ContentslistsavailableatScienceDirect
SensorsandActuatorsB:Chemical
journalhomepage:www.elsevier.com/locate/snb
Layer-by-layerassembledhybridfilmofcarbonnanotubes/ironoxidenanocrystalsforreagentlesselectrochemicaldetectionofH2O2
YuqingMiaoa,b,∗,HuaWangb,YuyanShaob,ZhiwenTangb,JunWangb,YueheLinb,∗∗
ab
ZhejiangKeyLaboratoryforReactiveChemistryonSolidSurfaces,InstituteofPhysicalChemistry,ZhejiangNormalUniversity,Jinhua321004,ChinaPacificNorthwestNationalLaboratory,Richland,WA99352,USA
articleinfoabstract
AnewapproachtoconstructareagentlesselectrochemicalH2O2sensorisdescribed.Ironoxidemagneticnanocystals(IOMNs),asperoxidasemimetics,wereassembledtoformamultilayerstructurethroughthelayer-by-layer(LBL)method.Polythionin(PTh)wasfirstelectrodepositedontotheglassycarbonelectrode(GCE)surfacetointroduceaminogroups.Carboxylfunctionalizedmulti-walledcarbonnan-otubes(MWCNTs),aminofunctionalizedIOMNs,andthioninmonomerswerealternativelyanchoredontoapolythionin-functionalizedGCEsurfaceinorderbycarbodiimideorglutaraldehydechemistry.TheresultingmultilayerconstructionwiththreelayersofIOMNsandthioninmediatorexhibitsexcellentelectrochemicalresponsetothereductionofH2O2,whereassuchamodifiedelectrodewithonelayerconstructiononlyyieldsaslightresponsetoH2O2ofthesameconcentration.ThetetheredMWCNTsenlargetheamountofimmobilizedIOMNsandeffectivelyshuttleelectronsbetweentheelectrodeandthethionin.ThecalibrationplotislinearoverthewideH2O2concentrationrangefrom0.099to6.54mM,withadetectionlimitof53.6M.
©2008ElsevierB.V.Allrightsreserved.
Articlehistory:
Received27October2008
Receivedinrevisedform15December2008Accepted20December2008
Availableonline31December2008Keywords:
Carbonnanotube
MagneticnanocystalsPeroxidasemimeticsH2O2
1.Introduction
Duetotheirnanometer-scalesize,biocompatibilityandcapa-bilityofbeingmanipulatedunderanexternalmagneticfield,ironoxidemagneticnanocystals(IOMNs)haveshownadiverserangeofapplicationsinbiomedicineareas[1–5].Magneticnanoparti-clesaregenerallyconsideredtobechemicallyandbiologicallyinert.Recently,YanandcoworkersmadethesurprisingdiscoverythatIOMNsexhibitanintrinsicenzymemimeticactivitysimilartonaturalperoxidases[6].Intheirstudy,IOMNsweredemon-stratedtobeahighlyeffectivecatalyst,andtheirbindingaffinityforthesubstrate3,3,5,5-tetramethylbenzidineismuchhigherthanthatofhorseradishperoxidase(HRP).Also,IOMNswerefoundtoremainstableoverawiderangeofpHandtemperatures.Morerecently,Wang’sgroupreportedthecolorimetricmethodfortheassayofH2O2byemployingIOMNstocatalyzetheoxidationof2,2-azino-bis(3-ethylbenzo-thiazoline-6-sulfonicacid)diammo-niumsaltintothecoloredproduct[7].Thedetectionforglucosewas
∗Correspondingauthorat:ZhejiangKeyLaboratoryforReactiveChemistryonSolidSurfaces,InstituteofPhysicalChemistry,ZhejiangNormalUniversity,Jinhua321004,China.Tel.:+8657982283109;fax:+8657982283109.∗∗Correspondingauthor.Tel.:+15093716241.
E-mailaddresses:biosensors@zjnu.cn(Y.Miao),Yuehe.Lin@pnl.gov(Y.Lin).0925-4005/$–seefrontmatter©2008ElsevierB.V.Allrightsreserved.doi:10.1016/j.snb.2008.12.045
alsoverifiedbycombiningglucoseoxidasewithIOMNs.Thedetec-tionplatformsforH2O2andglucosefurtherconfirmedthatIOMNspossessintrinsicperoxidase-likeactivity,indicatinggreatpotentialapplicationsinvarioussimple,robust,andeasy-to-makeanalyticalapproachesinthefuture.
