您好,欢迎来到尚车旅游网。
搜索
您的当前位置:首页HY-TTC 200 User Manual

HY-TTC 200 User Manual

来源:尚车旅游网


TTC 200 V5

User Manual

Product version 5.0 of 8-Sep-2009 Manual edition 1.17 of 1-July-2010 Document Number D-TTC02-G-02-008

TTP - As dependable as Time.

TTControl GmbH

Schoenbrunner Strasse 7 A–1040 Vienna Austria

TTP is a trademark of FTS Computertechnik Ges.m.b.H.

Tel.: + 43 1 585 34 34–0 Fax: + 43 1 585 34 34–90

Web: http://www.ttcontrol.com/ E-mail: office@ttcontrol.com

____________________________________________________________________________________________________

Copyright

The data in this document may not be altered or amended without special notification from TTControl GmbH. TTControl GmbH undertakes no further obligation in relation to this document.

Under no circumstances may any part of this document be copied, reproduced,

transmitted, stored in a retrieval system, or translated into another language without written permission of TTControl GmbH.

The names and designations used in this document are trademarks or brands belonging to the respective owners.

Copyright © 2001–2009 TTControl GmbH. All rights reserved.

Copyright © 2001–2009 TTControl GmbH All rights reserved

1. General Description

Contents

Contents.....................................................................................................................................1 History of Changes.....................................................................................................................4 1 General Description............................................................................................................5 1.1 Introduction.....................................................................................................................5 1.2 Safety and Certification..................................................................................................5 1.3 Advanced Programming Possibilities............................................................................5 1.4 Features.........................................................................................................................6 2 Pin connection.....................................................................................................................7 Front view...................................................................................................................................7 2.1 Pin connection part 1.....................................................................................................8 2.2 Pin connection part 2...................................................................................................10 3 Block Diagram...................................................................................................................13 4 Specification of Inputs and Outputs..................................................................................14 4.1 Positive power supply (BAT+)......................................................................................14

4.1.1 Functional description:.........................................................................................14 4.1.2 Maximum ratings..................................................................................................14 4.1.3 Characteristics......................................................................................................15 4.1.4 Voltage Monitoring...............................................................................................16 4.1.5 Wiring hints:..........................................................................................................16 4.2 Negative power supply (BAT-).....................................................................................17

4.2.1 Pinout:..................................................................................................................17 4.2.2 Functional description:.........................................................................................17 4.2.3 Maximum ratings..................................................................................................17 4.3 GND..............................................................................................................................18

4.3.1 Pinout:..................................................................................................................18 4.3.2 Functional description:.........................................................................................18 4.3.3 Maximum ratings..................................................................................................18 4.4 Positive power supply (B+) for sensors / loads...........................................................19

4.4.1 Pinout:..................................................................................................................19 4.4.2 Functional description:.........................................................................................19 4.4.3 Maximum ratings..................................................................................................19 4.5 Ignition on switch input / Terminal 15 (Klemme15).....................................................20

4.5.1 Pinout:..................................................................................................................20 4.5.2 Functional description:.........................................................................................20 4.5.3 Maximum ratings..................................................................................................20 4.5.4 Characteristics......................................................................................................20 4.6 Sensor supply 10.5V....................................................................................................21

4.6.1 Pinout:..................................................................................................................21 4.6.2 Functional description:.........................................................................................21 4.6.3 Maximum ratings..................................................................................................22 4.6.4 Characteristics......................................................................................................22 4.6.5 Supply Voltage Monitoring...................................................................................22 4.7 Sensor supply 5V........................................................................................................23

4.7.1 Pinout:..................................................................................................................23 4.7.2 Functional description:.........................................................................................23 4.7.3 Maximum ratings..................................................................................................24 4.7.4 Characteristics......................................................................................................24 4.7.5 Supply Voltage Monitoring and Correction..........................................................24 4.7.6 Supply Voltage Correction Formula.....................................................................25 4.8 Analog input 0..5V with SW- configuration..................................................................26

4.8.1 Pinout:..................................................................................................................26 4.8.2 Functional description:.........................................................................................26

TTC 200 User Manual 2 1. General Description

4.8.3 Mode 1: resistive sensors (i.e. NTC/PTC temperature sensors)........................26 4.8.4 Mode 2: current loop active sensors (0..20mA)...................................................27 4.8.5 Mode 3: ratiometric for potentiometric sensors (pedals, joystick etc).................27 4.8.6 Maximum ratings..................................................................................................28 4.8.7 Characteristics......................................................................................................28 4.8.8 Application Details for Mode 1 (Resistive Sensors)............................................29 4.9 Analog and digital input 0..10V...................................................................................30

4.9.1 Pinout:..................................................................................................................30 4.9.2 Functional description:.........................................................................................31 4.9.3 Maximum ratings..................................................................................................32 4.9.4 Characteristics......................................................................................................32 4.10 Board temperature sensor...........................................................................................33

4.10.1 Pinout:..............................................................................................................33 4.10.2 Functional description:.....................................................................................33 4.10.3 Characteristics..................................................................................................33 4.11 Digital input for frequency / timing measurement........................................................34

4.11.1 Pinout:..............................................................................................................34 4.11.2 Functional description:.....................................................................................34 4.11.3 Maximum ratings..............................................................................................36 4.11.4 Characteristics..................................................................................................36 4.12 Digital input for coding..................................................................................................37

4.12.1 Pinout:..............................................................................................................37 4.12.2 Functional description:.....................................................................................37 4.12.3 Maximum ratings..............................................................................................38 4.12.4 Characteristics..................................................................................................38 4.13 Power output 2A high side with PWM-control.............................................................39

4.13.1 Pinout:..............................................................................................................39 4.13.2 Functional description:.....................................................................................39 4.13.3 Maximum ratings..............................................................................................40 4.13.4 Characteristics of output stage........................................................................40 4.13.5 Characteristics of frequency input (alternate function of output stage)...........40 4.13.6 Load Diagnostic Function................................................................................41 4.13.7 Current Measurement......................................................................................42 4.14 Power output 4A high side with PWM-control.............................................................43

4.14.1 Pinout:..............................................................................................................43 4.14.2 Functional description:.....................................................................................43 4.14.3 Maximum ratings..............................................................................................44 4.14.4 Characteristics of output stage........................................................................44 4.14.5 Characteristics of frequency input (alternate function of output stage)...........44 4.14.6 Load Diagnostic Function................................................................................45 4.15 Power output 4A high side...........................................................................................46

4.15.1 Pinout:..............................................................................................................46 4.15.2 Functional description:.....................................................................................46 4.15.3 Example for switch off energy calculation for inductive loads:........................47 4.15.4 Maximum ratings..............................................................................................48 4.15.5 Characteristics of output stage........................................................................48 4.15.6 Characteristics of digital input (alternate function of output stage).................48 4.15.7 Load Diagnostic Function................................................................................49 4.16 Power output 15A high side.........................................................................................50

4.16.1 Pinout:..............................................................................................................50 4.16.2 Functional description:.....................................................................................50 4.16.3 Maximum ratings..............................................................................................53 4.16.4 Characteristics of output stage........................................................................53 4.16.5 Characteristics of frequency input (alternate function of output stage)...........53 4.16.6 Load Diagnostic Function................................................................................

Copyright © 2001–2009 TTControl GmbH

All rights reserved

TTC 200 User Manual 3 1. General Description

4.17 Relay output 0.5A high side.........................................................................................55

4.17.1 Pinout:..............................................................................................................55 4.17.2 Functional description:.....................................................................................55 4.17.3 Characteristics..................................................................................................56 4.18 Analog output 0 .. 24V..................................................................................................57

4.18.1 Pinout:..............................................................................................................57 4.18.2 Functional description:.....................................................................................57 4.18.3 Maximum ratings..............................................................................................58 4.18.4 Characteristics..................................................................................................58 4.19 LIN interface.................................................................................................................59

4.19.1 Pinout:..............................................................................................................59 4.19.2 Functional description:.....................................................................................59 4.19.3 Maximum ratings..............................................................................................60 4.19.4 Characteristics..................................................................................................60 4.20 RS232 interface............................................................................................................61

4.20.1 Pinout:..............................................................................................................61 4.20.2 Functional description:.....................................................................................61 4.20.3 Maximum ratings..............................................................................................62 4.20.4 Characteristics..................................................................................................62 4.21 TTP interface RS 485-type (optional)..........................................................................63

4.21.1 Pinout:..............................................................................................................63 4.21.2 Functional description:..................................................................................... 4.21.3 Maximum ratings..............................................................................................65 4.21.4 Characteristics..................................................................................................65 4.22 CAN interface ISO 118............................................................................................66

4.22.1 Pinout:..............................................................................................................66 4.22.2 Functional description:.....................................................................................67 4.22.3 Maximum ratings..............................................................................................68 4.22.4 Characteristics..................................................................................................68 5 Application Notes..............................................................................................................69 5.1 Wiring Harness.............................................................................................................69 5.2 Load Distribution..........................................................................................................69

Copyright © 2001–2009 TTControl GmbH All rights reserved

TTC 200 User Manual 1. General Description

4

History of Changes

Version 1.12

28-Aug-2007

Version 1.13

21-Sep-07

Version 1.14

18-Oct-07

Version 1.15

12-Mar-09

LSI

CSE LSI Creation of Version History

Unified label of relay control outputs Corrected page headers of TOC

Document number corrected to new scheme

Corrected wording of Safety and Certification paragraph

CSE Neg supply pins: total current of 25A

LSI Corrected TTP pin labelling

WDI

Stand-by current specified

Switch-off energy calculation for inductive loads added Options for using outputs as inputs added

Specified need for GND connection for all interfaces

Version 1.16

21-Sep-09 WDI

Version 1.17

1-July-10 WDI

Updated to TTC200 version V5.

Company name changed to TTControl.

TTP pins marked as optional in the overview.

Chapter 4.8.8 Application Details for Mode 1 (Resistive Sensors) was added

Copyright © 2001–2009 TTControl GmbH All rights reserved

TTC 200 User Manual 1. General Description

5

1 General Description

1.1 Introduction

TTC 200 is a programmable electronic control unit for sensor/actuator management. Many configurable I/Os allow its use with different sensor and actuator types. The control unit is part of a complete and compatible product family and designed specifically for vehicles and machines that function in rough environments and at extreme operating temperatures. Its robust injection-molded aluminum housing protects against electromagnetic disturbance and mechanical stress. A 40 MHz Motorola MPC555 integrated microprocessor provides the necessary processing power.

1.2 Safety and Certification

All TTC 200 inputs and outputs are protected against electrical surges and short circuits. In addition, internal safety measures allow the detection of open load, overload and short circuit conditions at the outputs.

Proportional hydraulic components can be connected directly to the current controlled PWM outputs. Hydraulic valves with integrated power stages can be controlled by two analog output signals.

CAN, TTP®, RS-232 and LIN / ISO-K are available for serial communication. TTC 200 was designed to comply with the IEC 61508 international standard. The stand-alone version and the network version with TTP fulfill SIL 2 (Safety Integrity Level) and SIL 3 requirements respectively. TTP is available as a mounting option.

