. The mixture was usually allowed to reflux over-night. The evolved gases were then measured and analyzed according to the above procedure. The metals, solvents, and reaction products are tabulated in Table I.

Reaction of 1,4-dibromobutane with methylmagnesium bromide and cobaltous bromide in various solvents. To a refluxing mixture of 2.16 g. 0.01 mole of 1,4-dibromobutane and 2 g. of cobaltous bromide in 20 ml. of solvent, was added ca. 0.03 mole of methylmagnesium bromide in the same solvent. The solvents used were ethyl ether, butyl ether, and xylene. In the latter two solvents, the addition reagent was formed by mixing the solvent with the appropriate amount of methylmagnesium bromide in ethyl ether and then removing as much of the ethyl ether as possible by evacuating to water pump pressure. In xylene and butyl ether, the Grignard reagent was added in the form of a slurry. The gases produced were collected and analyzed as described previously.

Reactions of n-butyl bromide. a A mixture of 2.74 g. of n-butyl bromide 0.02 mole , 4.36 g. of cobaltous bromide 0.02 mole , and 1 g. of magnesium was refluxed in 15 ml. of ethyl ether for three hours. The reaction gas was collected and analyzed as before. The results are

recorded in Table II.

b To a refluxing mixture of 2.74 g. of n-butyl bromide and 1 g. of cobaltous bromide in 15 ml. of ethyl ether was slowly added 25 ml. of ca. 1M rnethylmagnesium bromide. The yield of gas was quantitative based on the amount of methylmagnesium bromide. The analytical results are given in Table II.

Reaction of 4-phenoxybutyl bromide with magnesium and cobaltous bromide. 4-Phenoxybutyl bromide was prepared by the method of Kharasch, et al.;[10] m.p. 40-41.50. A mixture of 1.2 g. 5.2 mmole of 4-phenoxybutyl bromide, 1 g. of cobaltous bromide, and 2 g. of magnesium was refluxed for three days in 25 ml. of xylene. The rather small gas yield 25 ml. was collected and analyzed as before. The results are recorded in Table II.

Reference

[1] Presented in part hefore the April 19, 1957, meeting of the Ohio Academy of Sciences, Bowling Green Ohio

[2] C. E. H. Balm and J. Milstead, Trans. Faraday Soc.,35,8 1939 [3] J. Cason and R. 1,. Way, J. Org. Chem., 14, 31 1949 . [4] N. J. Demjanow, Ber., 28, 22 1805 . [5] J. Hamoriet, Conrpt. rend., 132, 7 1901 .

[6] C. A. Grob and W. Bauman, Hclv. Cham. Acta, 38,594 1955 . [7] M.S.Kharasch,R.D. Mulley,and W.Nudenberg,J.Org.Chem,19,1477

19)

[8] A. A. Morton and E. J. Lanpher, J. Org. Chem., 21,93 1956 . [9] E. W. R. Steacie, Atomic and Free Radical Reactaons,Reinhold Publishing Corp., New Tork, N. Y., Vol. 11, p.713; Vol. I, p. 269.

[10] M. S. Kharasch, G. Stampa, V. Kutlenburg, J .Oig. Pheni , 18,575 1953

[11] 11. S. Rharasch, F. L. Lambert, W. H. Urry, J .Oig. rhein., 10, 298 1945 .

1,4―二溴丁烷的一些脱卤反应[1] WILLIAM B. SMITH

对于脱卤反应,已经发现在一系列的条件下1,4―二溴丁烷可以脱卤生成丁烷,1―丁烯,顺式2 ―丁烯,反式2―丁烯,环丁烷和1,3―丁二烯的混合物。本文对上面每一个产物提出了各自的自由基反应机理。

通过对1,4―二溴丁烷的金属脱卤反应的文献的大量查阅,笔者发现对已报道的产物各自的反应机理之间存在着很大的差异。并不是所有的金属脱卤反应都必须遵循一个共同的反应机理,只有对反应产物进行全面的研究才能确定每一个反应的正确的机理。本文就是对此类研究的一个相关报道。

钠蒸汽与1,4―二溴丁烷在300℃反应生成41%的乙烯与51%丁烯的反应已经被鲍恩和米尔斯特德[2报道过。这两位作者对此反应提出的反应机理包括1,4―丁基自由基的生成以及该自由基随后生成前面提到的产物的相关反应。卡森和韦[3]从本质上提出了该反应在甲苯中回流的结果,并观察到有丁烷和环丁烷(12%)生成。尽管他们没有能够提出该反应的机理,然而通过对环丁烷在较少的苯沸腾