Variousdyemoleculeshavebeenusedaselectron-transfermediatorsinfabricatingofHRP-basedH2O2biosensors,amongwhichthioninmoleculesaregainingtheincreasinginterest.Thionin,asmallplanarmolecule,hastwo–NH2groupssymmetri-callydistributedoneachside,whichmakesitagoodcandidateforcovalentconjugationwithothermoleculesormaterials.ItiswellrecognizedthatthioninexhibitsexcellentelectrochemicalredoxpropertiestowardincreasedelectrocatalyticalactivityofenzymesinthereductionofH2O2[8–10].Inaddition,polythionin(PTh)couldbeelectrochemicallydepositedontovariouselectrodesurfacesandkeepsanexcellentefficiencyofelectrontransferbetweentheHRPandtheH2O2electrode[11,12].
Thelayer-by-layer(LBL)depositionmethodformultilayerfilmisoneofthetechniqueswidelyusedtofabricatefunctionalmaterialsonananoscale,becauseofitssimplicity,controllability,andver-satility.Inthiswork,multi-walledcarbonnanotubes(MWCNTs)weremodifiedontoPTh-electrodepositedglasscarbonelectrode(GCE),followedbythealternativeanchoringIOMNsandthionininLBLway,resultinginanewenzymeelectrodeforthereagentlesselectrochemicaldetectionofH2O2.
Y.Miaoetal./SensorsandActuatorsB138(2009)182–188183
Scheme1.Thestructureofthionin.
2.Experimental
2.1.Chemicalsandmaterials
Thioninacetate(Scheme1),1-(3-(dimethylamino)propyl)-3-ethylcarbodiimidehydrochloride(EDC),andN-hydroxysulfosuccinimide(NHS)werepurchasedfromSigma–Aldrich(Milwaukee,WI).MWCNTswithapurityof95%andahollowstructure(OD:15±5nm;ID7±2nm;length:1–5m)wereobtainedfromNanoLab(Brighton,MA).IOMNs(diameter20nm)terminatedwithcarboxylgroupsinwaterandthosewithaminegroupswerefromOceanNanoTech(Fayetteville,AR).pH7.4phosphatebuffersolution(PBS)waspreparedwith0.01Mphosphatebuffer,0.137MNaCl,and2.7mMKClunlessotherwisenoted.ThewaterusedthroughoutallexperimentswaspurifiedwithaMilli-Qsystem(Millipore,Bedford,MA).Allexperimentswerecarriedoutatroomtemperature.
MWCNTswithcarboxylicgroupsarelinkedwiththeaminogroupsofpolythioninusingwell-knowncarbodiimidechemistry,whichhasbeenreportedextremely[14,15].ToattachMWCNTsontothepolythioninmodifiedGCE,2lof1.4mg/mlMWCNTTwatersolutionwascastontheelectrodeanddriedinair.Then,2loffreshlyprepared0.2MEDCand0.1MNHSSinwaterweredroppedontotheMWCNT-coveredelectrode,washedoffafter0.5handdried.Thiswasimmediatelyfollowedby15minincubationwith2lof4mg/mlIOMNsinwaterwithanaminegroup,washedoffanddried.ThentheaminogroupsofIOMNswereactivatedby2lof2.5%glutaraldehydefor15min,washedthoroughlyanddried.Later,theelectrodewasincubatedfor15minwith2lofsaturatedthioninsolutioninwater.TheobtainedelectrodewascarefullywashedwithwatertoremovethephysicallyabsorbedchemicalsaftereachreactionstepandwereblownoverthefilmsurfacewithanN2streamuntiltheadheringwaterwascompletelyremoved.Themultilayerfilmsweredepositedbyalternatelycoveringtheelectrodesurfacewithglutaraldehyde,IOMNs,glutaraldehydeandthionininorder.RepetitionoftheaboveproceduresledtotheformationofalternatingIOMN/Thmultilayerfilmswithadesirednumberofbilayers{IOMN/Th}n.Themultilayerfilmswerereferredtoas{IOMN/Th}n(Scheme2).IOMNsmeanthosewithaminogroupsunlessotherwisenoted.