The requirements in the Safety Manual1 shall be followed if the TTC 200 is used in safety-critical applications.

1.3 Advanced Programming Possibilities

A broad range of tools is available to program TTC 200. At the basic level, the unit may be programmed in C. In addition, a TTPMatlink library for MATLAB®/ Simulink® and an I/O library are available for TTC 200. These enable the rapid automatic code generation for the application software without manual coding via Real-Time Workshop® Embedded Coder code generator from The MathWorks.

CoDeSys, which is one of the most common IEC 61131-3 programming systems that runs under Microsoft Windows®, is also available for programming the TTC 200. Several editors are supported, including the Instruction List Editor, the Sequential Function Chart Editor and the Function Block Diagram Editor. CoDeSys produces native machine code for the main processor of TTC 200.

1

TTControl. TTC 200 Safety Manual. D-TTC02-G-02-002, TTControl GmbH, 2007.

All rights reserved

Copyright © 2001–2009 TTControl GmbH

TTC 200 User Manual 1. General Description

6

1.4 Features

System CPU

• MPC555 K3, 40 MHz, 448KB internal Flash, 2 MB external Flash,

26kB int. + 512kB ext. RAM; 16 kBit EEPROM • Watchdog CPU - 68HC908 Interfaces

• 1 x TTP bus (optional), RS485 physical layer (5 Mbit/s) • 1 x RS232, 1 x LIN

• 2 x CAN, 125 to 500 kbps

• TTP communication controller AS8202NF (optional)

Power supply

• Supply voltage: 9 to 32 V

• Load dump protection (max. steady state supply voltage 35V) • Current consumption: 1 A at 9 V Amax • 1 x (10.5V / 50mA) sensor supply • 2 x (5V / 100mA) sensor supply

• Board temperature, sensor supply and battery monitoring Inputs

• 8 x analog in 0 to 5 V or 4 to 20 mA configured by software • 12 x analog / digital in 0 to10 V / 10 Bit • 8 x digital in (8 counter 10 to 10.000 Hz) • 5 x digital in for TTP coding number

Outputs

• 8 x digital out 2.35 A, PWM, current control loop, short-circuit and open load detection • 4 x digital out 4 A, PWM, short-circuit and open load detection • 16 x digital out 4 A, short-circuit and open load detection • 3x digital out 15 A, short-circuit and open load detection,

(1x with wind screen wiper option) • 3x digital out for external relay

• 2 x analog out, 0,2 to 0,8*Vbat / (Iload +/-10 mA)

Specifications

• Dimensions: 234 x 181 x 48 (in mm) • Weight: 790 g

• Ambient temperature: -40 °C to +85 °C • Injection-molded aluminum housing • Splash-proof 1 pin connector

• Pressure adjusting with water barrier • Operating altitude: 0 to 4000 m

• Housing fins for optimal temperature deduction

Copyright © 2001–2009 TTControl GmbH All rights reserved

Pin connection

Front view

Figure 1: Connector front view

2. Pin Connection

2 TTC 200 User Manual 2. Pin Connection

8

2.1 Pin connection part 1

Connector Pin Number 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 119 120 121 122 123 124 125 126 127 128 129 130 131 132 133 134 135 Signal (abbr.) (LA09) (LA11) (LA13) (LA15) LA27 DGND ED00 DGND ED01 DGND ED02 DGND ED03 ED04 B+ LA09 LA11 LA13 LA15 LA26 AGND AGND AGND AGND AGND AGND AGND AGND n.c. B+ LA08 LA10 LA12 LA14 LA16 Signal Name

Power output #09 for parallel oper.

Power output #11 for parallel oper.

Power output #13 for parallel oper.

Power output #15 for parallel oper.

Power output #27 Digital ground

Digital in static #00 Digital ground

Digital in static #01 Digital ground Digital in static #02 Digital ground Digital in static #3 Digital in static #04 Battery + for sensors Power output #09 Power output #11 Power output #13 Power output #15 Power output #26 Analog ground Analog ground Analog ground Analog ground Analog ground Analog ground Analog ground Analog ground Battery + for sensors Power output #08 Power output #10 Power output #12 Power output #14 Power output #16 Type

power output 4A high side power output 4A high side power output 4A high side power output 4A high side power output 4A high side with PWM GND

digital input for coding GND

digital input for coding GND digital input for coding GND

digital input for coding digital input for coding pos. power supply for sensors power output 4A high side power output 4A high side power output 4A high side power output 4A high side power output 4A high side with PWM GND GND GND GND GND GND GND GND pos. power supply for sensors power output 4A high side power output 4A high side power output 4A high side power output 4A high side power output 4A high side Copyright © 2001–2009 TTControl GmbH All rights reserved

TTC 200 User Manual 2. Pin Connection 136 EA00 137 138 139 140 141 142 143 144 145 146 147 148 149 150 151 152 153 1 155 156 157 158 159 160 EA01 EA02 EA03 EA04 EA05 EA06 EA07 n.c. LA23 LA17 LA18 LA19 LA20 LA21 n.c. UGEB0 UGEB0 UGEB0 UGEB1 UGEB1 UGEB1 n.c.

UGEB10 LA22 9

Analog in #0 Analog in #1 Analog in #2 Analog in #3 Analog in #4 Analog in #5 Analog in #6 Analog in #7 Power output #23 Power output #17 Power output #18 Power output #19 Power output #20 Power output #21

sensor supply 5V #0 sensor supply 5V #0 sensor supply 5V #0 sensor supply 5V #1 sensor supply 5V #1 sensor supply 5V #1

sensor supply 10.5V Power output #22 analog input 0..5V with SW- config.

analog input 0..5V with SW- config.

analog input 0..5V with SW- config.

analog input 0..5V with SW- config.

analog input 0..5V with SW- config.

analog input 0..5V with SW- config.

analog input 0..5V with SW- config.

analog input 0..5V with SW- config. power output 4A high side power output 4A high side power output 4A high side power output 4A high side power output 4A high side power output 4A high side

sensor supply 5V sensor supply 5V sensor supply 5V sensor supply 5V sensor supply 5V sensor supply 5V

sensor supply 10.5V power output 4A high side

Copyright © 2001–2009 TTControl GmbH All rights reserved

TTC 200 User Manual 2. Pin Connection

10

2.2 Pin connection part 2

Connector Pin Number 201 202 203 204 205 206 207 208 209 210 211 212 213 214 215 216 217 218 219 220 221 222 223 224 225 226 227 228 229 230 231 232 233 234 235 236 237 238 239 240 241 242

Signal (abbr.) BAT+ BAT+ BAT+ LA120 LA121 LA122 B+ B+ K15E LA-R0 LA-R1 LA-R2 n.c. LA24 LA25 n.c. ET06 ET07 AA00 AA01

RS232 OUT LIN

CN1_CNH CN1_CNL TER_C1H TER_C1L TER_C0H TER_C0L BAT- AGND AGND AGND AGND AGND AGND AGND AGND AGND AGND AGND AGND ET04

Signal Name Battery + Battery + Battery +

Power output #120 Power output #121 Power output #122 Battery + for sensors Battery + for sensors Terminal 15

Safety relay output #00 Safety relay output #01 Safety relay output #02

Power output #24 Power output #25

Digital input dynamic #06 Digital input dynamic #07 Analog out #00 Analog out #01 RS232 output (TX)

LIN bidirectional signal line CAN #1 CAN high line CAN #1 CAN low line Termination TTP 1 high line Termination TTP 1 low line Termination TTP 0 high line Termination TTP 0 low line Battery - Analog ground Analog ground Analog ground Analog ground Analog ground Analog ground Analog ground Analog ground Analog ground Analog ground Analog ground Analog ground

Digital input dynamic #04

Type

positive power supply positive power supply positive power supply

power output 15A high side + low side

power output 15A high side power output 15A high side pos. power supply for sensors pos. power supply for sensors Power on (ignition switch) Power output 0.5A high side Power output 0.5A high side Power output 0.5A high side

power output 4A high side with PWM

power output 4A high side with PWM

digital input for frequency / time measurement

digital input for frequency / time measurement

analog output 0 .. 24V analog output 0 .. 24V RS232 interface LIN interface CAN interface CAN interface TTP interface (optional) TTP interface (optional) TTP interface (optional) TTP interface (optional) negative power supply GND GND GND GND GND GND GND GND GND GND GND GND

digital input for frequency / time measurement

All rights reserved

Copyright © 2001–2009 TTControl GmbH

TTC 200 User Manual 2. Pin Connection 243 ET00 244 245 246 247 248 249 250 251 252 253 2 255 256 257 258 259 260 261 262 263 2 265 266 267 268 269 270 271 272 273 274 275 276 277 278 279 280 281 282 283

ET01 TER_C1H TER_C1L n.c.

TTP_C1S n.c. TTP_C0S BAT- EAD00 EAD01 EAD02 EAD03 EAD04 EAD05 EAD06 EAD07 EAD08 EAD09 EAD10 EAD11 ET05 ET02 ET03 TER_C0H TER_C0L TTP_C1H TTP_C1L TTP_C0H TTP_C0L BAT- LA00 n.c. LA01 n.c. LA02 n.c. LA03 n.c. LA04 RS232 IN

11

Digital input dynamic #00 Digital input dynamic #01 Termination CAN 1 high line Termination CAN 1 low line

TTP channel 1 shield TTP channel 0 shield Battery -

analog and digital in #0 analog and digital in #1 analog and digital in #2 analog and digital in #3 analog and digital in #4 analog and digital in #5 analog and digital in #6 analog and digital in #7 analog and digital in #8 analog and digital in #9 analog and digital in #10 analog and digital in #11 Digital input dynamic #05 Digital input dynamic #02 Digital input dynamic #03 Termination CAN 0 high line Termination CAN 0 low line TTP channel 1 high line TTP channel 1 low line TTP channel 0 high line TTP channel 0 low line Battery - Power output #00

Power output #01 Power output #02

Power output #03 Power output #04 RS232 input (RX)

digital input for frequency / time measurement

digital input for frequency / time measurement CAN interface CAN interface

TTP interface TTP interface negative power supply

analog and digital input 0..10V analog and digital input 0..10V analog and digital input 0..10V analog and digital input 0..10V analog and digital input 0..10V analog and digital input 0..10V analog and digital input 0..10V analog and digital input 0..10V analog and digital input 0..10V analog and digital input 0..10V analog and digital input 0..10V

analog and digital input 0..10V digital input for frequency / time measurement

digital input for frequency / time measurement

digital input for frequency / time measurement CAN interface CAN interface TTP interface TTP interface TTP interface TTP interface

negative power supply power output 2A high side with PWM

power output 2A high side with PWM power output 2A high side with PWM

power output 2A high side with PWM power output 2A high side with PWM RS232 interface

