StochasticSchedulingofActiveSupportVectorLearning
Algorithms
ComputerScienceUniversityofMinnesotaGauravPandeyHimanshuGuptaComputerScienceIITKanpurComputerScienceIITKanpurPabitraMitragaurav@cs.umn.eduABSTRACThimg@cse.iitk.ac.inpmitra@cse.iitk.ac.inActivelearningisagenericapproachtoacceleratetrainingofclassifiersinordertoachieveahigheraccuracywithasmallnumberoftrainingexamples.Inthepast,simpleactivelearningalgorithmslikerandomlearningandquerylearninghavebeenproposedforthedesignofsupportvectormachine(SVM)classifiers.Inrandomlearning,examplesarechosenrandomly,whileinquerylearningexamplesclosertothecurrentseparatinghyperplanearechosenateachlearningstep.However,itisobservedthatabetterschemewouldbetouserandomlearningintheinitialstages(moreex-ploration)andquerylearninginthefinalstages(moreex-ploitation)oflearning.HerewepresenttwonovelactiveSVlearningalgorithmswhichuseadaptivemixturesofran-domandquerylearning.Oneoftheproposedalgorithmsisinspiredbyonlinedecisionproblems,andinvolvesahardchoiceamongthepurestrategiesateachstep.Theotherextendsthistosoftchoicesusingamixtureofinstancesrec-ommendedbytheindividualpurestrategies.Bothstrategieshandletheexploration-exploitationtrade-offinanefficientmanner.Theefficacyofthealgorithmsisdemonstratedbyexperimentsonbenchmarkdatasets.
KeywordsSVM,PoolBasedActiveLearning,Multi-ArmBanditProb-lem,Stochasticscheduling
1.INTRODUCTIONActivelearningisapopularparadigmforreducingthesamplecomplexityofalearningalgorithm[6]wherethelearnerselectsitsowntrainingdata.Here,insteadoflearn-ingfrominstancesselectedrandomly,thelearnercanselectitsowntrainingdata.Thisisdoneiteratively,andtheout-putofalearningstepisusedtoselecttheexamplesofthenextstep.Aparticularsettingofthisframeworkisreferredtoaspoolbasedactivelearning[1],wherethelearnerispre-sentedwithafixedpoolofunlabeledinstancesandoneach
Permissiontomakedigitalorhardcopiesofallorpartofthisworkforpersonalorclassroomuseisgrantedwithoutfeeprovidedthatcopiesarenotmadeordistributedforprofitorcommercialadvantageandthatcopiesbearthisnoticeandthefullcitationonthefirstpage.Tocopyotherwise,torepublish,topostonserversortoredistributetolists,requirespriorspecificpermissionand/orafee.
SAC’05,March13-17,2005,SantaFe,NewMexico,USACopyright2005ACM1-58113-964-0/05/0003...$5.00.
trialitchoosesasetofinstancesfromthepooltobelabeled.Thelearneristhenprovidedthetruelabeloftheinstancesanditinducesanewclassifierbasedonallthelabeledsam-plesseensofar.Severalstrategiesforchoosingthesetofinstancesfromthepoolexistinpractice,e.g.,randomselec-tion,errordriventechniques,uncertaintysampling,versionspacereductionandadaptiveresampling.Poolbasedactivelearningishighlysuitedforapplicationswhereunlabeleddataisabundantbutlabelinginstancesiscostlyandtimeconsuming.Suchascenarioisoftenencounteredintextcat-egorizationandinformationretrieval,wherethelabelingisobtainedbyahumanuser[12].Inthecaseofremotesensingandbiomedicalimageanalysis,labelingisevenmorecostlyasitcanbedoneonlybyexperts.Labellingindrugdis-overyandmoleculescreeningproblemsalsoinvolvecostlyandtimeconsumingchemicalexperiments.
Thesupportvectormachine(SVM)[4,13]hasbeensuc-cessfulasahighperformanceclassifierinseveraldomainsincludingpatternrecognition,dataminingandbioinformat-ics.Ithasstrongtheoreticalfoundationsanddemonstratesgoodgeneralizationcapability.AlimitationoftheSVMde-signalgorithm,particularlyforlargedatasets,istheneedtosolveaquadraticprogramming(QP)probleminvolvingadensen×nmatrix,wherenisthenumberofpointsinthedataset.SincemostQProutineshavecubiccomplexity,SVMdesignrequireshugememoryandcomputationaltimeforlargedataapplications.Reducingthesamplecomplex-ity(n)ofSVMdesignusingpoolbasedactivelearningthusmakesSVMssuitableforlargedataapplications.