溶液中生成过程的进一步观察解释了该过程是一个反应活性较高的反应。

丁查罗[4]报道了1,4―二溴丁烷在乙醇溶液中通过锌催化反应生成1―溴代丁烷的方法。然而哈莫尼特

时间/分钟

图 1 标准碳氢化合物的气相色谱图(上曲线)和丁醚中1,4―二溴丁烷与甲基溴化镁及溴化钴反应生成产物的气相色谱图(下曲线)

在这种实验室条件下,在二甲苯以及丁醚回流条件下一系列金属与1,4―二溴丁烷在各自反应条件下反应发现可以生成各种相同的气态产物(表1):乙烯、丁烷、1―丁烯、顺式2―丁烯、反式2―丁烯、1,3―丁二烯和环丁烷。对该反应生成的混合物的分析是通过气相色层分析法来完成的(图1)。由于丁醚在本研究条件下与金属加热本身会发生裂解这一事实,在二甲苯与丁醚中反应产物收率的直接比较是比较复杂的。沸腾的丁醚与钠反应会生成较大数量的丙烷和较少量的碳―3和碳―4碳氢化合物。当与表一中所列出来的一些活性较小的金属反应时,丙烷的产量是可以忽略不计的。

表 1 1,4―二溴丁烷的脱卤反应(0.01mol) 反应试剂 溶剂

1―丁烯

总产量 收率/%(mol)

乙烯

Na 二甲苯 80 63 16 5 Li 二甲苯 90 16 46 15

s.a.

s.a.

Mg 二甲苯 90 14 51 12 Na 丁醚a 200 High

Mg 丁醚a 190 31 24 19 Zn 丁醚a 260 34 28 16 Zn 二氧杂Mg+CoBr2

环乙烷 60 27 47 13

乙醚

Mg+CoBr2 丁醚a 200 8 24 16

CH3MgBr+CoBr2 二甲苯b

70 8 33 42 …c 21 3 8

…c 6

CH3MgBr+CoBr2 丁醚 …c 23 17 15 CH3MgBr+CoBr2 乙醚

3 51 2―丁烯

反应试剂 溶剂 1,3―丁二烯

总产量 收率/%(mol)

Liaa

环丁烷 Na 二甲苯 80 2 3 11

Na 丁醚Zn 丁醚

二甲苯 90 5 5 13 200 s.a.

s.a.

0

Mg 二甲苯 90 4 6 13 Mg 丁醚a 190 6 2 9

260 11 1 0 Zn 二氧杂环乙烷 60 13 0 0

Mg+CoBr2 乙醚

70 17 0 0

Mg+CoBr2 丁

醚a

200 13 3 1

CH3MgBr+CoBr2 二甲苯b …c 5 4 2 CH3MgBr+CoBr2 丁醚 …

c 30 0 8 CH3MgBr+CoBr2 乙醚 …c 17 0 0 a:产物在在丁

基醚的高产量是由于金属与溶剂的副反应

当1,4―二溴丁烷和卤化钴的混合物在剧烈沸腾的溶液中与甲基溴化镁反应时,我们发现在金属脱卤反应中有于气相反应中相同的一组产物。这系类反应的结果也别列在了表 1 中,在较低温度的乙醚溶液中回流时,没有环丁烷生成――这是对卡森和韦[3]实验结果观察的一个意想不到的结果。

该研究实验结果证实了一种观点:即1,4―二溴丁烷的金属脱卤反应从本质上来说是自由基反应。然而,应当记住,对于任何像上述这些复杂的反应,虽然对反应机理寻找到一个合理的解释并不是很困难的,但是只有在众多解释中悬着一种最为合理的解释才是最好的。一种合适上述所有反应的合理的机理如下所示:

4―溴―1―丁烯(4)可以同样的方式分解生成1,3―丁二烯和1―丁烯。4―溴―1―丁基自由基(A)可以由生成的金属卤化物直接制的或者由中间态的金属烷基热分解生成[8]。

方程式(2)中所设想的环丁烷的生成是活泼基团进攻碳上的溴原子从而使

其发生位移一取代其位置而得到的。关于活泼基团置换反应的实验证据已经被斯特西总结过了。鲍恩和米尔斯特德[2]提出的关于生成的是1,4―丁基双自由基的说法也是一种可能。为了检验反应中间体是4―溴―1―丁基自由基(A)这一假说,我们在二甲苯溶液中进行了通过镁与溴化钴催化回流分解4―苯氧基丁基溴的反应。我们再一次得到了复杂的气态混合物产物(表2)。对这一混合物的分析显示:所得到的产物与在1,4―二溴丁烷反应中所制得的产物是一致的。其中环丁烷占到了百分之二(物质的量)。卡?瑞斯克,斯坦帕和能丁本格[10]报道说4―苯氧基丁基溴,镁和溴化钴在乙醚中反应主要生成丁基苯基醚和丁烯基苯基醚。