Copyright © 2001–2009 TTControl GmbH All rights reserved

TTC 200 User Manual 2. Pin Connection 284 LA05 285 286 287 288 2 290 291 292 293 294

n.c. LA06 n.c. LA07 CN0_CNH CN0_CNL TTP_C1H TTP_C1L TTP_C0H TTP_C0L

12

Power output #05

Power output #06

Power output #07 CAN #0 high line CAN #0 low line TTP channel 1 high line TTP channel 1 low line TTP channel 0 high line TTP channel 0 low line

power output 2A high side with PWM

power output 2A high side with PWM

power output 2A high side with PWM CAN interface CAN interface TTP interface (optional) TTP interface (optional) TTP interface (optional) TTP interface (optional)

Copyright © 2001–2009 TTControl GmbH All rights reserved

3. Block Diagram 13

3 Block Diagram

+5V K15 main + sensor power- supply +3.3V RES 3*analog 8* analog 2*analog low- pass- filter + configure. network 2*analog 2*analog 2*analog 2*analog 2*analog 2*analog 2*analog 12*0-10V analog SPI 12*analog 8*digital 5*digital low- pass- filter 2*CAN 2*serial SPI CPU MPC555 6* PWM shift reg. 3* digital 31* status power stages & 8* 8*2A current feedback 8*0-5V analog 16*4A 8*digital Flash-EPROM 1M * 16 AM29BL162C low- pass- filter & 4*4A (PWM) 5*digital low- pass- filter SRAM 256k * 16 CY7C1041BV & 3*15A EEPROM 2k * 8 M95160 & 2*CAN Transceiver address data bus TTP-Controller AS8202NF 2*analog out LIN + Serial Transceiver TTP Transceiver RPV Watchdog HC908GZ60 enable 3*relay output Figure 2: Block diagram

4. Specification of Inputs and Outputs 14

4 Specification of Inputs and Outputs

4.1 Positive power supply (BAT+)

Pinout:

Signal Name BAT+ BAT+ BAT+

Connector Pin Number 201 202 203

4.1.1 Functional description:

Supply pins for positive supply.

3 Power pins to be used in parallel with 2.5mm² wires for total supply current of 50A.

4.1.2 Maximum ratings

Tambient = -40° .. 85°C

Symbol Parameter

Uin-max permanent none-destructive supply voltage Uin-lim peak none-destructive supply clamping

voltage

Iin-lim peak none-destructive supply clamping current

Td Load dump protection according to

ISO7636-2, Pulse 5, Level IV (superimposed 174V, Ri=2Ω)

Iin-max_ Permanent input current (all 3 Pins in parallel

with symmetrical wire connection)

Iin-max Permanent input current per pin

Note min -0.5 1 -1 1 1 -100 max

32 45 +100 350 50 18 Units V V A ms A A Note1: control unit is protected by transient suppressor diode, specified is clamp voltage, current and

duration of voltage transient

TTC 200 User Manual

4. Specification of Inputs and Outputs

15

4.1.3 Characteristics

Tambient = -40° .. 85°C

Symbol Cin Uin Iin-oper. Iin-oper. Iin-oper. Iin-STBY Iin-STBY

Note1: Note2: Note3: Note4:

Note5:

Parameter

Capacitance load at input

Supply voltage for full operation Supply current of unit without load Supply current of unit without load Supply current of unit without load Standby supply current (KL15 off) Standby supply current (KL15 off) Note 1 2 3 4 5 min 9 max 500 32 1 0.7 0.4 1 3 Units µF V A A A mA mA

at UBat = 8V at UBat = 12V at UBat = 24V

at UBat = 27V / TECU = Tambient = -40°.. 85°C

These are worst case operating conditions during standby. at UBat = 32V / TECU = 85°.. 125°C

These are operating conditions during or immediately after switching to standby: The battery voltage is higher than the maximum output voltage of the battery.

The ECU was internally heated up to an over temperature of 40K. After some minutes the ECU cools down and the internal temperature is equal to the ambient temperature (max. 85°C).

Copyright © 2001–2009 TTControl GmbH All rights reserved

TTC 200 User Manual

4. Specification of Inputs and Outputs

16

4.1.4 Voltage Monitoring

The battery voltage is connected to an ADC-input. Battery voltage measurement can be used for voltage compensation for PWM-controlled loads or for diagnostic purpose.

The input voltage is attenuated to a factor of 0.14855 (nom, or divided by 6.731) thus allowing voltage measurement up to 33.6V (nom.)

Tambient = -40° .. 85°C

Symbol Parameter Note min max Units VOut Scale factor (nom) 1 0.14855 fg_LP Nominal battery supply range that can be 2 9 33.6 V measured

VTol-M ADC voltage tolerance (of reading) 3 -4 +4 % VTol-0 ADC voltage tolerance (offset) 3 -0.135 +0.135 V

stfg_LP Cut off frequency of 1 order low pass filter 4 18 28 Hz

Note 1: 12V input voltage will be attenuated to 1.7826V on the ADC input

Note 2: Low limit is given by minimum supply voltage of the ECU, high limit is full scale limit of ADC

Note 3: Total error is the sum of proportional error and zero reading error:

TUE=±VTol−M*UBat±VTol−0

st

Note 4: A low pass filter (1 order) is provided to remove glitches on the battery voltage from the ADC

input

4.1.5 Wiring hints:

The ECU is limited to a total load current of 50A (maximum). As with all loads tied towards ground this means, the load current will be also carried by the supply pins. Each contact pin is thermally limited to 18A (maximum). 3 supply pins work in parallel. So the system designer must be careful with the cable harness design to guarantee evenly distribution of supply current on all three pins. For example, it is not ok to use one cable with large diameter to connect from a fuse box to the ECU for, let’s say 2 meters and crimp it to 3 piggy tails with small diameter in the connector area. Small differences in the contact pressure can lead to a big imbalance. In worst case condition 2 contacts carry almost the full current load and are overloaded at maximum current. It is better to use 3 wires with the same total cross sectional area than this one thick cable. All wires must have exactly the same length and diameter. In this case an evenly distribution of current will be the case even with slightly different contact resistance.

Copyright © 2001–2009 TTControl GmbH All rights reserved

TTC 200 User Manual

4. Specification of Inputs and Outputs

17

4.2 Negative power supply (BAT-)

4.2.1 Pinout:

Signal Name -UB -UB -UB

Connector Pin Number 229 251 273

4.2.2 Functional description:

Supply pins for negative supply.

3 Power pins to be used in parallel with 1.5mm² wires for total return current of 25A.

4.2.3 Maximum ratings

Tambient = -40° .. 85°C

Symbol Parameter Note min Iin-max_ Permanent input current (all 3 Pins in parallel

with symmetrical wire connection)

Iin-max Permanent input current per pin

max 25 10

Units A A

Copyright © 2001–2009 TTControl GmbH All rights reserved

TTC 200 User Manual

4. Specification of Inputs and Outputs

18

4.3 GND

4.3.1 Pinout:

Signal Name AGND AGND AGND AGND AGND AGND AGND AGND AGND AGND AGND AGND AGND AGND AGND AGND AGND AGND AGND AGND DGND DGND DGND DGND

Connector Pin Number 121 122 123 124 125 126 127 128 230 231 232 233 234 235 236 237 238 239 240 241 106 108 110 112

4.3.2 Functional description:

Supply pins for GND.

Can be used as Sensor supply GND or for light loads. From pin-out point of view there are recommended ground pins for each sensor input and are listed on the input pages.

4.3.3 Maximum ratings

Tambient = -40° .. 85°C

Symbol Parameter Iout-max Permanent current per pin

Note min 1

max 2

Units A

Copyright © 2001–2009 TTControl GmbH All rights reserved

TTC 200 User Manual

4. Specification of Inputs and Outputs

19

4.4 Positive power supply (B+) for sensors / loads

4.4.1 Pinout:

Signal Name B+ B+ B+ B+

Connector Pin Number 115 130 207 208

4.4.2 Functional description:

Supply pins for sensors with positive supply.

Pins are directly connected to the main BAT+ supply pins.

4.4.3 Maximum ratings

Tambient = -40° .. 85°C

Symbol Parameter

Iout-max Permanent output current per pin

Note min 1

max

2

Units A

Note 1: These pins are directly connected to BAT+ supply. Therefore they are not short circuit-proof.

Copyright © 2001–2009 TTControl GmbH All rights reserved

TTC 200 User Manual

4. Specification of Inputs and Outputs

20

4.5 Ignition on switch input / Terminal 15 (Klemme15)

4.5.1 Pinout:

Signal Name K15E

Connector Pin Number 209 Recommended supply pin (for operation without Kl15) 208 4.5.2 Functional description:

Only used for permanent supplied systems. When switched to positive supply, this input powers up the ECU. When switched off, the ECU performs afterrun and switches off by software.

For systems with main power switch (not permanent supplied) pin 208 and 209 must be tied together.

This input is also monitored via a digital input of the CPU for redundancy reasons.

4.5.3 Maximum ratings

Tambint = -40° .. 85°C

Symbol Parameter Vin

Input voltage under overload conditions

Note min

-1

max 32

Units V

4.5.4 Characteristics

Tambient = -40° .. 85°C

Symbol Parameter Cin Pin input capacitance Rpu Pulldown resistor to GND VIL Input voltage for low level VIH Input voltage for high level τin Input low pass filter

Note

min 80 9.85 -1 3.8 0.4 max 120 10.15 1.8 UBat 0.6 Units nF kΩ V V ms

Copyright © 2001–2009 TTControl GmbH All rights reserved

TTC 200 User Manual

4. Specification of Inputs and Outputs

4.6 Sensor supply 10.5V

4.6.1 Pinout:

Signal Name Connector Pin Number UGEB10 159

4.6.2 Functional description:

Sensor supply for sensors that operate at higher voltage than 5V

Sensor ECU UGEBx +10V A/D Figure 3: Sensor supply 10.5V

Copyright © 2001–2009 TTControl GmbH 21

All rights reserved

TTC 200 User Manual

4. Specification of Inputs and Outputs

22

4.6.3 Maximum ratings

Tambient = -40° .. 85°C

Symbol Parameter Vin Output voltage under overload conditions (i.e. short circuit to supply voltages)

Note min -1 max

32 Units V

4.6.4 Characteristics

Tambient = -40° .. 85°C

Symbol Cout Vout VBat-min Iload Iload

Note 1:

Note 2:

Parameter Pin output capacitance

Output voltage, at Iload and over VBat-min Minimum battery voltage to allow nominal output voltage Load current Load current

Note 1 2 3

min 5 10 11.5 0 0

max 20 11 -50 -20

Units µF V V mA mA

This output is provided by a linear voltage regulator.

At battery voltage lower than VBat-min the output will drop below the specified value.

for 12V battery supply systems (max 16V permanent supply voltage) for 24V battery supply systems (max 32V permanent supply voltage)

Note 3:

4.6.5 Supply Voltage Monitoring

Tambient = -40° .. 85°C

Symbol Parameter

αUGEB Read back attenuation factor VUG-SRC Read back values normal operation

Note min 1 0.3952 2 3.920

max

0.4048 4.480

Units V

Note 1: Supply is read back to allow ratiometric measurement. In order to guarantee that the read

back input is always in the ADC operating range, an attenuating voltage divider (nom *0.40) is inserted.