InthecontextofSVM,severalpoolbasedactivelearningalgorithmshavebeenproposed.Theearliestonesselectedthenewsetofinstancesrandomly[9](referedtoasRan-domSVMintherestofthepaper).In[5],aquerylearningstrategyforlargemarginclassifiersispresented,whichit-erativelyrequeststhelabelofthedatapointclosesttothecurrentseparatinghyperplane(referredtoasQuerySVMintheremainderofthepaper).Similarly,[3]chosesthenextbatchoftrainingpointsw.r.t.theanglesmadebytheex-ampleswiththecurrenthyperplane.Astrategybasedonversionspacesplittingispresentedin[12].Thepointswhichsplitthecurrentversionspaceintotwohalveshavingequalvolumesareselectedateachstep,astheyarelikelytobetheactualsupportvectors.Agreedyoptimalstrategyisde-scribedin[11].Herelogisticregressionisusedtocomputetheclassprobabilities,whicharefurtherusedtoestimatetheexpectederrorafteraddinganexample.TheexamplethatminimizesthiserroristhecandidateSV.Thisapproach,thoughoptimal,isnotpracticalbecausetheselectionofeach
38
candidatepointrequiressolvingtwoQPproblemsandcanbeabottleneckforlargedatasets.
Inspiteofthewidevarityoftechniquesused,alimitationthesestrategiesisthattheyareessentiallypurestrategiesinthesensethatthroughoutthetrainingprocesstheyeitherqueryforpointsclosetothecurrentseparatinghyperplaneorselectrandomsamplesconsistingmostlyofinteriorpointsofaclass.Boththesestrategiesrepresentextremecases;theformeroneisfastbutunstable,whilethelatteroneisrobustbutslowlyconverging.Theformerstrategyisusefulinthefinalphaseoflearning,whilethelatteroneismoresuitableintheinitialphase.Anadaptivemixtureoftheabovetwostrategiesisexpectedtoyieldbetterperformance.
Inthispaper,mixedactivelearningstrategies,whicharecombinationsoftwopurestrategies,namely,RandomSVMandQuerySVM,areproposedtoachievefastandrobustconvergence.Here,theactivesupportvectormachinelearn-ingproblemistreatedasastochasticschedulingproblem,morespecificallyasamulti-armedbanditproblem.Thisisthentransformedtoanequivalentonlinedecisionproblemofselectingamixtureofthetwopurestrategies.Twoal-gorithmsforcombining/mixingthepurestrategiesarepro-posed.Thefirstalgorithminvolvesahardchoicebetweenoneofthetwopurestrategiesateachlearningstep.ThisisdonebyadynamicallocationalgorithmcalledFollowthePerturbedLeader[8].Ontheotherhand,thesecondoneper-formsasoftchoicebetweentheindividualpurestrategiestodeterminethecompositionoftheselectedsetofinstances.Experimentalresultsonbenchmarkdatasetsdemonstratetheeffectivenessofthestrategies.
Itmaybenotedthatamulti-armedbanditformulationofactivelearningproblemhasbeenproposedin[10]and[1].However,theretraininginstancesaretreatedasslotsofthegamblingmachine.Aprobabilitydistributionismaintainedoverthetraininginstancestodeterminewhichinstancetoselectnext(i.e.,whichslottoplaynext).However,forlargedatasetsmaintainingsuchadistributionwouldbeinfeasibleintermsofstorage.Hence,inouralgorithmwereformulatethemulti-armedbanditproblemasanonlinedecisionprob-leminvolvingchoiceofoneofthetwoexperts(i.e.,purestrategies).Here,oneneedstoonlystorea(dynamical-location)indexperexperttodeterminewhichexampletochosenextandisthussuitableforlargedatasets.
Theorganizationofthearticleisasfollows.InthenextsectionwedescribeRandomandQuerySVM.Section3reformulatestheactiveSVMlearningproblemasamulti-armedbanditproblem.Wealsomentiontheequivalenton-linedecisionproblem.TwoonlinealgorithmsforactiveSVMlearningarepresentedinSection4.ExperimentalresultsappearinSection5.WeconcludethepaperinSection6.
2.SUPPORTVECTORMACHINES
SVMsareageneralclassoflearningarchitecturesinspiredbystatisticallearningtheorythatperformsstructuralriskminimizationonanestedsetstructureofseparatinghyper-planes[4,13].Giventrainingdata,SVMsobtaintheoptimalseparatinghyperplaneintermsofthegeneralizationerror.