Forcomparison,IOMNswithcarboxylandthosewithaminegroupsweredepositedontothepolythionin-modifiedGCEwith-outMWCNTs.TheformerwasdonewiththehelpofEDCandNHSS,andthelatterwiththehelpofglutaraldehyde.Bothweremodifiedwithalayerofthioninbyglutaraldehydeagain.2.3.Apparatus
ElectrochemicalexperimentswereperformedwiththeCHI660electrochemicalworkstation.Aconventionalthree-electrodecellwasusedwithanAg/AgClasthereferenceelectrode,aPtwireasthecounterelectrodeandaGCEdisk(2mmdiameter,modifiedorunmodified)astheworkingelectrode.3.Resultsanddiscussion
Thioninisaphenothiazineredoxdyewithtwo–NH2groupssymmetricallydistributedoneachside.Boththioninmonomerandtheelectrogeneratedpolythioninhaveexcellentelectrocatalyticactivitytowardtheredoxofsmallmolecularcompounds.Here,
2.2.PreparationofIOMN-modifiedGCEwithLBLmethod
MWCNTswerecarboxyl-functionalizedandshortenedbysoni-cationin3:1HNO3/H2SO4for4hat70◦C[13].Thedispersionswerefiltered,washedwithwater,driedanddispersedinwater.
TheGCEwasfirstcarefullypolishedwithaluminaonpolishingcloth.Theelectrodewasthenplacedinethanolandsubjectedtovibrationtoremoveadsorbedparticles.Finally,theelectrodewasrinsedwithdistilledwater.
TointroducetheNH2–functionalgroupontheGCEsurface,theelectrodewasfirstscannedwithcyclicvoltammogram(CV)of2.5cyclesbetween−0.4and1.2Vatascanrateof100mV/sin1:1HAcsolutioncontaining2Mthionin.Astablefilmofpolythioninwasdepositedontheelectrodesurface.
Scheme2.IllustrationsofGCE/PTh/MWCNT/{IOMN/Th}1assembledinLBLwayusingaminofunctionalizedIOMNsandthionin.
184Y.Miaoetal./SensorsandActuatorsB138(2009)182–188
Fig.1.CVsofablankGCE(a),GCE/PTh(b)andGCE/PTh/MWCNTT/{IOMN/Th}1(c)electrodeinpH7.4PBS,scanrate:100mV/s.
weattemptedelectropolymerizationofthionintofunctionalizetheGCEsurfaceforthecovalentimmobilizationofMWCNTs.
BasedontheCVsrecordedduringtheelectrochemicaldeposi-tionofpolythioninattheGCEinthioninsolution(notshown),theirreversibleanodicoxidation,whichcommencesatabout950mV,correspondstotheoxidationoftheNH2groupsofthethioninmolecule[16].ThereversibleredoxresponsewiththeE0ofabout−0.015V(thevaluesofEpc,Epa,andEpare−0.022,−0.006,0.018V,
Fig.3.CVsofGCE/PTh/MWCNT/{IOMN/Th}1electrodesinPBSwithdifferentpHs4.24(a),6.03(b),7.02(c),7.4(d)and8.05(e).
respectively)isduetotheredoxreactionofthioninmonomers.Dur-ingtheprocessofthioninelectropolymerization,thecurrentsofanotherpairofredoxpeaks,withacathodicpeakpotential(Epc)of0.112Vandananodicpeakpotential(Epa)of0.152V,increasedgraduallywithincreasingscannumber,whichmeanstheformationofelectrodepositedpolythionin.
Fig.2.(A)CVsofGCE/PTh/MWCNTT/{IOMN/Th}1electrodeinpH7.4PBSwithdifferentscanrates:40,60,80,100,200,400,600and800mV/s.The(B)and(C)showtherelationshipbetweenscanratesandredoxpeakpotentialsorcurrent.
Y.Miaoetal./SensorsandActuatorsB138(2009)182–188185
Fig.4.CVsofaGCE/PTh/{IOMN/Th}1withamino-functionalizedIOMNs(A),GCE/PTh/{IOMN/Th}1withcarboxyl-functionalizedIOMNs(B),GCE/PTh/MWCNT/{IOMN/Th}1withamino-functionalizedIOMNs(C),GCE/PTh/MWCNT/{IOMN/Th}2withamino-functionalizedIOMNs(D)andGCE/PTh/MWCNT/{IOMN/Th}3withamino-functionalizedIOMNs(E)electrodeinpH7.4PBSintheabsence(a)andpresence(b)of1mMH2O2;scanrate:100mV/s.
