一、概述
原子力显微镜(Atomic Force Microscopy, AFM)是由IBM 公司的Binnig与史丹佛大学的Quate 于一九八五年所发明的,其目的是为了使非导体也可以采用扫描探针显微镜(SPM)进行观测。
原子力显微镜与扫描隧道显微镜的区别在于:
原理 样品导电 分辨率 生物样品 差 二、基本原理
原子力显微镜( AFM )的原理是利用针尖与样品表面原子间的微弱作用力来作为反馈信号,维持针尖——样品间作用力恒定,同时针尖在样品表面扫描,从而得知样品表面的高低起伏。
的要求非常低 扫描隧道显微镜STM 电子隧道效应 Y 低 制备复杂易损坏,现场操作性原子力显微镜AFM 原子间的范德华力 N 高 对工作环境、样品性质等方面
三、硬件架构
在原子力显微镜(Atomic Force Microscopy,AFM)的系统中,可分成三个部分:力检测部分、位置检测部分、反馈系统。
1、 力检测部分
在原子力显微镜(AFM)的系统中,所要检测的力是原子与原子之的范德华力。所以在本系统中是使用微小悬臂(cantilever)来检测原子之间力的变化量。这微小悬臂有一定的规格,例如:长度、宽度、弹性系数以及针尖的形状,而这些规格的选择是依照样品的特性,以及操作模式的不同,而选择不同类型的探针。 2、 位置检测部分
在原子力显微镜(AFM)的系统中,当针尖与样品之间有了交互作用之后,会使得悬臂cantilever摆动,所以当激光照射在cantilever的末端时,其反射光的位置也会因
为cantilever摆动而有所改变,这就造成偏移量的产生。在整个系统中是依靠激光光斑位置检测器将偏移量记录下并转换成电的信号,以供SPM控制器作信号处理。 3、 反馈系统
在原子力显微镜(AFM)的系统中,将信号经由激光检测器取入之后,在反馈系统中会将此信号当作反馈信号,作为内部的调整信号,并驱使通常由压电陶瓷管制作的扫描器做适当的移动,以保持样品与针尖保持合适的作用力。 四、原子力显微镜的3种操作模式
优点 扫描速度快,分辨率高,可得针尖易受损,样品易变形,图接触式 到原子级分辨率图像,适用于像扭曲。 表面变化大的产品。 对样品完全没有损伤,灵敏度非接触式 高。 轻敲模式 保护针尖和样品。 慢。 五、举例说明原子力显微镜工作原理
成像,扫描速度慢。 达不到原子水平,扫描速度分辨率低,不适用于在液体中缺点
如上图所示,二极管激光器(Laser Diode)发出的激光束经过光学系统聚焦在微悬臂(Cantilever)背面,并从微悬臂背面反射到由光电二极管构成的光斑位置检测器(Detector)。在样品扫描时,由于样品表面的原子与微悬臂探针尖端的原子间的相互作用力,微悬臂将随样品表面形貌而弯曲起伏,反射光束也将随之偏移,因而,通过光电二极管检测光斑位置的变化,就能获得被测样品表面形貌的信息。 在系统检测成像全过程中,探
针和被测样品间的距离始终保持在纳米(10米)量级,距离太大不能获得样品表面的信息,距离太小会损伤探针和被测样品,反馈回路(Feedback)的作用就是在工作过程中,由探针得到探针-样品相互作用的强度,来改变加在样品扫描器垂直方向的电压,从而使样品伸缩,调节探针和被测样品间的距离,反过来控制探针-样品相互作用的强度,实现反馈控制。因此,反馈控制是本系统的核心工作机制。
-9
因篇幅问题不能全部显示,请点此查看更多更全内容
Copyright © 2019- sceh.cn 版权所有 湘ICP备2023017654号-4
违法及侵权请联系:TEL:199 1889 7713 E-MAIL:2724546146@qq.com
本站由北京市万商天勤律师事务所王兴未律师提供法律服务