J.Phys.A:Math.Gen.39(2006)4411–4419
JOURNALOFPHYSICSA:MATHEMATICALANDGENERAL
doi:10.1088/0305-4470/39/17/S16
Denseplasmasinastrophysics:fromgiantplanetstoneutronstars
GChabrier1,DSaumon2andAYPotekhin3
123
EcoleNormaleSup´erieuredeLyon,CRAL(UMR5574CNRS),FranceLosAlamosNationalLaboratory,NM87545,USAIoffePhysico-TechnicalInstitute,StPetersburg,Russia
Received14August2005,infinalform22November2005Published7April2006
Onlineatstacks.iop.org/JPhysA/39/4411
Abstract
Webrieflyexaminethepropertiesofthedenseplasmascharacteristicoftheinteriorofgiantplanetsandoftheatmospheresofneutronstars.Specialattentionisdevotedtotheequationofstateofhydrogenandheliumathighdensityandtotheeffectofmagneticfieldsonthepropertiesofdensematter.PACSnumbers:05.70.−a,64.10.+h,96.30.Kf,96.30.Mh,97.60.Jd(Somefiguresinthisarticleareincolouronlyintheelectronicversion)
1.Introduction
Anaccuratedeterminationofthethermodynamicpropertiesofmatterunderextremeconditionsoftemperatureanddensityisrequiredforacorrectdescriptionofthemechanicalandthermalpropertiesofmanydenseastrophysicalbodies,includinggiantplanets,low-massstars(i.e.,starssmallerthantheSun)andso-calledcompactstars(whitedwarfs,browndwarfsandneutronstars).Theseobjectsarecomposeddominantlyofion–electronplasmas,whereionsarestronglycorrelatedandelectronsarestronglyorpartiallydegenerate:theclassicalCoulombparameteri=(Zie)2/kBTaiislargeandtheelectrondensityparametercoupling1/3
islessthanunity(herea0=h¯2/(mee2)denotestheelectronicBohrradius,rs=aia0Zi
ai=(3/4πni)1/3themeaninter-ionicdistance,Zitheionchargenumber,andnitheionnumberdensity).Thecorrectdescriptionofthestructureandcoolingoftheseastrophysicalbodiesthusrequirestheknowledgeoftheequationofstate(EOS)andthetransportpropertiesofsuchdenseplasmas.Inthisshortreview,wefocusonthetwoextremesofthisrangeofastrophysicalobjectsintermsofmatterdensity:Jovianplanetsandneutronstars.Aswillbeshowninthenextsections,modernexperimentsandobservationsprovidestringentconstraintsonthethermodynamicpropertiesofdensematterunderthephysicalconditionscharacteristicoftheseobjects.
0305-4470/06/174411+09$30.00©2006IOPPublishingLtdPrintedintheUK
4411
4412GChabrieretal
2.TheequationofstateofhydrogenandthestructureofJovianplanets2.1.Hydrogenpressuredissociationandionization
JupiterandSaturnarecomposedofabout70%–97%bymassofhydrogenandhelium.TemperaturesandpressuresrangefromT=170KandT=136KattheP=1barsurface,respectively,atthesurface,toT>8000K,P>10Mbaratthecentre.AtpressuresaroundP∼1–3Mbar,correspondingtoabout80%and60%ofJupiter’sandSaturn’sradius(measuredfromthecentre),respectively,hydrogenundergoesatransitionfromaninsulatingmolecularphasetoaconductingionizedplasma.Thedescriptionofthistransition,describedasthepressureionizationormetallizationofhydrogen,hasremainedachallengingproblemsincethepioneeringworkofWignerandHuntington[1].Muchexperimentalworkhasbeendevotedtothisproblem,buttheresultsremainsomewhatinconclusive.Severalhigh-pressureshockwaveexperimentshavebeenconductedinordertoprobetheEOSofdeuterium,theisotopeofhydrogen,intheregimeofpressureionization.Gasgunshockcompressionexperimentsweregenerallylimitedtopressuresbelow1Mbar[2],probingonlythedomainofmolecularhydrogen.Newtechniquesincludelaser-drivenshockwaveexperiments[3,5],pulse-powercompressionexperiments[6]andconvergentsphericalshockwaveexperiments[7,8]andcanachievepressuresupto5Mbarinfluiddeuteriumathightemperature,exploringforthefirsttimetheregimeofpressuredissociationandionization.TheserecentexperimentsgivedifferentresultsatP1Mbar,however,andthiscontroversyneedstobesettledbeforearobustcomparisonbetweenexperimentandtheorycanbemadeintheverydomainofhydrogenpressureionization.