WhentheblankormodifiedelectrodeswerewashedandexaminedinpH7.4PBS,theCVsconfirmedthepresenceofsurface-attachedelectroactivematerial.AscanbeseenfromFig.1,theblankGCEdoesnotshowanyredoxresponse.TheGCE/PThexhibitstheredoxprocessofthioninmonomersandPTh,whichshowsthatPThhasbeensuccessfullydepositedontotheelec-trodesurfaceandpartofthioninmonomersalsoentrappedintothepolymermatrix.SuchaeventisfurtherconfirmedbytheCVofGCE/PTh/MWCNT/{IOMN/Th}1wheretheredoxresponseofthioninmonomerincreasesduetotheintroductionofmorethioninmonomersontotheelectrodesurfacebycovalentreac-tionofglutaraldehyde.ThisresultindicatesthatalargeamountofthioninmoleculeshavebeensuccessfullymodifiedontotheGCEsurface.Also,themultilayerstructurecaneffectivelyshuttleelec-tronsbetweentheelectrodeandthethionin.
Inordertoconfirmthatthecurrentresponseisasso-ciatedwithsurfaceconfinedthioninredox,thedependenceofthepeakcurrentsonscanrateswaschecked.CVsofGCE/PTh/MWCNT/{IOMN/Th}1electrodeinpH7.4PBSwithdiffer-entscanrateswerestudiedintherangeof40–800mV/s(Fig.2).Twopairsofdistinctredoxpeaksareobservedattheformalpotential(E0)ofca.−275.5mVand−99mV,withaverysmallpeak-to-peakofabout47mVand66mV.Also,thepeakpotentials,theformalpotentialsandtheseparationofthepeakpotentials(Ep)areinde-pendentofscanrates.Theeffectsofthepotentialscanrate(v)ontheoxidationpeakcurrent(Ipa1,Ipa2)andreductionpeakcurrent(Ipc1,Ipc2)havebeeninvestigated(datanotshown).Therelation-shipbetweenpeakcurrentsandthescanratesgivesthelinearresults.Alsotheredoxpeakcurrentsratioisunityatallscanrates.Allofthesedemonstratefacilechargetransferkineticsofsurfaceconfinedthioninorpolythioninoverthisrangeofsweeprates.
TheeffectsofpHontheGCE/PTh/MWCNT/{IOMN/Th}1elec-trodeswereinvestigatedbyrunningCVsusingPBSatvariouspHvaluesfrom4.24to8.05.AsshowninFig.3,theformalpotentials
186Y.Miaoetal./SensorsandActuatorsB138(2009)182–188
ofthesurfaceredoxcouplewerepHdependent.TheanodicandcathodicpeakpotentialsshiftlinearlytowardthenegativedirectionwithincreasingsolutionpH.AplotofE0vs.pHgivesastraightlinefrompH4.24to8.05withaslopeof38.3mV/pH.ThisphenomenonsuggeststhattheredoxprocessofThinvolvedtwoelectronsandoneproton[16].
ThedeterminationofH2O2isofpracticalimportanceinchemical,biologicalandmanyotherfields[17,18].Thisapproachalsoholdsgreatpotentialapplicationsinvariousoxidase-basedbiosensors[19,20].TheCVsofthemodifiedelectrodestoH2O2werestudiedinFig.4.TheGCE/PTh/{IOMN/Th}1withamino-functionalizedIOMNs(A)andtheGCE/PTh/{IOMN/Th}1withcarboxyl-functionalizedIOMNs(B)giveaslightreductionresponseto1mMH2O2.Theresponsedifferencebetween(A)and(B)shouldbeduetothedifferentimmobilizationefficienciesofIOMNwithdifferentfunctionalgroups.Thatis,thecatalyticabilityisduetoIOMNsotherthancarboxyloraminegroupderivertized.Moreover,itwasfoundthatuseofredoxthioninmayimprovetheelectrontransferfeatureoftheelectrode.However,TheCVresponsetoH2O2isstillsmallpresumablyduetothelowelectrocatalyticactivityofIOMNs.