Note 2: When all parameters are nominal value the readback input (referred to ADC reference) will

show 4.20V. Due to tolerances in the actual supply voltage of main- and sensor-supply the readback value may vary in the range specified.

Values outside this window indicate voltage failure in the sensor supply (short circuit or overload) and must set the sensor failure flag.

Copyright © 2001–2009 TTControl GmbH All rights reserved

TTC 200 User Manual

4. Specification of Inputs and Outputs

4.7 Sensor supply 5V

4.7.1 Pinout:

Signal Name Connector Pin Number UGEB0 152 UGEB0 153 UGEB0 1 UGEB1 155 UGEB1 156 UGEB1 157

4.7.2 Functional description:

Sensor supply for 3-wire-sensors (i.e. potentiometers, pressure sensors etc.)

Sensor ECU UGEBx +5V A/D Figure 4: Sensor supply 5V

Copyright © 2001–2009 TTControl GmbH 23

All rights reserved

TTC 200 User Manual

4. Specification of Inputs and Outputs

24

4.7.3 Maximum ratings

Tambient = -40° .. 85°C

Symbol Parameter Vin Output voltage under overload conditions (i.e short circuit to supply voltages)

Note min -1 max

32 Units V

4.7.4 Characteristics

Tambient = -40° .. 85°C

Symbol Cout Vout Iload

Parameter Pin output capacitance Output voltage, at Iload Load current Note min 5 4.9 0 max 20 5.1 -100 Units µF V mA

4.7.5 Supply Voltage Monitoring and Correction

Tambient = -40° .. 85°C

Symbol αUGEB VUG-SRC kREF

Parameter Read back attenuation factor

Read back values normal operation Reference correction value

Note min max 1 0.93632 0.93866 2 4.485 4.0 4.6875

Units V V

Note 1: Supply is read back to allow ratiometric measurement. Due to tolerances the sensor supply

might be higher than the ADC reference thus exceeding the allowed voltage range. In order to guarantee that the read back input is always in the ADC operating range, an attenuating voltage divider (nom *0.9375) is inserted.

Note 2: When all parameters are nominal value the readback input (referred to ADC reference) will

show 4.6875V. Due to tolerances in the actual supply voltage of main- and sensor-supply the readback value may vary in the range specified.

Please note that this window will not affect the measurement accuracy when using the correction formula below.

Values outside this window indicate voltage failure in the sensor supply (short circuit or overload) and must set the sensor failure flag.

Copyright © 2001–2009 TTControl GmbH All rights reserved

TTC 200 User Manual

4. Specification of Inputs and Outputs

25

4.7.6 Supply Voltage Correction Formula

Correction formula for ratiometric measurement:

UIN−rat=

NADC−ANx

∗k [V]

NADC−UGEByREF

ADC value of sensor supply voltage ADC value of sensor input voltage

Ratiometric equivalent input voltage

Result in volts calculated for a supply of exactly 5V.

Example: An input voltage with 20% of sensor supply will show a result of 1.0V regardless of actual sensor supply voltage (within the normal operating range).

NADC−UGEBy

NADC−ANx UIN−rat

Copyright © 2001–2009 TTControl GmbH All rights reserved

TTC 200 User Manual

4. Specification of Inputs and Outputs

26

4.8 Analog input 0..5V with SW- configuration

4.8.1 Pinout:

Signal Name EA00 EA01 EA02 EA03 EA04 EA05 EA06 EA07 Connector Pin Number 136 137 138 139 140 141 142 143

Recomm. GND Pin 121 122 123 124 125 126 127 128

4.8.2 Functional description:

Fits to different types of sensors:

4.8.3 Mode 1: resistive sensors (i.e. NTC/PTC temperature sensors)

Sensor ECU +5V EAxx A/D Figure 5: Resistive sensor

This mode may also be used as switch input with switches connected to ground. The use of switches to BAT+ is not allowed.

Switch ECU +5V EAxx A/D Figure 6: Switch input (only for switches to ground)

Copyright © 2001–2009 TTControl GmbH All rights reserved

TTC 200 User Manual

4. Specification of Inputs and Outputs

27

4.8.4 Mode 2: current loop active sensors (0..20mA)

Sensor ECU +12/24V EAxx A/D Figure 7: Current loop active sensor

4.8.5 Mode 3: ratiometric for potentiometric sensors (pedals, joystick etc)

Sensor EAxx ECU +5V A/D Figure 8: Potentiometric sensor

Most physical sensors (e.g. pressure transducers) are operated in this mode. Please note that many sensors are offered in 2 variants:

- absolute: The output voltage is a fixed value and corresponds directly to a physical value. For example 2.5V corresponds to 1bar. Any tolerance in the sensor’s and the ECU’S reference voltage generates additional measurement inaccuracy.

- ratiometric: The output voltage is a fixed percentage of the sensor supply, the ratio corresponds to a physical value. For example 50% corresponds to 1bar (or 2.5V if the sensor supply is exactly 5.00V). Any tolerance in the sensor’s or the ECU’S reference voltage is completely compensated and will not generate additional measurement inaccuracy.

Due to the described behavior ratiometric sensors are generally preferred.

Mode switching is done by software (application data) for each input independently.

Copyright © 2001–2009 TTControl GmbH All rights reserved

TTC 200 User Manual

4. Specification of Inputs and Outputs

28

4.8.6 Maximum ratings

Tambient = -40° .. 85°C

Symbol Parameter Vin Input voltage under overload conditions

Note min

1 -1

max

32

Units V

Note 1: due to thermal reasons only one of the 8 inputs may be shorted to 32V at the same time. A connection to any supply voltage higher than 5V is not allowed for normal operation.

4.8.7 Characteristics

Tambient = -40° .. 85°C

Symbol Cin Rin Rpu Rin Rpd Rin τin VCC VIn VTol Parameter

Pin input capacitance Input resistance to VCC Reference resistor Input resistance to GND Reference resistor

Input resistance to GND Input low pass filter ADC reference voltage ADC input voltage range ADC voltage tolerance Note 1 1 2 2 3 4 min 4 1202 1202 217 217 99.7 0.7 4.85 0 -25 max 6 1250 1238 230 223 102.7 1.3 5.15 VCC +25 Units nF Ω Ω Ω Ω kΩ ms V V mV

Note 1: configuration mode 1 (resistive sensor) Note 2: configuration mode 2 (current loop sensor)

Note 3: configuration mode 3 ratiometric (potentiometric sensor)

Note 4: VCC is the reference voltage of the ADC. Therefore measurement is referred to VCC. For total

tolerance including sensor in mode 1 (ratiometric measuring) or mode 3 when using the built in sensor supply (by reading back the offset) VCC is not a parameter in error calculation.

Copyright © 2001–2009 TTControl GmbH All rights reserved

TTC 200 User Manual

4. Specification of Inputs and Outputs

29

4.8.8 Application Details for Mode 1 (Resistive Sensors)

Resistive sensors are for example PTC resistors for temperature measurement. Best accuracy and resolution can be achieved when the value of sensor resistor equals the

reference resistor. For example in a climate control application the 20°C value of the sensor resistor should be around 1 ..1.5kΩ, for coolant water control the 100°C value should be in that range.

ECU Sensor +5V 1220Ω A/DAnalog Input (0..5V) Figure 9: Resistive sensor

Tambient = -40° .. 85°C

Symbol Rpu Rext Rext VTol VTol VTol Parameter Reference resistor

Resistance measurement range Resistance measurement resolution Resistance value tolerance 0..100Ω Resistance value tolerance 100..4000Ω Resistance value tolerance 4000..65535Ω Note 1 2 2 min 1202 0 -3 -3 -10 max 1238 65535 1 +3 +3 +10 Units Ω Ω Ω Ω %RD %RD

Note 1: for low-ohmic sensor values the absolute tolerance in Ohms is specified

Note 2: for medium or high resistance value the tolerance is specified in percent of the actual sensor

value (reading)

Copyright © 2001–2009 TTControl GmbH All rights reserved

TTC 200 User Manual

4. Specification of Inputs and Outputs

30

4.9 Analog and digital input 0..10V

4.9.1 Pinout:

Signal Name EAD00 EAD01 EAD02 EAD03 EAD04 EAD05 EAD06 EAD07 EAD08 EAD09 EAD10 EAD11

Connector Pin Number 252 253 2 255 256 257 258 259 260 261 262 263

Recomm. GND Pin 230 231 232 233 234 235 236 237 238 239 240 241

Copyright © 2001–2009 TTControl GmbH All rights reserved

TTC 200 User Manual

4. Specification of Inputs and Outputs

4.9.2 Functional description:

Analog input intended to use for switches to either battery voltage or ground. A biasing resistor to internal 5V is pulled up or down by an external switch.

This input can be also used for sensors with an output voltage range up to 10V. Switch BAT+ ECU (12/24V)

+5V EADxx A/D Switch ECU +5V EADxx A/D Figure 10: Analog and digital input 0..10V

Copyright © 2001–2009 TTControl GmbH 31

All rights reserved

TTC 200 User Manual

4. Specification of Inputs and Outputs

32

4.9.3 Maximum ratings

Tambient = -40° .. 85°C

Symbol Parameter Vin Input voltage under overload conditions Note min

-1 max

32 Units V

4.9.4 Characteristics

Tambient = -40° .. 85°C

Symbol Cin Rin τin VCC VIn VTol-0 VTol-M

Parameter Pin input capacitance Input resistance to VCC Input low pass filter ADC reference voltage ADC input voltage range ADC voltage tolerance (offset) ADC voltage tolerance (of reading)

Note 1 2 3 4

min 4 9.85 0.7 4.85 0 -50 -2

max 6 10.15 1.3 5.15 2*VCC ± 2% +50 +2

Units nF kΩ ms V V mV %

Note 1: VCC is the reference voltage of the ADC. Therefore measurement is referred to VCC. Note 2: +/- 2% due to matching tolerance in the input voltage divider Note 3: ADC offset at any input voltage within input voltage range Note 4: +/- 2% of reading, must be added to the offset tolerance

Copyright © 2001–2009 TTControl GmbH All rights reserved

TTC 200 User Manual

4. Specification of Inputs and Outputs

33

4.10 Board temperature sensor

4.10.1 Pinout:

Signal Name EA12

Connector Pin Number Internal sensor, no pin connection

Recomm. GND Pin

4.10.2 Functional description:

On-board PTC-type temperature sensor. Allows monitoring ECU internal temperature for diagnostic purpose and safety features (strategy to bring machine to safe state and switch off loads in case of over-temperature detected)

4.10.3 Characteristics

Tambient = -40° .. 85°C

Symbol Top αADC αADC αADC VTol-m Parameter

measure temperature range Resolution per K at –40°C Resolution per K at +20°C Resolution per K at +130°C Temperature tolerance at 120°C Note min -40 1 1 1 3 -6 max

+130 1. 1.68 1.12 +6 Units °C LSB LSB LSB K

Note 1: due to characteristic of the sensor the resolution (change of ADC value per degree K) will

depend on actual temperature value. Characteristic values are listed for 3 different temperatures.