2.1SVMDesignUsingActiveLearning
Asdiscussedintheprevioussection,activelearningisamethodofincrementallearningwhichenablesalearn-ingalgorithmtoapproachthemaximumachievableclas-sificationaccuracyverycloselywithrelativelysmallernum-
beroftrainingexamplesascomparedtothebatchlearningmethod.ActivelearningisequallyapplicabletoSupportVectorMachines(SVMs)andvariousapproacheshavebeensuggestedforusingitinSVMtrainingandclassification.WepresentheretwoofthemostcommonactivelearningstrategiesforSVMs,namelyrandomandquerySVM.Theydifferinthewayexamplesarequeriedfromthedataset.RandomSVM:Thisisauniversalandperhapsthesim-plestactivelearningstrategyforanylearningalgorithm.Itassumesthattheprobabilityofanyexamplebeingchosenatanystageofthetrainingprocessisindependentofthatoftheothers,i.e.allexamplesaregivenauniformprobabilityofbeingchosenfortraining.Thetrainingprogresseswiththechoiceofkrandomexamplesateachstage.
QuerySVM:Randomactivelearning,asdiscussed,isanunguidedstrategyandhenceitisexpectedthatitwillnotperformverywellonmanyproblems.Analternativeandmoreintuitiveapproachistoimprovetheconfidenceindimensionsaboutwhichwealreadyhaveinformation.Thiscanbeachievedbycontinuallynarrowingtheexistingmar-gin.Thus,ateachstageofthetrainingprocess,ktrainingexamplesclosesttothecurrentdividinghyperplanearese-lectedandaddedtotheintermediatetrainingset[5].
3.MULTI-ARMEDBANDIT,ACTIVELEARN-INGANDSTOCHASTICSCHEDULING
TheMulti-armedbandit(MAB)problemisawellstudiedprobleminstochasticschedulinganddynamicallocation.InMAB[7],agambler,vistingacasino,mustchoosewhichofKmachinestoplay.Ateachtimestep,hepullsthearmofoneofthemachinesandreceivesarewardorpayoff(possiblyzeroornegative).Thegambler’spurposeistomaximizehistotalrewardoverasequenceoftrials.Sinceeacharmisassumedtohaveadifferentdistributionofrewards,thegoalistofindthearmwiththebestexpectedreturnasearlyaspossible,andthentokeepgamblingusingthatarm.
Theproblemisaclassicalexampleofthetrade-offbe-tweenexplorationandexploitation.Ontheonehand,ifthegamblerplaysexclusivelyononemachinethathethinksisbest(exploitation),hemayfailtodiscoverthatoneoftheotherarmsactuallyhasahigheraveragereturn.Ontheotherhand,ifhespendstoomuchtimetryingoutallthemachinesandgatheringstatistics(exploration),hemayfailtoplaythebestarmoftenenoughtogetahightotalreturn.Intheearlyyears,thebanditproblemwasstudiedwiththeaidofstatisticalassumptionsontheprocessgeneratingtherewardsforeacharm.However,itislikelythatthecostassociatedwitheacharmisdeterminedateachtimestepbyanadversaryratherthanbysomebenignstochasticprocess.Wecanonlyassumethattherewardsarechosenfromaboundedrange.Here,thereisnosinglemachinewhichgivesthehighestpayoffatallthetimesteps.Henceonshouldfindasequenceofmachineswhichgivesthehighesttotalreward.Theperformanceofanyplayerismeasuredintermsof‘regret’,i.e.,theexpecteddifferencebetweenthetotalrewardscoredbytheplayerandthetotalrewardscoredbythebestsequenceofarms.
3.1ActiveLearningasanMABProblem
Inactivelearning,thelearnerhasthefreedomtochoosetheexamplestobeusedforlearning.Inotherwords,thetraininginstancesareequivalenttotheslotsofagambling
39
machinethatthelearnerchoosesfrom.Usingthesequeriedexamplesthelearnerupdatesitselfandqueriesanewsetofexamples.Thusthelearnerhastomakeasequenceofchoicesofexamplestoquery,withoutknowledgeofthefu-ture.Therewardateachstephereisthegaininclassifica-tionaccuracyachievedbythelearnerbylearningfromthesetofexamplesqueried.Thelearnershouldtrytomaximizethisrewardoveralltimestepssuchthatthefinalaccuracyismaximum.Thisisdonebymaintainingbilitydistribution{pt1,...,pt
aselectionproba-l},wheretisthelearningstep,listhetotalnumberoftraininginstances,andchoosingthesetofinstanceshavinghighprobabilitiesforthe(t+1)thstep.Inboosting[10],thisdistributionismaintainedbyrepetitivemultiplicativeupdatesonaninitialsetofuniformprobabilities.