ToenhancetheelectrocatalyticabilityofIOMNstoH2O2,MWCNTswereemployedtomodifytheGCEbeforeIOMNswereimmobilized.Here,IOMNswithaminogroupswerestudiedasamodelofmimicperoxidase.ThecatalyticreductioncurrentofH2O2wasgreatlyimproved,startingatabout0Vtoincreasewiththenegativeshiftofpotential.Obviously,thereductioncurrentresponseofGCE/PTh/MWCNT/{IOMN/Th}1ishigherthanthatofGCE/PTh/{IOMN/Th}1(Fig.4A).MWCNTs,here,couldincreasetheamountofimmobilizedIOMNsinadditiontoenhancingtheelec-tronshuttleabilityoftheelectrode.
TofurtherverifythattheelectrochemicalreductionofH2O2isduetoIOMNsotherthanMWCNTs,GCE/PTh/MWCNT/Thelectrodeswereconstructedtostudytheblankresponse.Theelectrocatalyt-icalreductionofMWCNTstoH2O2hasbeenreportedbymanygroups[9,21].Butinthiswork,nosignificantreductionsignalswereobservedatGCE/PTh/MWCNT/Thelectrodesfor1mMH2O2overthepotentialrangefrom−0.6to0.3V(notshown).Suchaphenomenoncanbeexplainedasfollows.SincethebackgroundcurrentisextremelyhighwhenalargeamountofMWCNTsareemployed,theconcentrationofMWCNTssolutionwasreducedheresoastoobtainarelativelylowbackgroundsignal.Thatis,onlysmallamountofMWCNTsweremodifiedontotheGCEsurface.Asaresult,theelectrocatalyticalreductionofH2O2byMWCNTswasverylimited.Therefore,theabovedatademonstratethatitisIOMNslayersnotMWCNTsthatplaytheprimaryroleintheelectrocatalyticreductiontoH2O2.
Accordingtothepreviousreports,themechanismoftheH2O2biosensorisbasedonthefollowingreactions[22]:H2O2+HRP→HRP-I+H2O
HRP-I+THH→HRP-II+TH→HRP+TH+TH++H++2e−→THH
TheH2O2isreducedinthepresenceofHRP;thenHRP-IisreducedtoHRPbyTHH(THHandTH+representreducedandoxidizedformsofthionin,respectively),andoxidizedTH+isreducedtoTHHattheelectrodesurface.
Thenumberofcatalyticlayersisaveryimportantaspecttobeconsideredwhendesigningmultilayerarchitectures.FurtherexperimentsalsoshowthatthecatalyticreductioncurrentofH2O2increaseswiththeincreaseinthelayernumberof{IOMN/Th}(Fig.4C,DandE).Itisfoundthat{IOMN/Th}3givesthehighestsen-sitivity.Thereductioncurrentof{IOMN/Th}4-modifiedelectrodes
Fig.5.CurrentresponsesofGCE/PTh/MWCNT/{IOMN/Th}3electrodesindifferentpHsolutionwith1mMH2O2.
toH2O2issmallerthanthatof{IOMN/Th}3duetothepossiblediffusionhinderance.TheLBLcovalentassemblyofmultilayersissuccessfulforpreparingasensitiveinterfaceduetoitsversatilitywiththerationaldesignofsensorsatmolecularlevel.Inaddition,themultilayer-modifiedelectrodeswerefoundtobestableduringthewholeelectrochemicalmeasurement.Thisfacileelectronacces-sibilityandthegoodstabilityoftheas-preparedmultilayerofferedthepossibilityforelectrochemicalcatalysis.
ThecatalyticactivityoftheIOMNs,likeHRP,isdepen-dentonpH.WemeasuredtheelectrocatalyticalreductionofGCE/PTh/MWCNT/{IOMN/Th}3electrodestoH2O2.TheoptimizedpHforthecatalyticcurrentofIOMNs-modifiedelectrodestoH2O2wasfoundataboutneutralorbasicsolution(Fig.5),whichisdif-ferentfromthepreviousreports[6,7].ThecombinationofMWCNT,PTh,IOMNs,andThmayformsthemicroenvironmentandaffectthecatalyticalperformanceofIOMNsontheelectrodesurface.
TheeffectsoftheappliedpotentialonthecurrentresponseofGCE/PTh/MWCNT/{IOMN/Th}3electrodehavealsobeenstudied(Fig.6).ThereductioncurrentresponsetoH2O2increasesrapidlywiththenegativeshiftoftheappliedpotentialstartingfrom0.3Vto−0.8V,andthenaslightdecreasecanbeobservedfrom−0.8to−0.9V.At−0.8V,theinterferencesignalfromO2becomesnegli-gible.Therefore,−0.5V(vs.Ag/AgCl)waschosenasanoptimizedworkingpotentialforbettersensitivityandlowerinterferencesig-nal.