Onthetheoreticalfront,alotofefforthasbeendevotedtodescribingthepressureionizationofhydrogen.TheEOScommonlyusedformodellingJovianplanetinteriorsistheSaumon–Chabrier–VanHorn(SCVH)EOS[9–11]whichincludesadetaileddescriptionofthepartialionizationregime.ThisEOSreproducestheHugoniotdataofNellisetal[2]butyieldstemperaturesabout30%higherthanthegasreshockdata,indicatinginsufficientD2dissociation[12].Aslightlyrevisedversion[13]recoversthegasgunreshocktemperaturedataaswellasthelaser-drivenshockwaveresults[3],withamaximumcompressionfactorofρ/ρ06,whereρ0=0.17gcm−3istheinitialdensityofliquiddeuteriumat20K.Ontheotherhand,theearlierSESAMEEOS[14],basedonasimilarformalism,predictsasmallercompressionfactor,withρ/ρ04,ingeneralagreementwithalltheotherrecentshockwaveexperiments.AbinitioapproachesforthedescriptionofdensehydrogenincludepathintegralMonteCarlo(PIMC)[15–17]andquantummoleculardynamics(QMD)simulations.Thelattercombinemoleculardynamics(MD)anddensityfunctionaltheory(DFT)totakeintoaccountthequantumnatureoftheelectrons[18–21].TherelevanceofearlierMD-DFTcalculationswasquestionedonthebasisthatthesesimulationswereunabletoreproducedatafromgasgunexperiments[18].Thisproblemhasbeensolvedwithmoreaccuratesimulations[19–21].Althoughanabinitioapproachismoresatisfactorythanthephenomenologicalapproachbasedoneffectivepotentials,inpracticethesesimulationsalsorelyonapproximations,suchasthehandlingoftheso-calledsignproblemfortheantisymmetrizationofthefermionwavefunctions,orthecalculationoftheelectronfunctionaldensityitself(inparticulartheexchangeandcorrelationeffects),ortheuseofeffectivepseudo-potentialsofrestrictedvalidity,additiontofinitesizeeffects.Moreover,thesesimulationsaretoocomputationallyintensiveforthecalculationofanEOScoveringseveralordersofmagnitudeindensityandtemperature,asnecessaryforthedescriptionofthestructureandevolutionofastrophysicalbodies.
Figure1comparesexperimentalandtheoreticalHugoniotsintheP–ρandP–Tplanes.Thedisagreementbetweenthelaser-drivenexperimentsandtheothertechniquesisillustratedintheP–ρdiagram.WhereastheSCVHEOSachievesamaximumcompressionsimilartothe
Denseplasmasinastrophysics4413
Figure1.Experimentalshock(P,ρ,T)dataandtheoreticalHugoniotsofdeuterium.Sourcesofdataaregasgunetal[2,12],Zmachine[6],NOVA[3,4]andCSSW[7,23].CurvesshowHugoniotscomputedfromtheEOSsofSCVH[11],SESAME[14],PIMC[15]andMD-DFT[20].