3.2ActiveLearning&StochasticScheduling
Analternatewayofformulatingtheaboveschedulingproblemistoconsiderasetofexpertswhichadvisesthelearneronwhichsetofexamplestochoosenext.Theex-pertsmayrepresentsomepurechoicestrategiesthemselves.Thelearnerusesacombinationormixtureoftheexpertstoselectthenextsetofexamples.Inouralgorithmswehaveconsideredasetoftwoexperts,namely,theRandomSVMandQuerySVM.ThesearediscussedinSection2.Thefor-merexpertrepresentshighexplorationinlearningwhilethelaterrepresentshighexploitation.Thesetofexamplestobequeriedbythelearnerconsistsofexamplesrecommendedbyeitherorbothoftheexperts.OnemaynotethatintheformulationofactivelearningasaMABproblemthede-cisionconsistsofchoosingthesequenceofexamplestobequeriedforlearning.However,selectingaparticularmix-tureofexpertsalsoleadstoqueryingaparticularsetofexamplesandactivelearningintheMABsettingcanalsobeconsideredasasequenceofdecisionswhichchoosecer-tainmixtureofindividualexperts.Infact,thereexistsacorrespondencebetweenthetwodecisionprocessesinactivelearning,namely,theselectionofasetofexamplesandtheselectionofamixtureofexperts.However,inthelatterpro-cess,oneneedstomaintainaprobabilitydistributionoverthesetofexpertsratherthanthesetofexamples,andthusrequiresconsiderablylessstorageforlargedatasets.
4.
PROPOSEDALGORITHMSFORACTIVESUPPORTVECTORLEARNING
Inthissectionwepresenttwoalgorithmsforonlineschedul-ingofamixtureofexperts.Theexpertsherearethepurestrategiesforactivelearning,namelyRandomSVMandQuerySVM.TheyaredescribedinSection2.
Thefirstmixturestrategyisahardstrategywhichchoosesasingleexpertineachstep,althoughthechoiceofexpertsmayvaryoverdifferentsteps,whilethesecondoneisasoftstrategywhichchoosesacompositionofexamplesrecom-mendedbyboththeexperts.Theratioofexamplesrec-ommendedbyeachexpertvariesadaptivelyoverthesteps.Thefirststrategyusesanefficientonlinedecisionalgorithmcalled‘followtheperturbedleader’(FPL)[8]andthesec-ondusesclassificationerrorsinamannersimilartoboosting[10].Thealgorithmsaredescribedinthenexttwosections.
4.1HardChoice:FollowthePerturbedLeader
Thecorrespondencebetweentheproblemofactivelearn-ingforsupportvectormachinesandonlinedecisionprob-
Data:UnlabeledandLabeled
examples
Tunlabeled,Tlabeled
Result:FinalclassifierCfinal
Q←ChooseRandom(Tunlabeled,k);Label(Q);
C←SVMTrain(Q);
cost0,random←GetError(Tlabeled,C);cost0,query←0;t←1;
whileterminationconditionisnotmetdo
Q←Q∪ChooseNearest(Tunlabeled,k,C);Label(Q)/*Onlynewlyaddedexamplesarelabeled*/;
C←SVMTrain(Q);costt,query←
costt−1,query+GetError(Tlabeled,C);endelse
itateachstepwhereitisselected.Fortheotherstrategies,thecostincurredforthisstepiszero.Usingthisnotion,FPLiscapturedinbriefinthefollowingsteps:FPL(α):Oneachperiodt,
1.Choosept,d,theperturbationvector,atrandomac-cordingtothedensitydµ(x)∝e−α|x|1,foreachstrategyd.
2.UseM(s1:t−1+pt)=argmind∈D[s1:t−1,d+pt,d],wheres1:t−1,disthetotalcostincurredbystrategydtillperiodt−1.
TheFPLalgorithmhasbeenshowntobeoptimalwithina(1+)bound.Experimentsonthehardchoicestrategyalsoshowitssuperiorperformancecomparedtotherandomandquerylearningstrategies.ItisseenthatinitiallyrandomSVMistheleaderandisfollowedbytheabovealgorithm,whileaftersometimethealgorithmswitchesovertoquerySVMandfollowsitforsubsequentsteps.Someoscillationsbetweenthesetwooccurintheintermittentphases.