Fig.6.EffectoftheappliedpotentialonthecurrentresponseofGCE/PTh/MWCNT/{IOMN/Th}3electrodeinthepresenceof1mMH2O2inpH8PBS(a)andthatsaturatedwithN2(b).
Y.Miaoetal./SensorsandActuatorsB138(2009)182–188187
Fig.7.CalibrationcurvesofGCE/PTh//MWCNT/{IOMN/Th}3electrodestoH2O2andtheamperometricresponseduringsuccessiveadditionof50l100mMor10mMH2O2into5mlpH8PBS.Conditionsof−0.5Vconstantpotential;pH8.0.
Fig.7showsthecalibrationcurvesandsteady-statecurrentresponseofGCE/PTh/MWCNT/{IOMN/Th}3electrodestoH2O2at−0.5V.AsshownintheinsetofFig.3,awell-definedresponsecanbeobservedduringthesuccessiveadditionofH2O2.AnextremelyattractivefeatureoftheGCE/PTh/MWCNT/{IOMN/Th}3electrodesisreflectedbytheirfastresponsetime(i.e.,<15s)towardH2O2,whichdemonstratesthatthesurface-confinednanostructuredmultilayersareaccessibletotheanalytemoleculesandelectricallyconnectedwiththeunderlyingelectrode.Thecalibrationplotislinearoverthewideconcentrationrangeof0.099–6.54mMwithaslopeof2.74A/mM(sensitivity)andacorrelationcoefficientof0.997.Thedetectionlimitoftheelectrodewasfoundtobe0.0536mMatasignal-to-noiseratioof3.OneoftheadvantagesoftheseIOMN-basedelectrodesforamperometricdetectionofH2O2istheirhighlystableamperometricresponse.Noobviousdecreaseinresponsewasobservedafter10daysstorageinroomtemperature.Therepeatabilityofresponseoftheconstructedelec-trodeswasinvestigatedataH2O2concentrationof1mM.Themeancurrentwas−3.54AwithanR.S.D.of6%(n=4).Sixmodifiedelec-trodes,preparedindependently,yieldedameancurrentresponseof−3.59AwithanR.S.D.of6.9%(n=4)at1mMH2O2.
Notethattheobtaineddetectionlimitscouldbeoptimizedfurthertoalowerlevel.DetailedstudiesontheoptimizationofIOMNs-modifiedelectrodesforH2O2andtheiruseforbiosensorapplicationsareunderway.4.Conclusion
IOMNswereemployedtodevelopamultilayerconstructionofGCE/PTh//MWCNT/{IOMN/Th}nelectrochemicalsensorsforH2O2assay.PolythioninwaselectrodepositedtofunctionalizetheGCEsurface.MWCNTs,IOMNsandthioninwereanchoredontoaPTh-modifiedGCEsurfacebycovalentbinding.WiththioninasmediatorandMWCNTsastheelectron-transferringbooster,theIOMNcatalysis-basedelectrodesexhibitexcellentelectrocatalyticalactivitytoH2O2.ThisapproachholdsgreatpromisingofpotentialapplicationsinvariousH2O2assay-basedbiosensorsinthefuture.Acknowledgements
ThismaterialisbaseduponworkfundedpartiallybytheNationalNaturalScienceFoundationofChina(GrantNo.90406016)andpartiallybyaLDRDprogramatPacificNorthwestNational
Laboratory(PNNL).TheworkwasperformedattheEnvironmen-talMolecularSciencesLaboratory,anationalscientificuserfacilitysponsoredbytheU.S.DepartmentofEnergy(DOE)andlocatedatPNNL.PNNLisoperatedbyBattelleforDOEunderContractDE-AC05-76RL01830.References
[1]F.Cheng,C.Su,Y.Yang,C.Yeh,C.Tsai,C.Wu,M.Wu,D.Shieh,Characterizationof
aqueousdispersionsofFe3O4nanoparticlesandtheirbiomedicalapplications,Biomaterials26(2005)729–738.
[2]B.Lin,X.Shen,S.Cui,ApplicationofnanosizedFe3O4inanticancerdrugcarri-erswithtarget-orientationandsustained-releaseproperties,Biomed.Mater.2(2007)132–134.