laser-drivendata,alltheothermodelspredictcompressionfactorsintheP–ρplaneinagreementwiththemorerecentdata.TheMD-DFTresults,however,predicttemperaturesforthesecondshocksignificantlylargerthantheexperimentalresults[12].Eventhoughtheexperimentaldouble-shocktemperaturemaybeunderestimatedduetounquantifiedthermalconductionintothewindowuponshockreflection,andthusrepresentsalowerlimitonthereshocktemperatures,thedisagreementintheT–Vplaneissignificant.Asnotedpreviously,thedegreeofmoleculardissociationhasasignificantinfluenceonthethermodynamicpropertiesofthefluidandinsufficientdissociationinthesimulationsmayresultinoverestimatesofthetemperature.IthasbeensuggestedthattheLDA/GGAapproximationsusedinMD-DFTunderestimatethedissociationenergyofD2[22].Thiswouldleadtoevenlessdissociation.ThefactthatcompressionalongtheexperimentalHugoniotremainssmallthussuggestscompensatingeffectsinthecaseofhydrogen.Morerecent,improvedsimulations[21],however,seemtopartlysolvethisdiscrepancyandtoproducereshocktemperaturesinbetteragreementwiththeexperimentalresults.PeakcompressioninthemodernMD-DFTsimulationsoccursinthe∼0.2–0.5Mbarrangearoundadissociationfractionof∼50%.
Thedifferencesinthebehaviourofhydrogenathighdensityandtemperatureillustratedbythevariousresultsdisplayedinfigure1bearimportantconsequencesforthestructureandevolutionofourJovianplanets.Thesedifferencesmustbecorrectlyunderstoodbeforethedescriptionofhydrogenpressuredissociationandionizationstandsonfirmgrounds.AsnotedbyBoriskovetal[23],alltherecentexperimentsagreequitewellintermsoftheshockspeedusversustheparticlevelocityup,almostwithintheirrespectiveerrorbars.Errorbarsanddifferencesin(us,up)areamplifiedinaP–ρdiagrambyafactorof(ρ/ρ0−1).Thesearechallengingexperimentsasthedifferencesseeninpanel1offigure1arisefromdifferencesinusandupoflessthan3%.
4414GChabrieretal
Figure2.AdiabatsforhydrogeninP–ρandP–Tplanes.Thecurveslabelled‘S’and‘J’showtheSCVH-interpolatedEOSadiabatsofSaturnandJupiter,determinedbyT=136KandT=170KatP=1bar,respectively.Thefirstandsecond-shockHugoniotscalculatedwiththeSESAMEEOSareshownbytheheavysolidlinelabelled‘H’.Thelightsolidcurve(right-handscale)showsthedifferencebetweenJupiteradiabatscalculatedwiththeSESAMEEOSrelativetotheSCVH-interpolatedEOS.
2.2.TheinteriorsofJupiterandSaturn
TherapidrotationofJovianplanetsinducesanon-sphericalgravitationalfieldthatcanbeexpandedinLegendrepolynomialsPn(cosθ):
n∞ReqGM
V(r,θ)=−JnPn(cosθ),(1)1−
rrn=1whereMandReqdenote,respectively,theplanetmassandequatorialradius,andtheJnare
thegravitationalmoments:
1
Jn=−rnPn(cosθ)ρ(r,θ)d3r.(2)nMReqVBecauseofnorth-southsymmetry,themomentsofoddorderarenull.Thefirstthree