Copyright © 2001–2009 TTControl GmbH All rights reserved

TTC 200 User Manual

4. Specification of Inputs and Outputs

34

4.11 Digital input for frequency / timing measurement

4.11.1 Pinout:

Signal Name ET00 ET01 ET02 ET03 ET04 ET05 ET06 ET07

Connector Pin Number 243 244 265 266 242 2 217 218

4.11.2 Functional description:

Digital input with timer processor unit (TPU) to process input signals like frequency (rotational speed), pulse count (incremental length measurement), PWM etc.

A pull-up resistor to internal 5V is provided for sensors with open collector/ open drain output (“NPN-type”).

ECU RPM sensor BAT+(12V/24V)

+5V

TPU ETxx

Figure 11: Digital input for frequency/timing measurement

Copyright © 2001–2009 TTControl GmbH All rights reserved

TTC 200 User Manual 35 4. Specification of Inputs and Outputs

The quadrature decode function is an input function that uses two adjacent input channels to decode a pair of out-of-phase signals in order to increment or decrement a (position) counter. It is particularly useful for decoding position and direction information from an encoder in motion control systems, thus replacing expensive external solutions. ECU Quadrature encoder Sensor A Sensor B ETxx TPU ET(xx+1) Figure 12: Digital input pair for quadrature encoder

ET(x) ET(x+1)

Figure 13: Direction A – channel X leading channel X+1

ET(x) ET(x+1)

Figure 14: Direction B – channel X lagging channel X+1

Copyright © 2001–2009 TTControl GmbH All rights reserved

TTC 200 User Manual

4. Specification of Inputs and Outputs

36

4.11.3 Maximum ratings

Tambint = -40° .. 85°C

Symbol Parameter Vin

Input voltage under overload conditions Note min -1 max 32 Units V

4.11.4 Characteristics

Tambient = -40° .. 85°C

Symbol Cin Rpu τin Fmax Fmin tmin VIL VIH Parameter Pin input capacitance Pullup resistor to VCC Input low pass filter

Maximum input frequency Minimum input frequency

Minimum pulse / pause length to be measured by TPU

Input voltage for low level Input voltage for high level Note 1 min 4 9.85 7 10 100 -1 3.8 max 6 10.15 13 10 1.8 UBat Units nF kΩ µs kHz Hz µs V V

Note 1: due to the dynamic range of the timer there is a minimum frequency when timer overflow will

occur. At even lower frequency the output value will be read as 0 Hz.

Copyright © 2001–2009 TTControl GmbH All rights reserved

TTC 200 User Manual

4. Specification of Inputs and Outputs

37

4.12 Digital input for coding

4.12.1 Pinout:

Signal Name ED00 ED01 ED02 ED03 ED04 Connector Pin Number 107 109 111 113 114 Recomm. GND Pin 106 108 110 112

4.12.2 Functional description:

Digital input for individually coding of control unit. Input will be tied to ground or left open. ECU Coding jumper EDxx Figure 15: Digital input for coding +5V I/O Copyright © 2001–2009 TTControl GmbH All rights reserved

TTC 200 User Manual

4. Specification of Inputs and Outputs

38

4.12.3 Maximum ratings

Tambint = -40° .. 85°C

Symbol Parameter Vin

Input voltage under overload conditions

Note min

-1

max 32

Units V

4.12.4 Characteristics

Tambient = -40° .. 85°C

Symbol Parameter Cin Pin input capacitance Rpu Pullup resistor to VCC τin Input low pass filter VIL Input voltage for low level VIH Input voltage for high level

Note

min 4 9.85 0.7 -1 3.8 max 6 10.15 1.3 1.8 UBat Units nF kΩ ms V V

Copyright © 2001–2009 TTControl GmbH All rights reserved

TTC 200 User Manual

4. Specification of Inputs and Outputs

39

4.13 Power output 2A high side with PWM-control

4.13.1 Pinout:

Signal Name LA00 LA01 LA02 LA03 LA04 LA05 LA06 LA07 Connector Pin Number 274 276 278 280 282 284 286 288

4.13.2 Functional description:

Power output stage with freewheeling diode for inductive loads with low-side connection. Load current is controlled with PWM.

For better accuracy and diagnostics a current measurement/feedback loop is provided.

Output stage will be disabled (off state) when ECU looses the membership in the TTP-cluster.

This functionality will overrule a CPU output enable.

For diagnostic and safety reasons the actual PWM output signal is looped back to the TPU and the measured value is compared to the set value. When the output is not used, the

loop-back input can be used as timer input with the same functional features as the standard digital input for frequency / timing measurement, including the usage as quadrature decoder input (see section 4.11).

ECU BAT+ (12/24V) Actuator LAxx status current RPV TTP controller & CPU PSw GPIO PWM TPU A/D

Figure 16: Power output 2A high side

Copyright © 2001–2009 TTControl GmbH All rights reserved

TTC 200 User Manual

4. Specification of Inputs and Outputs

40

4.13.3 Maximum ratings

Tambint = -40° .. 85°C

Symbol Parameter Note min Vin In-/output voltage under overload conditions -0.5V

max Ubat+0.5 Units V 4.13.4 Characteristics of output stage

Tambient = -40° .. 85°C

Symbol Parameter Cout Pin input capacitance fPWM PWM-frequency Ron On-resistance Iload Nominal load current Iload-lim Internal current limitation for PTC-type loads

Note 1

min 4 50 0 9

max 7 200 200 2.35

Units nF Hz mΩ A A

Note 1: incandescent lamps with cold filament have a surge current 10 times higher than nominal

current.

4.13.5 Characteristics of frequency input (alternate function of output stage)

Tambient = -40° .. 85°C

Symbol Parameter Cin Pin input capacitance Rpu Pullup resistor to internal supply Vpu Vpu Internal supply for pull up τin Input low pass filter Fmax Maximum input frequency Fmin Minimum input frequency tmin Minimum pulse / pause length to be

measured by TPU

VIL Input voltage for low level VIH Input voltage for high level Note 1 min 4 4.4 5.5 3.5 10 50 -0.5 3.8 max 7 5.0 6.5 6.5 10 1.8 UBat Units nF kΩ V µs kHz Hz µs V V

Note 1: due to the dynamic range of the timer there is a minimum frequency when timer overflow will

occur. At even lower frequency the output value will be read as 0 Hz.

Copyright © 2001–2009 TTControl GmbH All rights reserved

TTC 200 User Manual

4. Specification of Inputs and Outputs

41

4.13.6 Load Diagnostic Function

OutputDuty CycleNormalStatus SignalOpen LoadShort to GNDShort to UBAT

Load monitoring means detection of overload, external short circuits of the load output to positive or negative supply (BAT+ / BAT-) or any other power output and detection of loss of load.

Under normal load conditions the status signal follows the corresponding PWM output. In case of a disconnected load (open load) the signal is pulled to 6V (high level) by an internal resistor. If a short circuit to ground exists, the status signal is constant zero (low level). A short circuit to UBAT implicates that the status signal is also pulled to UBAT (high level).

Tambient = -40° .. 85°C

Symbol Parameter Note min max Units Rload-nom Load resistance for proper operation 1 13 (0.5) 1700 Ω

(24V supplied system: VBATmax =32V)

Rload-nom Load resistance for proper operation 1 6.5 (0.5) 1700 Ω (12V supplied system: VBATmax =16V)

Ropenload Open load threshold 2 26 kΩ Iload-OVL Temperature limited current 3 4 A Iload-lim Internal current limitation for PTC-type loads 4 9 A Iload-lim Internal current limitation 5 2.35 2.55 A

Note 1: Resistance values in that range will neither generate overload (min-value) nor open load (max-value) detection. Loads with any resistor value in that window will be detected as normal load. For PWM current controlled inductive loads there is only a virtual lower limit (value in brackets) to keep the control loop stable.

Note 2: Resistance values higher than this threshold will be detected as open load.

Note 3: Overload is defined by chip temperature. Due to the thermal design of the ECU this limit will be influenced by the number of outputs activated with high current simultaneously and ambient temperature. This is the worst case value for maximum allowed over-all load and highest temperature.

Note 4: Internal current limit for short circuit protection to limit excessive power dissipation. Overload protection is done typically by detecting over temperature.

LA00-LA070% = x = 100%*)101*) Status signal follows the output signal. Please note: If the the duty cycle is 0% or 100% the status signal cannot be distinguished from the error condition.

Note 5: For protection of the current sense resistors the output duty cycle will be regulated by software to a maximum load current of 2.45A.

Copyright © 2001–2009 TTControl GmbH All rights reserved

TTC 200 User Manual

4. Specification of Inputs and Outputs

42

4.13.7 Current Measurement

For actuators requiring precision current control this type of output provides a current measurement unit. The current flow through a sensing resistor is amplified and low pass filtered to deliver an average value and suppress ripple current introduced by PWM-control.

Tambient = -40° .. 85°C

Symbol Parameter Note min max Units VOut Shunt factor 1 1.957 V/A IFS Full scale nominal current 1 2.555 A ITol-M Accuracy 2 -5 +5 %[FS]

Proportional factor (at nominal load current) 2 -125 +125 mA

ITol-0 Accuracy 3 -0.9% +0.9% %[FS]

Zero reading (no load current) 3 -22.5 +22.5 mA ndfg_LP Cut off frequency of 2 order low pass filter 4 14 19 Hz

Note 1: current is measured with a floating shunt, amplified and connected to an ADC input. 1A load current will bring 2V ADC input voltage. Please note that 2.555A is the nominal current without any tolerance. 0 .. 2.35A is the nominal operating range.

Note 2: Current measurement gives absolute values and does not work ratiometric to the ADC’s

reference. Therefore absolute tolerance of ADC supply is also included.

Note 3: The ADC can only measure positive values.

With a negative zero reading current a small output current of the same absolute value is necessary to get ADC-values greater than zero.

Total error is the sum of proportional error and zero reading error:

TUE=±ITol−M*IL±ITol−0

nd

Note 4: An active low pass filter (2 order) is provided to remove current ripple from the ADC input

Copyright © 2001–2009 TTControl GmbH All rights reserved

TTC 200 User Manual

4. Specification of Inputs and Outputs

43

4.14 Power output 4A high side with PWM-control

4.14.1 Pinout:

Signal Name LA24 LA25 LA26 LA27

Connector Pin Number 214 215 120 105

4.14.2 Functional description:

Power output stage for resistive loads with low-side connection. Suitable loads are lamps, valves, relays etc.

Output stage will be disabled (off state) when ECU looses the membership in the TTP-cluster.

This functionality will overrule a CPU output enable.

For diagnostic and safety reasons the actual PWM output signal is looped back to the TPU and the measured value is compared to the set value. When the output is not used, the

loop-back input can be used as timer input with the same functional features as the standard digital input for frequency / timing measurement, including the usage as quadrature decoder input (see section 4.11).