[3]C.Xu,S.Sun,Monodispersemagneticnanoparticlesforbiomedicalapplications,
Polym.Int.56(2006)821–826.
[4]G.Lian,K.Lewelling,M.Johnson,K.Dormer,D.Gibson,C.Seeney,Silica-coated
superparamagneticFe3O4nanoparticlesforbiomedicalapplications,Microsc.Microanal.10(2004)536–537.
[5]A.Gupta,M.Gupta,Synthesisandsurfaceengineeringofironoxidenanoparti-clesforbiomedicalapplications,Biomaterials26(2005)3995–4021.
[6]L.Gao,J.Zhuang,L.Nie,J.Zhang,Y.Zhang,N.Gu,T.Wang,J.Feng,D.Yang,S.
Perrett,X.Yan,Intrinsicperoxidase-likeactivityofferromagneticnanoparticles,Nat.Nanotechnol.2(2007)577–583.
[7]H.Wei,E.Wang,Fe3O4magneticnanoparticlesasperoxidasemimeticsand
theirapplicationsinH2O2andglucosedetection,Anal.Chem.80(2008)2250–2254.
[8]Q.Li,J.Zhang,H.Yan,M.He,Z.Liu,Thionine-mediatedchemistryofcarbon
nanotubes,Carbon42(2004)287–291.
[9](a)A.Salimi,A.Noorbakhsh,H.Mamkhezri,R.Ghavami,Electrocatalyticreduc-tionofH2O2andoxygenonthesurfaceofthioninincorporatedontoMWCNTsmodifiedglassycarbonelectrode:applicationtoglucosedetection,Electroanal-ysis19(2007)1100–1108;
(b)J.Wang,Y.Lin,Functionalizedcarbonnanotubesandnanofibersforbiosens-ingapplications,TrAc27(2008)619–626.
[10]A.Salimi,A.Noorbakhsh,S.Soltanian,Depositionofthioninontoglassycarbon
electrodemodifiedwithsinglewallandmultiwallcarbonnanotubes:improve-mentoftheelectrochemicalreversibilityandstability,Electroanalysis18(2006)703–711.
[11]M.Yang,Y.Yang,Y.Yang,G.Shen,R.Yu,Bienzymaticamperometricbiosensor
forcholinebasedonmediatorthionineinsituelectropolymerizedwithinacarbonpasteelectrode,Anal.Biochem.334(2004)127–134.
[12]R.Yang,C.Ruan,W.Dai,J.Deng,J.Kong,Electropolymerizationofthionine
inneutralaqueousmediaandH2O2biosensorbasedonpoly(thionine),Elec-trochim.Acta44(1999)1585–1596.
[13]M.O’Connor,S.N.Kimb,A.J.Killard,R.J.Forster,M.R.Smyth,F.Papadim-itrakopoulosb,J.F.Rusling,Mediatedamperometricimmunosensingusingsinglewalledcarbonnanotubeforests,Analyst129(2004)1176–1180.
[14]P.Asuri,S.S.Karajanagi,E.Sellitto,D.Kim,R.S.Kane,J.S.Dordick,Water-soluble
carbonnanotube-enzymeconjugatesasfunctionalbiocatalyticformulations,Biotech.Bioeng.95(2006)804–811.
[15]K.Y.Jiang,L.S.Schadler,R.W.Siegel,X.J.Zhang,H.F.Zhang,M.Terrones,
Proteinimmobilizationoncarbonnanotubesviaatwo-stepprocessofdiimide-activatedamidation,J.Mater.Chem.14(2004)37–39.
[16]K.Tanaka,S.Ikeda,N.Nyama,K.Tokuda,T.Ohsaka,Preparationof
poly(thionine)-modifiedelectrodeanditsapplicationtoanelectrochemicaldetectorfortheflow-injectionanalysisofNADH,Anal.Sci.9(1993)783–787.[17]X.Yang,X.Chen,X.Zhang,W.Yang,D.G.Evans,Directelectrochemistryand
electrocatalysiswithhorseradishperoxidaseimmobilizedinpolyquaternium-manganeseoxidenanosheetnanocompositefilms,Sens.ActuatorB134(2008)182–188.