non-vanishingmoments,J2,J4andJ6,havebeenmeasuredwithhighaccuracyforbothplanetsduringspacecraftfly-bymissions.Combinedwiththeplanetmass,radiusandrotationperiod,theseprovideintegralconstraintsonthedensityprofileoftheplanet,ρ(r,θ),tobecomparedwiththecorrespondingvaluesfromastructuremodelobtainedforaself-gravitatingandrotatingfluidbodyinhydrostaticequilibrium.TheEOSprovidestheP(ρ)relationneededtoclosethesystemofequations.ThestructureoftheH/Heenvelopesofgiantplanetsisfixedbythespecificentropydeterminedfromobservationsattheirsurface.Theveryhighefficiencyofconvectionintheinterioroftheseobjectsleadstonearlyadiabaticinteriorprofiles.ThestructureoftheplanetisthusdeterminedbythechoiceofthehydrogenEOSandtoalesserextentbytheheliumEOSusedinthemodels.AdetailedstudyoftheinfluenceoftheEOSofhydrogenonthestructureandevolutionofJupiterandSaturnhasbeenconductedrecently[24].Fortunately,someshockwaveexperimentsoverlapJupiter’sandSaturn’sadiabats.Figure2displaysJupiter(J)andSaturn(S)adiabatsforhydrogencalculatedwiththeSCVHEOSandthefirstandsecondshockHugoniotscalculatedwiththeSESAMEEOSandillustratestherelativedifferencesindensitybetweenJupiteradiabatscomputedwiththesetwoEOSs.AsdemonstratedbySaumonandGuillot[24],thesmall(5%)differenceonthe(P,ρ)relationalongtheadiabatbetweenthetwoEOSs,representativeofthetwosetsofexperimentalresults,islargeenoughtoaffectappreciablytheinteriorstructureofthemodels.NotethattheSESAMED2Hugoniotatlowdensityissomewhatstifferthanthegasgunexperiments[2]anddoesnotrecovertheidealD2gasentropyatlowtemperatureanddensity.Nomodel
Denseplasmasinastrophysics4415
ofJupitercouldbeobtainedwiththisEOS[24].AslightlymodifiedSESAMEEOS,whichdoesrecovertheH2entropyatlowtemperatureanddensity,yieldsJupitermodelswithaverysmallcoremass,Mcore∼1M⊕(M⊕isthemassoftheEarth)andamassMZ∼33M⊕ofheavyelements(Z>2)mixedintheH/Heenvelope.TheSCVHEOSyieldsmodelswithMcore=0–4M⊕andMZ∼15–26M⊕.ModelsofSaturnarelesssensitivetotheEOSdifferences,sinceonly∼70%ofitsmassliesatP>1Mbar,comparedto91%forJupiter.ModelscomputedwiththeSCVHandthemodifiedSESAMEEOShaveMcore=10–21M⊕andMZ=1–6M⊕and4–8M⊕,respectively.Asseeninfigure2,thetemperaturealongtheadiabatismoresensitivetothechoiceoftheEOS.Thisaffectsthethermalenergycontentoftheplanetandthusitscoolingrateandevolution.Equationsofstatewhichareadjustedtofitthedeuteriumreshocktemperaturemeasurements[25]leadtomodelsthattake∼3GyrforJupitertocooltoitspresentstate.Evenwhenconsideringuncertaintiesinthemodels,orconsideringthepossibilityofaH/Hephaseseparation,suchashortcoolingageisunlikelytobereconciledwiththeageofthesolarsystem.Thisastrophysicalconstraintsuggeststhatthereshocktemperaturedataaretoolow.
2.3.Heliumequationofstateandtheplasmaphasetransition
Theplanetinteriormodelsarealsoaffected,toalesserextent,bytheuncertaintiesoftheheliumEOS.AmodelEOSforheliumathighdensity,coveringtheregimeofpressureionization,hasbeendevelopedrecentlybyWinisdoerfferandChabrier[26].ThisEOS,basedoneffectiveinteractionpotentialsbetweenHe,He+,He++ande−species,reproducesadequatelyexperimentalHugoniotandsoundspeedmeasurementsupto∼1Mbar.Inthismodel,pressureionizationispredictedtooccurdirectlyfromHetoHe++.Becauseoftheuncertaintiesinthetreatmentoftheinteractionsathighdensity,however,thepredictedionizationdensityrangesfromafewto∼10gcm−3.Comparisonofthemodelpredictionswithavailablemeasurementsofelectricalconductivityofheliumathighdensity[27,28]isunderway.