ECU BAT+ (12/24V) Actuator LAxx status RPV TTP controller & CPU PSw GPIO GPIO TPU

Figure 17: Power output 4A high side PWM

Copyright © 2001–2009 TTControl GmbH All rights reserved

TTC 200 User Manual

4. Specification of Inputs and Outputs

44

4.14.3 Maximum ratings

Tambint = -40° .. 85°C

Symbol Parameter Vin

Note min -0.5V

max Ubat+0.5

Units V

In-/output voltage under overload conditions

4.14.4 Characteristics of output stage

Tambient = -40° .. 85°C

Symbol Cout Ron Iload Iload-lim

Parameter

Pin input capacitance On-resistance

Nominal load current Internal current limitation for PTC-type loads Note 1 min 4 0 9 max 7 100 4 Units nF mΩ A A Note 1: incandescent lamps with cold filament have a surge current 10 times higher than nominal

current.

4.14.5 Characteristics of frequency input (alternate function of output stage)

Tambient = -40° .. 85°C

Symbol Parameter Cin Pin input capacitance Rpu Pullup resistor to internal supply Vpu Vpu Internal supply for pull up τin Input low pass filter Fmax Maximum input frequency Fmin Minimum input frequency tmin Minimum pulse / pause length to be

measured by TPU

VIL Input voltage for low level VIH Input voltage for high level

Note

1

min 4 4.4 5.5 3.5 10 50 -0.5 3.8

max 7 5.0 6.5 6.5 10 1.8 UBat

Units nF kΩ V µs kHz Hz µs V V

Note 1: due to the dynamic range of the timer there is a minimum frequency when timer overflow will

occur. At even lower frequency the output value will be read as 0 Hz.

Copyright © 2001–2009 TTControl GmbH All rights reserved

TTC 200 User Manual

4. Specification of Inputs and Outputs

45

4.14.6 Load Diagnostic Function

OutputDuty CycleNormalStatus SignalOpen LoadShort to GNDShort to UBAT

Load monitoring means detection of overload, external short circuits of the load output to positive or negative supply (BAT+ / BAT-) or any other power output and detection of loss of load.

Under normal load conditions the status signal follows the corresponding PWM output. In case of a disconnected load (open load) the signal is pulled to 6V (high level) by an internal resistor. If a short circuit to ground exists, the status signal is constant zero (low level). A short circuit to UBAT implicates that the status signal is also pulled to UBAT (high level).

Tambient = -40° .. 85°C

Symbol Parameter Note min max Units Rload-nom Load resistance for proper operation 1 8 (0.5) 1700 Ω

(24V supplied system: VBATmax =32V)

Rload-nom Load resistance for proper operation 1 4 (0.5) 1700 Ω (12V supplied system: VBATmax =16V)

Ropenload Open load threshold 2 26 kΩ Iload-OVL Temperature limited current 3 4 A Iload-lim Internal current limitation for PTC-type loads 4 9 A

Note 1: Resistance values in that range will neither generate overload (min-value) nor open load (max-value) detection. Loads with any resistor value in that window will be detected as normal load. For PWM current controlled inductive loads there is only a virtual lower limit (value in brackets) to keep the control loop stable.

Note 2: Resistance values higher than this threshold will be detected as open load.

Note 3: Overload is defined by chip temperature. Due to the thermal design of the ECU this limit will be influenced by the number of outputs activated with high current simultaneously and ambient temperature. This is the worst case value for maximum allowed over-all load and highest temperature.

Note 4: Internal current limit for short circuit protection to limit excessive power dissipation. Overload protection is done typically by detecting over temperature.

LA24-LA270% = x = 100%*)101*) Status signal follows the output signal. Please note: If the the duty cycle is 0% or 100% the status signal cannot be distinguished from the error condition.

Copyright © 2001–2009 TTControl GmbH All rights reserved

TTC 200 User Manual

4. Specification of Inputs and Outputs

46

4.15 Power output 4A high side

4.15.1 Pinout:

Signal Name LA08 LA09 LA10 LA11 LA12 LA13 LA14 LA15 LA16 LA17 LA18 LA19 LA20 LA21 LA22 LA23

Connector Pin Number 131 101 + 116 132

102 + 117 133

103 + 118 134

104 + 119 135 146 147 148 149 150 160 145 Power stages for parallel operation LA08 + LA09 LA10 + LA11 LA12 + LA13 LA14 + LA15 - - - - - - - - 4.15.2 Functional description:

Power output stage for resistive loads with low-side connection. Suitable loads are lamps, valves, relays etc.

When using highly inductive loads operated at high current values the maximum switch-off energy must be calculated carefully not to overload the output clamping. For inductive actuators exceeding the dissipation limit an external freewheeling diode must be added.

Output stage will be disabled (off state) when ECU looses the membership in the TTP-cluster.

This functionality will overrule a CPU output enable.

4 pairs of output stage are designed for parallel operation via external cabling:

E.g. for paralleling output stages LA08 and LA09 a very short cable connection between pins 116+131 connects them together and on pin 101 this output can carry almost double current.

For diagnostic reasons the output signal is looped back to the CPU and the measured value is compared to the set value. When the output is not used, the loop-back signal can be used as digital input.

Copyright © 2001–2009 TTControl GmbH All rights reserved

TTC 200 User Manual

4. Specification of Inputs and Outputs

47

ECU BAT+ (12/24V) Actuator LAxx status RPV TTP controller & CPU PSw GPIO shift register Dxx

Figure 18: Power output 4A high side

4.15.3 Example for switch off energy calculation for inductive loads:

In this example an inductive load is operated at 24V and the actuator draws the maximum specified output current of 4A. When switching off the stored energy in the inductance, the output is driven to negative until the output stage clamps. In this example this happens at 50V (24+26V, referred to BAT+). The current linearly decreases from 4A to 0 within 1ms at almost constant clamp voltage. So also the power dissipated in the output stage decreases, from 200W (4A*50V) down to 0. For a time of 1ms the average power in the clamping phase is 100W, which equals to 100mWs or 100mJ, which is well below the limit of 170mJ.

+24V 4A 0V 0A 1ms -26V

Figure 19: Power output 4A switch off waveform

Copyright © 2001–2009 TTControl GmbH All rights reserved

TTC 200 User Manual

4. Specification of Inputs and Outputs

48

4.15.4 Maximum ratings

Tambint = -40° .. 85°C

Symbol Parameter Vin

Note min -1

max Ubat+0.5

Units V

In-/output voltage under overload conditions 1

Note 1: inductive load negative transients will be clamped internally to <52V referred to BAT+.

4.15.5 Characteristics of output stage

Tambient = -40° .. 85°C

Symbol Cout Ron Iload Iload-lim EAS Zl-max Parameter (single power stage) Pin input capacitance On-resistance Nominal load current

Internal current limitation for PTC-type loads Maximum switch off energy dissipation Maximum switchable inductive load Parameter (double power stage) Pin input capacitance On-resistance

Nominal load current

Internal current limitation for PTC-type loads Maximum switch off energy dissipation Maximum switchable inductive load

Note 1 2 2 Note 3 1 2 2

min 4 0 9 min 8 0 18

max 7 100 4 170 20 max 14 60 7 340 10

Units nF mΩ A A mJ mH Units nF mΩ A A mJ mH

Symbol Cout Ron Iload Iload-lim EAS Zl-max

Note 1: incandescent lamps with cold filament have a surge current 10 times higher than nominal

current.

Note 2: with Iload = 4A, ZL = 19mH, RDC = 0Ω . Typical electromagnetic valves have RDC in excess of

10Ω, thus reducing the energy to be clamped by the output stage.

Note 3: with external interconnection < 10mΩ of ohmic resistance.

4.15.6 Characteristics of digital input (alternate function of output stage)

Tambient = -40° .. 85°C

Symbol Parameter Cin Pin input capacitance Rpu Pullup resistor to internal supply Vpu Vpu Internal supply for pull up tmin Minimum pulse / pause length to be

measured by TPU

VIL Input voltage for low level VIH Input voltage for high level

Note

min 4 4.4 5.5 50 -0.5 3.8 max 7 5.0 6.5 1.8 UBat Units nF kΩ V µs V V

Copyright © 2001–2009 TTControl GmbH All rights reserved

TTC 200 User Manual

4. Specification of Inputs and Outputs

49

4.15.7 Load Diagnostic Function

OutputLA08-LA23Output Signal10Normal11Status SignalOpen LoadShort to GNDShort to UBAT101010

Load monitoring means detection of overload, external short circuits of the load output to positive or negative supply (BAT+ / BAT-) or any other power output and detection of loss of load.

When the power stage is switched off the monitoring interface will read back high level if the load is properly connected or if a short circuit to ground exists. In case of open load or a short circuit to UBAT+ the monitoring interface will read back low level.

When the power stage is switched on, a high level will be read back in case of normal

operation. In case of excessive overload or short circuit to ground the output switches off in order to protect the output stage. In this case the monitoring interface will read back a low-level.

Tambient = -40° .. 85°C

Symbol Parameter (single power stage) Note min max Units Rload-nom Load resistance for proper operation 1 8 1700 Ω

(24V supplied system: VBATmax =32V)

Rload-nom Load resistance for proper operation 1 4 1700 Ω (12V supplied system: VBATmax =16V)

Ropenload Open load threshold 2 26 kΩ Iload-OVL Temperature limited current 3 4 A Iload-lim Internal current limitation for PTC-type loads 4 9 A Symbol Parameter (double power stage) Note min max Units Rload-nom Load resistance for proper operation 1 4.5 850 Ω

(24V supplied system: VBATmax =32V)

Rload-nom Load resistance for proper operation 1 2.3 850 Ω

(12V supplied system: VBATmax =16V)

Ropenload Open load threshold 2 13 kΩ Iload-OVL Temperature limited current 3 8 A Iload-lim Internal current limitation for PTC-type loads 4 18 A

Note 1: Resistance values in that range will neither generate overload (min-Value) nor open load (max-value) detection. Loads with any resistor value in that window will be detected as normal load.

Note 2: Resistance values higher than this threshold will be detected as open load.

Note 3: Overload is defined by chip temperature. Due to the thermal design of the ECU this limit will be influenced by the number of outputs activated with high current simultaneously and ambient temperature. This is the worst case value for maximum allowed over-all load and highest temperature.

Note 4: Internal current limit for short circuit protection to limit excessive power dissipation. Overload protection is done typically by detecting over temperature.

Copyright © 2001–2009 TTControl GmbH

All rights reserved

TTC 200 User Manual

4. Specification of Inputs and Outputs

50

4.16 Power output 15A high side

4.16.1 Pinout:

Signal Name LA120 LA121 LA122

Connector Pin Number 204 205 206

4.16.2 Functional description:

Power output stage for resistive loads with low-side connection. Suitable loads are lamps, valves, etc.

When using highly inductive loads at LA121 and LA122, the maximum switch-off energy must be calculated carefully not to overload the output clamping. For inductive actuators exceeding the dissipation limit an external freewheeling diode must be added. LA120 has an integrated free wheeling diode.

Output stage will be disabled (off state) when ECU looses the membership in the TTP-cluster.

This functionality will overrule a CPU output enable.