[18]N.Adhoum,L.Monser,Electrochemicalsensorforhydroperoxidesdetermina-tionbasedonPrussianbluefilmmodifiedelectrode,Sens.ActuatorB133(2008)588–592.
[19]Y.Tsai,S.Chen,C.Lee,Amperometriccholesterolbiosensorsbasedoncarbon
nanotube–chitosan–platinum–cholesteroloxidasenanobiocomposite,Sens.ActuatorB135(2008)96–101.
[20]J.Park,H.K.Kim,Y.Son,Glucosebiosensorconstructedfromcappedconducting
microtubulesofPEDOT,Sens.ActuatorB133(2008)244–250.
[21]D.R.S.Jeykumaria,S.Ramaprabhub,S.S.Narayanan,Athioninefunctionalized
multiwalledcarbonnanotubemodifiedelectrodeforthedeterminationofhydrogenperoxide,Carbon45(2007)1340–1353.
[22]A.Shi,F.L.Qu,M.HuiYang,G.Shen,R.Yu,AmperometricH2O2biosensorbased
onpoly-thioninenanowire/HRP/nano-Au-modifiedglassycarbonelectrode,Sens.ActuatorB,Chem.129(2008)779–783.
Biographies
YuqingMiaoobtainedhisPhDdegreein2005fromWuhanTechnologyUniversity(China).Atpresent,heisaprofessorofZhejiangNormalUniversity(China).Theresearchmainlyfocusesonbiocatalysis,nanoelectrochemistryandelectrochemical
188Y.Miaoetal./SensorsandActuatorsB138(2009)182–188
biosensors.Thepresentresearchconcernsaboutconstructionofsmartbiomimicnanostructuresofacetylcholinesterasefortheassessmentofeffectsoforganophos-phatepoisoningonlivingenvironment.
HuaWang,hereceivedPhDdegreeinanalyticalchemistryfromHunanUniversityin2004.In2005hewasappointedasAssociateprofessoratHunanUniversity.Duringhiscareerhehaspublishedmorethan50articlesinpeerreviewedinternationaljournals.Atpresent,hismajorresearchactivitiesincludebiosensorsandadvancedfunctionalmaterials.
YuyanShaoreceivedhisPhDinAppliedChemistryfromHarbinInstituteofTech-nologyin2006.HeiscurrentlyapostdoctoralresearchassociateintheFundamentalSciencesDirectorateattheU.S.DOEPacificNorthwestNationalLaboratory.Hismaininterestsareinthefieldsofelectrocatalysis.
ZhiwenTangreceivedhisPhDmajoringinAnalyticalChemistryatHunanUniver-sity(China)onthetopicofDNA/RNAmolecularprobeengineering.HenowworksforPacificNorthwestNationalLaboratory.HisresearchinterestincludesDNA/RNAmolecularprobeengineering,aptamerselectionandfunctionalization,nanobiosen-sordevelopment.
JunWangcurrentlyisastaffscientistworkingintheChemistryandMaterialsGroupoftheFundamentalScienceDirectorateatthePacificNorthwestNationalLabora-tory(PNNL).PriortojoiningPNNL,hehadpostdoctoraltrainingintheDepartmentofPharmacologyattheUniversityofCaliforniaatLosAngeles(UCLA)andintheDepartmentofChemistryandBiochemistryattheCaliforniaStateUniversityatLosAngeles(CSULA).HeobtainedhisPhDdegreefromtheDepartmentofChemistryatWuhanUniversity,China.
YueheLinisalaboratoryfellowatPacificNorthwestNationalLaboratory.Hehasbeenactivelyworkinginthenanotechnologyarea,particularlyinthedevelopmentofnewnanobioelectronicdevicesandnanomaterialsforbiomedicaldiagnosisanddrugdelivery.Hisotherresearchactivitiesincludedevelopingintegratedmicroanalyti-calsystemsforenvironmentalandbiomedicalanalysis,andsynthesizingfunctionalnanomaterialsforbiosensordevelopment,fuelcell,andwatertreatmentapplica-tions.Dr.LinistheeditorofthebookHandbookofElectrochemicalNanotechnology.HealsoservesastheNorthAmericanEditorfortheJournalofNanoscienceandNan-otechnology,theassociateeditoroftheAdvancedScienceLetters,andMemberofEditorialAdvisoryBoardofother16internationaljournals.Dr.Linhasover200publications.
因篇幅问题不能全部显示,请点此查看更多更全内容