Thepressureionizationandmetallizationofhydrogenhavebeenpredictedtooccurthroughafirst-orderphasetransition,theso-calledplasmaphasetransition(PPT)[1,29–31,10,42].NearlyallofthesePPTcalculationsarebasedonchemicalEOSmodels.SuchmodelsarebasedonaHelmholtzfreeenergythatincludescontributionsfrom(1)neutralparticles(atomsandmolecules),(2)afullyionizedplasmaand(3)usuallyacouplingbetweenthetwo.Itiswellknownthatrealisticfullyionizedplasmamodelsbecomethermodynamicallyunstableatlowtemperaturesandmoderatedensities.ThisisanalogoustothebehaviourofexpandedmetalsatT=0thatdisplayaregionwheredP/dρ<0andevenP<0[32].Thisbehaviourofthefullyionizedplasmamodelisformallyafirst-orderphasetransitionandreflectstheformationofboundstatesintherealsystem.Inotherwords,thechemicalmodelshaveafirst-orderphasetransitionbuiltinfromtheonset,andthisphasetransitioncoincides,notsurprisingly,withtheregimeofpressureionization.ThisrepresentsacommonflawinthistypeofmodelsanditfollowsthattheirpredictionofaPPTinhydrogenisnotcredible.Thisisfurthersupportedbyadetailedstudyoftwoofthesemodels[10,42].Ontheotherhand,recentabinitiosimulationsfindasharp(6±2%)volumediscontinuityatconstantpressure[21,33]ordP/dT<0atconstantvolume[43–45],afeatureconsistentwiththeexistenceofafirst-orderphasetransition.Atthesametime,thepaircorrelationfunctionexhibitsadrasticchangefromamoleculartoanatomicstatewithametalliccharacter(finitedensityofelectronicstatesattheFermilevel).Thesetransitionsarefoundtooccurinthe∼0.5–1.25Mbarand∼1500–3000Ktemperaturerange.Whiletheseresultsaresuggestive,asystematicexplorationofthispartofthephasediagramremainstobedone.Notethata
4416GChabrieretal
first-orderstructuraltransitionforH2atT=0ispredictedtooccuratapressureP4.0Mbar,fromDFTcalculationsbasedonexactexchangecalculations[22].ThereissofarnopublishedexperimentalevidenceforthePPTbutitcannotyetberuledout.Giventhedifficultyofmodellingthisregionofthephasediagramofhydrogen,onlyexperimentscanultimatelyestablishwhetheraPPTexistsornot.
3.Densematterinstrongmagneticfields:neutronstarstructureandcooling
Neutronstars(NS)consistofacoreofnucleonssurroundedbyanenvelopeofnucleiandelectronsformingaCoulombplasma.Coolingratesofthesestarsaredeterminedbytheheatcapacityandneutrinoemissionprocessesintheircoresandbyheattransportintheenvelopes.Fortheneutrinoemission,mostimportantaretheso-calleddirectUrca(Durca)processes(beta-decayandbeta-capture)andmodifiedUrca(Murca)processes(thesamebutwithparticipationofanadditionalnucleon,whichhelpstofulfilmomentumconservation).TheMurcaprocessesarelessefficient,buttheyworkineverysufficientlyhotNS.Incontrast,themostefficientDurcaprocessesoperateonlyiftheprotonfractioninthecoreislargeenough(otherwisethemomentumconservationconditionfordegeneratenucleonscannotbesatisfied).SomemodelsofnuclearmatterpredictthataNSwithrelativelyhighmassshouldhaveasufficientprotonfractionatthestellarcentrefortheDurcaprocessestooccur.Suchstarsshouldcoolfaster,whichopensapossibilityoftestingtheEOSofsuperdensematterthroughobservations.Thecoolingratesarealsostronglyaffectedbynucleonsuperfluidity(see[34]forreviewandreferences).
MostNSshavemagneticfieldsB∼1011–1013G,whereassome(so-calledmagnetars)arethoughttohavefieldsashighas∼1014–1015G.ThephotosphereofaNSischaracterizedbytemperaturesTs105–107K(dependingontheagetandmassMofthestar)anddensitiesρ10−2–104gcm−3(dependingonTandB).TraditionallytheNScrustisassumedtobecomposedofiron.However,theouterlayers,includingtheatmosphere,canbecomposedoflightelements(H,He,C)accretedontopoftheironlayer.ThereforethedeterminationofthetemperatureprofilesandemittedspectraofNSsrequiresanaccuratedescriptionoftheformationofboundstatesandpressureionizationoftheseelementsinastrongmagneticfield.