68 66 64Classification Accuracy 62 60 58 56 54 52 0 100 200 300 400 500 600Number of Labeled Examples 100Hard SwitchingSoft SwitchingQuery SVMRandom SVM 700 800 900 95VariousobservationsshowthatrandomSVMperformsbetterclassificationinitially,whilequerySVMdoesbetterinthelaterpart.Sinceinitiallythetrainingisdoneonaverysmallsizedsample,theinitialhyperplanefoundwillbeveryfarfromtheoptimalhyperplane.UsingquerySVMtochooseatrainingpointthatisclosesttothishyperplanewillresultonlyinasmalldrifttowardstheoptimalhyper-plane.Choosingarandomtrainingpointseemstobeabet-terideaasitmaylieclosetotheoptimalhyperplane,anditsinclusioninthetrainingsetwillimplysignificantprogresstowardstheoptimalhyperplane.Inthelaterstages,thecur-renthyperplaneisclosetotheoptimalhyperplane.Thus,choosingthedatapointclosesttothecurrenthyperplanewillbebetterasitensuresthatthepointchosenisclosetotheoptimalhyperplaneaswell.Thisanalysissuggeststhatanoptimalstrategyofchoosingdatapointsateachstagewouldbetoselectsomepointsrandomlyandsomeotherpointsclosetothecurrenthyperplane,i.e.,asoftmixtureofthetwopurestrategiesrandomSVMandquerySVM.Theratioofthepointsrecommendedbytheseindividualpurestrategiesvariesadaptivelyoverthelearningsteps.
Thestrategyatanystepconsistsoftwosubsteps:(i)se-lectingpointsrandomly,obtaininganupdatedSVM,andcalculatingitserroronthelabeleddataset(denotethisasrandom)and,(ii)selectingdatapointsclosesttothecurrentseparatinghyperplane,obtaininganupdatedSVM,andde-terminingitserroronlabeleddataset(denotethisasquery).Afinaldecisionofthenumberofpointstobeselectedran-domlyandthatofthosetobeselectedonthebasisoftheirdistancefromthecurrentseparatinghyperplaneismadeus-ingrandomandquery.AnoutlineofthisstrategyisgiveninAlgorithm2.Forλqueryandλrandom,aformsimilartoAdaBoost[10]hasbeenchosen.
Classification Accuracy4.2SoftChoice 90 85 80 75 70Hard SwitchingSoft SwitchingQuery SVMRandom SVM 65 0 20 40 60 80 100 120 140Number of Labeled Examples 60 160 180 200 58Classification Accuracy 56 54 52 50Hard SwitchingSoft SwitchingQuery SVMRandom SVM 48 0 50 100 150 200 250 300Number of Labeled Examples 60 350 400 450 58 56Classification Accuracy 54 52 50 485.EXPERIMENTALRESULTS 46Performanceoftheproposedactivelearningstrategieshasbeenstudiedforfourbenchmarkdatasets,namelytheiono-sphere,contraceptiveuse,Australiancreditapprovalandthecreditscreeningdatasets.AlldatasetsarefromtheUCIMachineLearningRepository[2],andtheirdetailsaregiveninTable1.Missingvalueswerereplacedbyrandomvalueswithintherangeofthecorrespondingattributeto
44 0 50 100 150 200 250 300Number of Labeled ExamplesHard SwitchingSoft SwitchingQuery SVMRandom SVM 350 400 450Figure1:Convergencecurvesofdifferentactivelearningalgorithmsondifferentdatasets.Fromtoptobottom1.Contraceptiveusedataset2.Iono-spheredataset3.Australiancreditapprovaldataset4.Creditscreeningdataset
41
Data:Unlabeled&Labeledexamples
Tunlabeled,Tlabeled
Result:FinalclassifierCfinal
Qsoft←ChooseRandom(Tunlabeled,k)/*Initializethetrainingsetwithkrandomexamples*/;Label(Qsoft);
Csoft←SVMTrain(Qsoft);Cquery←Csoft;Crandom←Csoft;
whileterminatingconditionisnotmetdo
Table1:CharacteristicsofdatasetsDataSet#Attributes
351
Contraceptiveuse10
690
Creditscreening15suchasbioinformatics,wherelabellingdatamaybecostly
bothintermsofmoneyandtime.
