专利名称:一种基于强化学习和启发式搜索的路径规划方法及
系统
专利类型:发明专利
发明人:张秀玲,康学楠,李金祥申请号:CN202010800070.0申请日:20200811公开号:CN1116006A公开日:20201106
摘要:本发明公开了一种基于强化学习和启发式搜索的路径规划方法及系统。该方法包括:S1:在马尔科夫决策过程框架下建立环境模型,所述环境模型的状态空间为S,动作空间为A,奖励函数为R,转移概率函数为P;S2:通过Dyna‑Q算法对所述环境模型进行采样更新,对每个状态‑动作对进行评估并确定目标点;S3:基于所述目标点,通过A*算法分别计算当前位置与起始点和所述目标点的欧式距离,确定初始路径;S4:对所述初始路径中每个状态‑动作对进行赋值;S5:根据每个状态‑动作对的评估值以及赋值,确定最优动作;S6:根据最优动作确定最优路径。本发明能够有效的加速强化学习的收敛速度,同时克服启发式搜索规划出次最优解等问题,从而更加快速、准确的规划路径。
申请人:燕山大学
地址:066000 河北省秦皇岛市海港区河北大街西段438号
国籍:CN
代理机构:北京高沃律师事务所
代理人:张梦泽
更多信息请下载全文后查看
因篇幅问题不能全部显示,请点此查看更多更全内容
Copyright © 2019- sceh.cn 版权所有 湘ICP备2023017654号-4
违法及侵权请联系:TEL:199 1889 7713 E-MAIL:2724546146@qq.com
本站由北京市万商天勤律师事务所王兴未律师提供法律服务