Thequantum-mechanicalpropertiesoffreechargedparticlesandboundspecies(hydrogenatomsandmolecules)arestronglymodifiedbythemagneticfield,whichtherebyaffectsthethermodynamicpropertiesoftheplasma[35,36].ThetransversemotionofelectronsinamagneticfieldisquantizedintoLandaulevels.TheenergyofthenthLandaulevelofthe√2
¯ωcninthenon-electron(withouttherestenergy)ismec(1+2bn−1),whichbecomesh
¯eB/mec=11.577B12keV,istheelectroncyclotronenergy,relativisticlimit,whereh¯ωc=h
2
b=h¯ωc/mec=B12/44.14isthefieldstrengthintherelativisticunits,andB12=B/(1012G)isatypicalmagnetic-fieldscaleforNSconditions.Theatomicunitforthemagnetic-field
¯e)×(e2/a0)=2.35109G.Itisconvenientstrengthissetbyh¯ωc=e2/a0,i.e.,B0=(mec/h×2
todefineadimensionlessmagnetic-fieldstrengthγ=B/B0=bαf,whereαfisthefinestructureconstant.
Forγ1,asencounteredinNSs,theground-stateatomicandmolecularbindingenergiesincreaseas∼ln2γ.TheHatominastrongmagneticfieldiscompressedinthetransversedirectionstotheradius∼am,where
am=(h¯c/eB)1/2=γ−1/2a0=2.56×10−10B12
−1/2
cm(3)
isthequantummagneticlength,whichbecomesthenaturallengthunit.Theincreaseofbinding
energiesanddecreaseofsizesleadtoasignificantincreaseofthefractionofnon-ionizedatomsintheplasmaatthephotosphericdensities(whicharehigherforstrongermagnetic
Denseplasmasinastrophysics4417
Figure3.Effectivesurfacetemperature(asseenbyadistantobserver,Ts∞)versusNSagetforassumedNSmassM=1.3and1.5solarmasses.ThedotswitherrorbarsshowestimatesofNSagesandeffectivetemperaturesfromvariousobservations;thedotswitharrowsindicateobservationalupperlimits.Left:coolingofNSswithdifferentrelativemassesM/Mofaccreted(H–He–C)matter(valuesoflogM/Mareindicatednearthecurves).Solidcurvesrefertonon-accreted(Fe)ironenvelopeofthestar.Right:coolingofNSswithironenvelopefordifferentmagneticfieldstrengths(logBinGauss).
fields).Forexample,atT=106KandB=1013G,thetypicaldensityisρ∼1gcm−3,andthereare>1%ofatomsintheHatmosphere.Becauseofthealignmentoftheelectronspinsantiparalleltothefield,twoatomsintheirgroundstate(m=0)donotbindtogether,becauseofthePauliexclusionprinciple.OneofthetwoHatomshastobeexcitedinthem=−1statetoformthegroundstateoftheH2molecule[36].Anotherimportanteffectisthatthermalmotionofatomsacrossthefieldstronglymodifiestheirbindingenergiesandradiativetransitionrates.Asshownin[37–39],theallowanceforpartialionizationandthermalmotioniscrucialforneutron-staratmospheremodelling.
3/2
AslongasTh¯ωc/kB=1.343×108B12KandρρB≈7.1×103B12gcm−3,theelectroncyclotronenergyh¯ωcexceedsboththethermalenergykBTandtheelectronFermienergykBTF,sothatthefieldisstronglyquantizing(e.g.,[35]).Inthiscase,typicalfortheNSphotospheres,theelectronspinsarealignedantiparalleltothefield.TheelectronFermienergydecreases;thereforetheonsetofdegeneracyisshiftedtohigherdensities(slightlybelowρB).Protonmotionisalsoquantizedbythemagneticfield,butthecorrespondingcyclotronenergy
¯ωcme/mp.ismuchsmaller,h¯ωcp=h
Amodelwhichdescribesthethermodynamicsofaninteracting(H2,H,H+,e−)plasmainastrongmagneticfieldwasconstructedin[37].Onthebaseofthismodel,theEOSformagnetizedHatmospheresofNSs,aswellastheiropacities,wereexploredandtabulatedin[38,39].