Theseapproachesareexpectedtogivebetterresultsgen-erallysincethemostappropriatebasestrategy(randomorquerySVM)ischosen(orweightedheavilyinthecaseofsoftswitching)inthemostappropriatestageoflearning.ThiscorrespondstochoosingrandomSVMintheearlystagesandquerySVMinthelaterones,asjustifiedearlier.Inordertoillustratethisgeneralefficacy,resultshavebeenshownondatasetswithvariedcharacteristics.
6.CONCLUSIONSANDDISCUSSION
Wehaveproposedtwoalgorithmsforfastandrobustactivesupportvectorlearning.Thealgorithmsaremoti-vatedbyonlinedecisionproblemsandefficientlyhandletheexploration-exploitationtrade-offinactivelearning.
Thesuperiorityofthealgorithmshasbeendemonstratedempiricallyonbenchmarkdatasets.However,alargebodyoftheoreticalresultsononlinedecisionproblemsisavailable.Theoreticalboundsontheaccuraciesoftheproposedactivelearningalgorithmswillbereportedinasubsequentarticle.
λrandom←|ln
query
;
|;
1−random
Qsoft←Qsoft∪
ChooseNearest(Tunlabeled,kλ,Csoft)/*Marktheseselectedpointsasold*/;Qsoft←
Qsoft∪ChooseRandom(Tunlabeled,k(1−λ))/*Marktheseselectedpointsasold*/;Csoft←SVMTrain(Qsoft);Qquery←SV(Csoft);Qrandom←SV(Csoft);end
returnCsoft;
Algorithm2:SoftactivelearningstrategyforSVMs
λquery+λrandom
7.REFERENCES
[1]Y.Baram,R.El-Yaniv,andK.Luz.Onlinechoiceof
activelearningalgorithms.JMLR,5:255–291,2004.[2]C.L.BlakeandC.J.Merz.UCIrepositoryofmachine
learningdatabases,1998.
[3]K.Brinker.Incorporatingdiversityinactivelearning
withsupportvectormachines.InICML,2003.
[4]C.J.C.Burges.Atutorialonsupportvectormachines
forpatternrecognition.DataMiningandKnowledgeDiscovery,2:1–47,1998.
[5]C.Campbell,N.Cristianini,andA.Smola.Query
learningwithlargemarginclassifiers.InICML,2000.[6]D.Cohn,LAtlas,andR.Ladner.Improving
generalizationwithactivelearning.MachineLearning,15:201–221,1994.
[7]J.C.Gittins.Multi-armedBanditAllocationIndices.
JohnWiley,1989.
[8]A.KalaiandS.Vempala.Efficientalgorithmsforthe
onlinedecisionproblem.InCOLT,2003.
[9]N.A.Sayeed,H.Liu,andK.K.Sung.Asudyof
supportvectorsonmodelindependentexampleselection.InSIGKDD,1999.
[10]R.Schapire,Y.Freund,P.Bartlett,andW.S.Lee.
Boostingthemargin:Anewexplanationfortheeffectivenessofvotingmethods.AnnalsofStatistics,26:1651–1686,1998.
[11]G.SchohnandD.Cohn.Lessismore:Activelearning
withsupportvectormachines.InICML,2000.
[12]S.TongandD.Koller.Supportvectormachineactive
learningwithapplicationtotextclassification.JMLR,2:45–66,2001.
[13]V.Vapnik.StatisticalLearningTheory.Wiley,1998.
preventanybias.Thesedatasetshaveabalancedmixofcontinuous,few-valuenominalandmany-valuenominalat-tributes,andthusareappropriatefortheexperiments.Theconvergencecurvesofalltheactivelearningstrate-giesconsidered,namelyrandomSVM,querySVM,activelearningusingfollowtheperturbedleaderandsoftchoicealgorithm,ontheabovementioneddatasetsareshowninFigure1.Theresultspresentedareforabatchsizeof10(i.e.,10instancesarechosenactivelyateachstep).Theaveragevalueoftheclassificationaccuraciesovertwentyex-ecutionsareplottedinFigure4.2.
Fromtheplots,itcanbeseenthattheproposedalgo-rithmsachievethemaximumpossibleaccuracywithinacloselimitwithmuchfewerexamsascomparedtoqueryandrandomSVM.Thisisclearlyobservedinthecaseofsoftswitchinginplots2and3,andinthecaseofhardswitchinginplots1and4.Thischaracteristicispreciselythegoalofactivelearningandprovesexpeciallyusefulinapplications
42
因篇幅问题不能全部显示,请点此查看更多更全内容