表2 1―溴丁烷和4―苯氧基丁基溴的反应 反应试剂 溶剂 烷 1―丁烯

总产量 产物/(mole%)

乙烯

正溴代丁烷 0.02mol Mg+CoBr2 乙

醚 490 0 55 21

CH3MgBr+CoBr2 乙醚

…a 6 11 20

4―苯氧基丁基溴 0.0052mol

反应试剂 溶剂

Mg+CoBr2 二甲苯 25 5 3 79

2―丁

总产量 产物/(mole%)

Mg+CoBr2 乙醚

烯 1,3―丁二烯

环丁烷 490 24 … …

CH3MgBr+CoBr2 乙醚 2

…a … … … Mg+CoBr2 二甲苯 25 10 1

a 由于大量的甲烷稀释作用无法测出产物的产量。另一个主要的产

物是戊烷(63%)

在上述研究的反应中都有顺式2―丁烯和反式2―二丁烯生成(顺式和反式摩尔比从两倍到五倍之间变化)。卡?瑞斯克、兰伯特和厄里

当溴代丁烷在醚中与镁和溴化钴反应时,反应得到的1―丁烯与2―丁烯的

产量基本上是相同(表 2 )。在另一实验中我们将丁基溴和溴化钴与甲基溴化镁进行反应,在该反应条件下,我们未发现在产物中有2―丁烯生成(表 2 )。不过我们在产物中发现有较大量的戊烷生成。这表明甲基和丁基自由基的重组反应是一个比任何生成2―丁烯的反应都快的反应。

一位审阅人认为金属盐可以作为路易斯酸在1―丁烯和2―丁烯的重排反应中起催化作用。虽然这种异构化反应在较低温度下进行时有这样一种可能性,不过很然有一种可能即在反应釜中于丁醚和二甲苯回流下,1―丁烯有足够长的停留时间来进行如此一个重排反应。

最后,对于通过上述所说的反应机理所预测的产品产量的平衡我们应该记住上述机理没有提到各个自由基之间或是所用的溶剂与自由基之间的相互反应。这些因素在决定反应产物的产量上毫无疑问起着重要作用。因此,我们无法期待上述所说的反应机理能够适用于其他广泛的产品,而是应该通过观察反应产物的谱图来加以判断。

实验

试剂:1,4―二溴丁烷(通过威德默分馏柱基点74.5/11毫米 标准列均值分析仪器反应气体收集分析如前。结果记录在表1] Presented in part hefore the April 19, 1957, meeting of the Ohio Academy of Sciences, Bowling Green Ohio

[2] C. E. H. Balm and J. Milstead, Trans. Faraday Soc.,35,8 1939 [3] J. Cason and R. 1,. Way, J. Org. Chem., 14, 31 1949 . [4] N. J. Demjanow, Ber., 28, 22 1805 . [5] J. Hamoriet, Conrpt. rend., 132, 7 1901 .

[6] C. A. Grob and W. Bauman, Hclv. Cham. Acta, 38,594 1955 . [7] M.S.Kharasch,R.D. Mulley,and W.Nudenberg,J.Org.Chem,19,1477 19)

[8] A. A. Morton and E. J. Lanpher, J. Org. Chem., 21,93 1956 . [9] E. W. R. Steacie, Atomic and Free Radical Reactaons,Reinhold Publishing Corp., New Tork, N. Y., Vol. 11, p.713; Vol. I, p. 269.

[10] M. S. Kharasch, G. Stampa, V. Kutlenburg, J .Oig. Pheni , 18,575 1953

[11] 11. S. Rharasch, F. L. Lambert, W. H. Urry, J .Oig. rhein., 10, 298 1945 .

扬州大学本科生毕业论文 - 4 -

因篇幅问题不能全部显示,请点此查看更多更全内容

Copyright © 2019- sceh.cn 版权所有 湘ICP备2023017654号-4

违法及侵权请联系:TEL:199 1889 7713 E-MAIL:2724546146@qq.com

本站由北京市万商天勤律师事务所王兴未律师提供法律服务