LandauquantizationofelectronorbitsaffectsnotonlytheEOSandtheradiativeopacities,butalsotheheatconductioninthesurfacelayers(see[35]andreferencestherein).TheEOSofstronglymagnetized,partiallyionizedhydrogenplasmaaswellastheelectronconductivitiesandradiativeopacitiesinneutronstarmagnetizedenvelopeswereusedin[40]tocalculatethethermalstructureandcoolingofsuperfluidNSswithaccretedenvelopesinthepresenceofstrongdipolemagneticfields.In[40](seealso[41]andreferencestherein),theeffectof
4418GChabrieretal
neutronsuperfluidityintheNSinnercrustwasalsoexamined.Theaccountoftheeffectsofaccretedmatter,magneticfieldandneutronsuperfluidityalterstheNScoolingsignificantly.
Figure3displaystheoreticalcoolingcurvesofNSswith(lowercurves,M=1.5M)orwithout(uppercurves,M=1.3M)Durcaprocessesinthecore,withorwithoutaccretedenvelopes,andwithmagneticfieldofdifferentstrengths,comparedtotheestimatesoftheeffectivetemperatureobtainedfromobservations(see[34]forreferences).Asseeninthefigure,thepresenceofalight-element(accreted)envelopeincreasesTsattheearlycoolingstage(t105yr),andasaresultthethermalenergybecomesexhaustedsooner.Themagnetar-likemagneticfieldB1014Gactsinasimilarway,whereasaweakerfieldalmostdoesnotaffectthecooling.
Forsimplicity,infigure3weneglecttheeffectsofsuperfluidity.Theirdiscussioncanbefoundin[34,40,41].4.Conclusions
Inthisbriefreview,weconsideredthedescriptionofthethermodynamicpropertiesofdenseCoulombmatterintwospecificastrophysicalcontexts,Jovianplanetsandneutronstars.Thedescriptionofthepressureionizationofhydrogenandotherelements,aswellasthepresenceofstrongmagneticfields,playsanimportantroleindeterminingthemechanicalandthermalpropertiesandtheevolutionoftheseobjects.Modelsincludingthesecomplexeffectscansuccessfullyexplainavarietyofobservations.Ontheotherhand,modernexperimentsand/orobservationscanenableustodiscriminatebetweenvariousEOSmodelsinplanetinteriorsandleadtoabetterdeterminationofmassesofaccretedenvelopes,surfacemagneticfieldsandeventuallytheEOSofsuperdensematterinneutronstars.Acknowledgments
WethankDGYakovlevforprovidinguswithhiscompilationofobservationaldataandperformingcoolingcalculationswithourphysicsinputforfigure3.TheworkofGCwaspartiallysupportedbytheCNRSFrench–RussiangrantPICS3202.TheworkofAYPwaspartiallysupportedbytheRLSSgrant1115.2003.2andtheRFBRgrants05-02-16245,03-07-90200and05-02-22003.TheworkofDSwassupportedinpartbytheUnitedStatesDepartmentofEnergyundercontractW-7405-ENG-36.References
[1][2][3][4][5][6][7][8][9][10][11][12][13][14]
WignerEandHuntingtonHB1935J.Chem.Phys.3764
NellisWJ,MitchellAC,vanThielM,DevineGJ,TrainorRJandBrownN1983J.Chem.Phys.791480CollinsGWetal1998Science2811178