For diagnostic reasons the actual PWM output signal is looped back to the TPU and the measured value is compared to the set value. When the output is not used, the loop-back input can be used as timer input with the same functional features as the standard digital input for frequency / timing measurement, including the usage as quadrature decoder input (see section 4.11).

Copyright © 2001–2009 TTControl GmbH All rights reserved

TTC 200 User Manual

4. Specification of Inputs and Outputs ECU Actuator LAxx

Figure 20: Power output 15A high side

51

BAT+ (12/24V) RPV TTP controller & CPU PSw GPIO GPIO status TPU

LA120 is specially prepared to work with windscreen wiper. ECU

BAT+ (12/24V) Windscreen wiper LA120 M BAT+ (12/24V) Winding for slow operation LA12x Winding for fast operation

Figure 21: : Power output 15A high side for windscreen wiper

RPV TTP controller & CPU PSw GPIO GPIO

A typical windscreen wiper motor has one winding for slow and another one for fast

operation. To allow an instant stop of windscreen wiper LA120 is equipped with a low side switch. LA120 has to be connected to the winding for fast operation.

For slow operation another LA12x (either LA121 or LA122) can be used. A serial diode has to be connected between this output and the wiper motor. In Figure 22 the motor behavior is shown:

All rights reserved

Copyright © 2001–2009 TTControl GmbH

TTC 200 User Manual

4. Specification of Inputs and Outputs

Motor equivalent circuit

1 LA12x 52

M 2 LA120 Motor behaviour LA120 (control) HS on off motor is off half speed operation full speed operation half speed operation motor is braked motor is off t LS on LA12x (control)

on off t Voltage 1 2 x Ubat

Ubat

0

t Voltage 2 Ubat Ubat / 2

0

˜ 0V ˜ 0V t

Figure 22: Motor behaviour for windscreen wipers

The two motor windings are EMF coupled. The speed of the motor depends on which winding is powered.

When using the motor and half speed (powering LA12x) the voltage on LA120 is half the battery voltage.

When powering LA120 (high side switch is on) for fast operation, the voltage on LA12x would raise to approximately the double battery voltage. To allow the voltage on LA12x to raise above the battery voltage the serial diode is needed.

To brake the motor, the low side switch of LA120 needs to be switched on.

Note: The exact ratio between full and half speed depends on the motor type.

Copyright © 2001–2009 TTControl GmbH All rights reserved

TTC 200 User Manual

4. Specification of Inputs and Outputs

53

4.16.3 Maximum ratings

Tambint = -40° .. 85°C

Symbol Parameter Vin

Note min -0.5

max Ubat+0.5

Units V

In-/output voltage under overload conditions 1

Note 1: inductive load negative transients will be clamped internally to <65V referred to BAT+. LA120 with windscreen wiper option clamps negative transients to ground.

4.16.4 Characteristics of output stage

Tambient = -40° .. 85°C

Symbol Parameter Cout Pin input capacitance Ron On-resistance high side Ron On-resistance lowside Iload Nominal load current

Iload-lim Internal current limitation for PTC-type loads EAS Maximum switch off energy dissipation

Note 1 2 3 min 4 0 40 max 7 40 100 15 1200 Units nF mΩ mΩ A A mJ Note 1: only output LA120 with windscreen wiper option.

Note 2: incandescent lamps with cold filament have a surge current 10 times higher than nominal

current.

Note 3: with Iload = 4A, EAS = 296mJ, RDC = 0Ω . Typical electromagnetic valves have RDC in excess of

10 Ω, thus reducing the energy to be clamped by the output stage.

4.16.5 Characteristics of frequency input (alternate function of output stage)

Tambient = -40° .. 85°C

Symbol Parameter Cin Pin input capacitance Rpu Pullup resistor to internal supply Vpu Vpu Internal supply for pull up τin Input low pass filter Fmax Maximum input frequency Fmin Minimum input frequency tmin Minimum pulse / pause length to be

measured by TPU

VIL Input voltage for low level VIH Input voltage for high level Note

1 min 4 9 5.5 3.5 10 50 -0.5 3.8 max 7 10.5 6.5 6.5 10 1.8 UBat Units nF kΩ V µs kHz Hz µs V V

Note 1: due to the dynamic range of the timer there is a minimum frequency when timer overflow will

occur. At even lower frequency the output value will be read as 0 Hz.

Copyright © 2001–2009 TTControl GmbH All rights reserved

TTC 200 User Manual

4. Specification of Inputs and Outputs

4.16.6 Load Diagnostic Function

OutputLA120-LA122LA120 (Windshield Wiper)Output Signal1010offNormal10100Status SignalOpen LoadShort to GNDShort to UBAT101101101001101

Load monitoring means detection of overload, external short circuits of the load output to positive or negative supply (BAT+ / BAT-) or any other power output and detection of loss of load.

When the power stage is switched off, a small test current tries to pull up the idle output line. In case of properly connected load the output line will be pulled to ground and the monitoring interface will read low-level, that means proper load connection.

High level will be read, if load connection gets lost or the output will be pulled up externally by some kind of short circuit in the cabling.

When the (high side) power stage is switched on, a high level will be read back in case of normal operation. In case of excessive overload or short circuit to ground the output switches off in order to protect the output stage. In this case the monitoring interface will read back a low-level.

If the low side power stage of the wind screen wiper output is activated (Input Signal = 0) the monitoring interface reads back high-level if a short circuit to UBAT+ exists.

Tambient = -40° .. 85°C

Symbol Parameter Note min max Units Rload-nom Load resistance for proper operation 1 2.2 1700 Ω

(24V supplied system: VBATmax =32V)

Rload-nom Load resistance for proper operation 1 1.1 1700 Ω (12V supplied system: VBATmax =16V)

Ropenload Open load threshold 2 26 kΩ Iload-OVL Temperature limited current 3 17 A Iload-lim Internal current limitation for PTC-type loads 4 45 A

Note 1: Resistance values in that range will neither generate overload (min-value) nor open load (max-value) detection. Loads with any resistor value in that window will be detected as normal load.

Note 2: Resistance values higher than this threshold will be detected as open load.

Note 3: Overload is defined by chip temperature. Due to the thermal design of the ECU this limit will be influenced by the number of outputs activated with high current simultaneously and ambient temperature. This is the worst case value for maximum allowed over-all load and highest temperature.

Note 4: Internal current limit for short circuit protection to limit excessive power dissipation. Overload protection is done typically by detecting over temperature.

Copyright © 2001–2009 TTControl GmbH All rights reserved

TTC 200 User Manual

4. Specification of Inputs and Outputs

55

4.17 Relay output 0.5A high side

4.17.1 Pinout:

Signal Name LA-R0 LA-R1 LA-R2

Connector Pin Number 210 211 212 4.17.2 Functional description:

Power output stage for safety relays with low-side connection.

For SIL2 / SIL3 operation a redundant switch off mechanism is required to enter the safe state in case of fatal failure. For power outputs safe state is defined as zero control current for the actuator. This switch must be a relay and it is controlled by the watchdog CPU.

Operation principle: ECU

Actuator Main LAxx power stage Relay LA-R0x

output

Figure 23: Operation principle of safety relay

The relay output is designed to operate without any freewheeling diode externally or

integrated in the relay. Operation with freewheeling diodes will produce longer relay switch off time and therefore is not recommended.

The output current allows driving 2 low or medium power relays in parallel.

Copyright © 2001–2009 TTControl GmbH All rights reserved

TTC 200 User Manual

4. Specification of Inputs and Outputs

56

Safety-Relay

ECU

BAT+ (12/24V) 5V-supervisor LA-R0x & Watchdog-CPU GPIO Figure 24: Relay output 0.5A high side

4.17.3 Characteristics

Tambient = -40° .. 85°C

Symbol Cout Ron Iload Iload-lim EAS Zl-max

Parameter (single power stage) Pin input capacitance On-resistance

Nominal load current Surge current limitation Maximum switch off energy dissipation Maximum switchable inductive load

Note 1 2 2

min 4 0 4

max 7 400 0.5 9 125 20

Units nF mΩ A A mJ mH

Note 1: peak current in case of short circuit

Note 2: with test pulse Iload = 1A, ZL = 19mH, RDC = 0Ω . Typical relays have RDC in excess of 50Ω,

thus reducing the energy to be clamped by the output stage.

Copyright © 2001–2009 TTControl GmbH All rights reserved

TTC 200 User Manual

4. Specification of Inputs and Outputs

4.18 Analog output 0 .. 24V

4.18.1 Pinout:

Signal Name Connector Pin Number AA00 219 AA01 220

4.18.2 Functional description:

Analog output for proportional magnetic valves with built in servo loop. Short circuit proof. BAT+ (12/24V) Servo-actuator ECU AAxx PWM Figure 25: Analog output 0..24V

Copyright © 2001–2009 TTControl GmbH 57

All rights reserved

TTC 200 User Manual

4. Specification of Inputs and Outputs

58

4.18.3 Maximum ratings

Tambient = -40° .. 85°C

Symbol Parameter Vout Output voltage under overload conditions (i.e. short circuit to supply voltages)

Note min -1 max 32 Units V 4.18.4 Characteristics

Tambient = -40° .. 85°C

Symbol Parameter Cout Pin output capacitance Vout Output voltage, at Iload Iload Load current VTol-0 Output voltage tolerance (offset) VTol-M Output voltage tolerance (of reading)

Note 1 1 4 4 2 3 3 4 4

min 4

0.2* UBat -10 -200 -6 0.0 26.0 UBat –2 0 -200 -6

max 6

0.8* UBat +10 +200 +6 0.5 29.4 UBat -10 +200 +6

Units nF V mA mV % V V V mA mV %

Vout Vout IPD VTol-0 VTol-M

Output voltage, 0%-value at IPD Output voltage, 100%-value at IPD Pull down load current Output voltage tolerance (offset) Output voltage tolerance (of reading)

Note 1: definition for proportional valves with control inputs ratiometric to battery supply and input

resistor to half battery voltage.

Actually the output voltage can be controlled between 0 and 27.7 V nom. The battery dependent output voltage is controlled by SW.

Note 2: definition for operation with pull down loads only.

An output voltage close to 0V needs a sink current.

Note 3: whatever is less.

Note 4: the higher value of VTol-0 or VTol-M determines the actual tolerance.

Copyright © 2001–2009 TTControl GmbH All rights reserved

TTC 200 User Manual

4. Specification of Inputs and Outputs

59

4.19 LIN interface

4.19.1 Pinout:

Signal Name LIN

Function

LIN signal line

Connector Pin Number 222

4.19.2 Functional description:

LIN2 is a bidirectional half duplex serial bus for up to 10 nodes.

BAT+ (12/24V) ECU ECU 27V limiter 27V limiter UART BAT+ (12/24V) TxD LIN LIN TxD UART RxD RxD Figure 26: half duplex interface

Please note that a common ground (chassis) or a proper ground connection is necessary for LIN operation. In case of connecting via connectors (e.g. to a PC with LIN-interface) please make sure that the maximum voltage ratings are not violated when connecting to or disconnecting from the LIN-connection.