CollinsGWetal2001Phys.Rev.Lett.87165504
MostovychAN,ChanY,LehechaT,SchmittAandSethanJD2000Phys.Rev.Lett.853870
KnudsonMD,HansonDL,BaileyJE,HallCA,AsayJRandDeeneyC2004Phys.Rev.B69144209BelovSIetal2002JETPLett.76433
BoriskovGV,BykovAI,IlkaevRI,SelemirVD,SimakovGV,TruninRF,UrlinVD,FortovVEandShuikinAN2003Dokl.Phys.48553
SaumonDandChabrierG1991Phys.Rev.A445122SaumonDandChabrierG1992Phys.Rev.A462084
SaumonD,ChabrierGandVanHornHM1995Astrophys.J.Suppl.Ser.99713HolmesNC,RossMandNellisWJ1995Phys.Rev.B5215835
SaumonD,ChabrierG,XuandWagner2000HighPress.Res.16331KerleyG1972LosAlamosLaboratoryReportLA-4476
Denseplasmasinastrophysics4419
[15]MilitzerBandCeperleyDM2000Phys.Rev.Lett.851890
[16]MilitzerB,CeperleyDM,KressJD,JohnsonJD,CollinsLAandMazevetS2001Phys.Rev.Lett.87275502[17]BezkrovniyV,FilinovVS,KrempD,BonitzM,SchlangesM,KraeftWD,LevashovPRandFortovVE2004
Phys.Rev.E70057401
[18]LenoskyT,BickhamSR,KressJDandCollinsLA2000Phys.Rev.B611[19]BagnierS,BlottiauPandCl´erouinJ2001Phys.Rev.E63015301[20]DesjarlaisMP2003Phys.Rev.B68064204
[21]BonevSA,MilitzerBandGalliG2004Phys.Rev.B69014101[22]St¨adeleMandMartinRM2000Phys.Rev.Lett.846070
[23]BoriskovGV,BykovAI,IlkaevRI,SelemirVD,SimakovGV,TruninRF,UrlinVD,ShuikinANand
NellisWJ2005Phys.Rev.B71092104
[24]SaumonDandGuillotT2004Astrophys.J.6091170[25]RossM1998Phys.Rev.B58669
RossM1999Phys.Rev.B606923(erratum)
[26]WinisdoerfferCandChabrierG2005Phys.Rev.E71026402
[27]TernovoiVYaetal2001ShockCompressionofCondensedMatteredMFurnish,NThadhaniandYHorie
(NewYork:AIP)p107
[28]FortovVEetal2003JETP97259
[29]NormanGEandStarostinAN1968HighTemp.6394[30]EbelingWandRichertW1985Phys.Lett.A10880[31]SaumonDandChabrierG1989Phys.Rev.Lett.622397[32]PinesDandNozi`eresP1966TheoryofQuantumFluids(NewYork:Benjamin)[33]ScandaloS2003Proc.Natl.Acad.Sci.USA1003051
[34]YakovlevDGandPethickC2004Annu.Rev.Astron.Astrophys.42169
[35]VenturaJandPotekhinAY2001TheNeutronStar–BlackHoleConnection(NATOASISeriesCvol567)
edCKouveliotou,JVenturaandEvandenHeuvel(Dordrecht:Kluwer)p393
[36]LaiD2001Rev.Mod.Phys.73629
[37]PotekhinAY,ChabrierGandShibanovYuA1999Phys.Rev.E602193[38]PotekhinAYandChabrierG2003Astrophys.J.585955[39]PotekhinAYandChabrierG2004Astrophys.J.600317
[40]PotekhinAY,YakovlevDG,ChabrierGandGnedinOY2003Astrophys.J.594404
[41]YakovlevDG,GnedinOY,GusakovME,KaminkerAD,LevenfishKPandPotekhinAY2005Nucl.Phys.
A752590
[42]KitamuraHandIchimaruS1998J.Phys.Soc.Japan67950
[43]MagroWR,CeperleyDM,PierleoniCandBernuB1996Phys.Rev.Lett.761240[44]BagnierS,BlottiauPandCl´erouinJ2000Phys.Rev.E63015301
[45]FilinovVS,BonitzM,FortovVE,EbelingW,LevashovPandSchlangesM2004Contrib.PlasmaPhys.44388
因篇幅问题不能全部显示,请点此查看更多更全内容