2

Note1: The TTC 200 is the LIN master.

Note2: The LIN standard is only defined for 12V supply.

Copyright © 2001–2009 TTControl GmbH

All rights reserved

TTC 200 User Manual

4. Specification of Inputs and Outputs

60

4.19.3 Maximum ratings

Tambient = -40° .. 85°C

Symbol VLIN

Parameter

Bus voltage under overload conditions (i.e short circuit to supply voltages)

Note min -1

max

32

Units V

4.19.4 Characteristics

Tambient = -40° .. 85°C

Symbol Cout VIL VIH VOL Vpu Rpu STr Parameter Pin output capacitance Input voltage for low level Input voltage for high level Output low voltage @ 10mA Pullup supply voltage Pullup resistor Data-rate Note min 100 -1 1 0.7*UBat UBat –1.5 0.9 max 150 0.3*UBat UBat 1.1 28 1.1 20 Units pF V V V V kΩ kbd

Note 1: the pullup-supply follows the BAT+ voltage until the supply exceeds 27V (for 24V-supplied

systems). At voltages above it is limited to typ. 27V.

Copyright © 2001–2009 TTControl GmbH All rights reserved

TTC 200 User Manual

4. Specification of Inputs and Outputs

61

4.20 RS232 interface

4.20.1 Pinout:

Signalname RS232 OUT RS232 IN

Function

RS232 output (TX) RS232 input (RX)

Connector Pin Number 221 283

4.20.2 Functional description:

RS232 is used as a full duplex serial interface. Note that handshake lines (RTS, CTS, …) are not available. ECU ECU

RS232_OUT RS232_OUT

RS232 RS232 UART UART

Transc. Transc. RS232_IN RS232_IN Figure 27: RS232 interface

Please note that a common ground (chassis) or a proper ground connection is necessary for RS232 operation. In case of connecting with an external device (e.g. PC with RS232-interface) please make sure that the maximum voltage ratings are not violated when connecting to or disconnecting from the RS232-connection.

Copyright © 2001–2009 TTControl GmbH All rights reserved

TTC 200 User Manual

4. Specification of Inputs and Outputs

62

4.20.3 Maximum ratings

Tambient = -40° .. 85°C

Symbol VRS232x

Parameter

Bus voltage under overload conditions (i.e short circuit to supply voltages)

Note min -15 max

32 Units V

4.20.4 Characteristics

Tambient = -40° .. 85°C

Symbol Cout VIL VIH Rpd VOL VOH STr

Parameter Pin output capacitance Input voltage for low level Input voltage for high level Input resistor (to GND) Output voltage for low level Output voltage for high level Data-rate

Note min 100 -15

+2 3 -10 +5

max 150 +0.8 +15 7 -5 +10 115

Units pF V V kΩ V V kbd

Copyright © 2001–2009 TTControl GmbH All rights reserved

TTC 200 User Manual

4. Specification of Inputs and Outputs

63

4.21 TTP interface RS 485-type (optional)

4.21.1 Pinout:

Signal Name TTP_C0H TTP_C0L TTP_C0S TER_C0L TER_C0H

Function

TTP channel 0 high line TTP channel 0 low line TTP channel 0 shield termination termination

Function

TTP channel 1 high line TTP channel 1 low line TTP channel 1 shield termination termination

Connector Pin Number 271, 293 272, 294 250 228 227

Connector Pin Number 269, 291 270, 292 248 225 226

Signal Name TTP_C1H TTP_C1L TTP_C1S TER_C1H TER_C1L

Copyright © 2001–2009 TTControl GmbH All rights reserved

TTC 200 User Manual

4. Specification of Inputs and Outputs

4.21.2 Functional description:

Double (redundant) bidirectional twisted pair bus.

Needs termination with 120Ω (2*60 Ω) in 2 control units whereas the others remain unterminated.

Termination must be fit at the ends of the bus line to prevent wave reflection and is necessary to enter the recessive state.

For easy configuration there are 2*2 pin-pairs for activating / deactivating termination.

ECU1 TTP_CxH TER_CxH TTP controller TER_CxL TTP_CxL ECU2 TTP_CxH TER_CxH TTP controller TER_CxL TTP_CxL Figure 28: TTP interface

Please note that a common ground (chassis) or a proper ground connection is necessary for TTP operation. In case of connecting via connectors (e.g. to a PC with TTP-interface) please make sure that the maximum voltage ratings are not violated when connecting to or disconnecting from the TTP-connection.

Copyright © 2001–2009 TTControl GmbH All rights reserved

TTC 200 User Manual

4. Specification of Inputs and Outputs

65

4.21.3 Maximum ratings

Tambient = -40° .. 85°C

Symbol Parameter

VTTP_CxL Bus voltage under overload conditions VTTP_CxH (i.e short circuit to supply voltages)

Note min -32

max

32

Units V

4.21.4 Characteristics

Tambient = -40° .. 85°C

Symbol Cout Vin-CMM Vin-dif Vin-dif Vout-dif Vout-dif VTTP_CxL VTTP_CxH ITTP_CxL ITTP_CxH STr RTer CS

Parameter Pin output capacitance Input common mode range

Differential input threshold voltage low level (VTTP_CxH - VTTP_CxL)

Differential input threshold voltage high level (VTTP_CxH - VTTP_CxL)

Differential output voltage low level (VTTP_CxH - VTTP_CxL) , RL = 60Ω

Differential output voltage high level (VTTP_CxH - VTTP_CxL) , RL = 60Ω

Common mode idle voltage (output disabled) Output current limit Output current limit Baud-rate

Termination resistance Capacitance on shield pin

Note min 1 -7 2

-50 -1.5 1.5 2 -25 200 120 3

max 100 12 -200 -4.0 4.0 3 -200 25 5 130 6

Units pF V mV mV V V V mA mA Mbps Ω nF

Note 1: due to high current in the wiring harness the individual ground potential of control units may

differ up to 1V. This difference will appear also between a transmitting and receiving control unit as common mode voltage and does not influence the differential bus signal as long as it is within the common mode limits.

Note 2: to prevent DC or low-frequency ground loops the shield is capacitively coupled. The shield is

an option for extremely EMC-sensitive wiring harness and usually unshielded twisted pair lines are used.

Copyright © 2001–2009 TTControl GmbH All rights reserved

TTC 200 User Manual

4. Specification of Inputs and Outputs

66

4.22 CAN interface ISO 118

4.22.1 Pinout:

Signal Name CN0_CNH CN0_CNL TER_C0H TER_C0L CN1_CNH CN1_CNL TER_C1H TER_C1L

Function

CAN 0 high line CAN 0 low line

Termination CAN 0 high line Termination CAN 0 low line CAN 1 high line CAN 1 low line

Termination CAN 1 high line Termination CAN 1 low line

Note

Connector Pin Number 2 290 267 268 223 224 245 246

Copyright © 2001–2009 TTControl GmbH All rights reserved

TTC 200 User Manual

4. Specification of Inputs and Outputs

67

4.22.2 Functional description:

Bidirectional twisted pair bus.

Needs termination with 120Ω (2*60 Ω) in 2 control units whereas the others remain unterminated.

Termination must be fit at the ends of the bus line to prevent wave reflection and is necessary to enter the recessive state.

For easy configuration there are 2*2 pin-pairs for activating / deactivating termination. ECU1 CAN controller CNx_CNH TER_CxH TER_CxL CNx_CNL ECU2 CNx_CNH CAN controller TER_CxH TER_CxL CN_CNL Figure 29: CAN interface

Please note that a common ground (chassis) or a proper ground connection is necessary for CAN operation. In case of connecting with an external device (e.g. PC with CAN-interface for downloading software) please make sure that the maximum voltage ratings are not violated when connecting to or disconnecting from the CAN-connection.

Copyright © 2001–2009 TTControl GmbH All rights reserved

TTC 200 User Manual

4. Specification of Inputs and Outputs

68

4.22.3 Maximum ratings

Tambient = -40° .. 85°C

Symbol VCAN_CN VCAN_CN

Parameter

Bus voltage under overload conditions (i.e. short circuit to supply voltages)

Note min -20

max

32

Units V

4.22.4 Characteristics

Tambient = -40° .. 85°C

Symbol Cout Vin-CMM Vin-dif Vout-dif Vout-dif VCAN_CNL VCAN_CNH ICAN_CNL ICAN_CNH STr RTer CS

Parameter Pin output capacitance Input common mode range

Differential input threshold voltage (VCAN_CNH - VCAN_CNL)

Differential output voltage dominant state (VCAN_CNH - VCAN_CNL)

Differential output voltage recessive state (VCAN_CNH - VCAN_CNL)

Common mode idle voltage (recessive state) Output current limit Output current limit Baud-rate

Termination resistance Capacitance on shield pin

Note min 1 -2 2

0.5 1.5 -0.1 2 -45 50 120 3

max 100 7 0.9 3.0 +0.1 3 -200 200 500 130 6

Units pF V V V V V mA mA kbd Ω nF

Note 1: due to high current in the wiring harness the individual ground potential of control units may

differ up to 1V. This difference will appear also between a transmitting and receiving control unit as common mode voltage and does not influence the differential bus signal as long as it is within the common mode limits.

Note 2: to prevent DC or low-frequency ground loops the shield is capacitively coupled. The shield is

an option for extremely EMC-sensitive wiring harness and usually unshielded twisted pair lines are used.

Copyright © 2001–2009 TTControl GmbH All rights reserved

5. Application Notes 69

5 Application Notes

5.1 Wiring Harness

In order to enable a safe operation a few general rules for the layout of the wiring harness have to be obeyed.

For the dimensioning the power supply cables please refer to section 4.1.4.

5.2 Load Distribution

The 31 power stages of the TTC 200 would theoretically deliver a total current of 143.8A if switched on concurrently. The TTC 200’s permanent input current Iin-max_ is 50A because the three contact pins of the connector are thermally limited to 18A (maximum).

As the power stages have not negligible power dissipation each current leads to a rise of temperature. To ensure proper operation of the TTC 200 in its temperature range (-40 °C to +85 °C) the total current driven by the power stages has to be limited and the load evenly distributed.

One first rule of thumb is that if two output states are mutually exclusive (e.g. output A is only activated in state 1, output B is only activated in state 2) these outputs should be driven by one double-channel power stage, so that only one channel is used at a time.

Another way to reduce the overall power dissipation is to drive different power stages in parallel for high currents.

Document number D-TTC02-TN-02-001 provides a calculation form to determine the worst case temperature of the power stages.

70

Disclaimer

While every precaution has been taken in the preparation of this document, the publishers assume no responsibility for any remaining errors or omissions, or for damages resulting from the use of the information herein.

Copyright © 2001–2009 TTControl GmbH. All rights reserved.

因篇幅问题不能全部显示,请点此查看更多更全内容

Copyright © 2019- sceh.cn 版权所有 湘ICP备2023017654号-4

违法及侵权请联系:TEL:199 1889 7713 E-MAIL:2724546146@qq.com

本站由北京市万商天勤律师事务所王兴未律师提供法律服务