CompressiveSensingBasedHigh-ResolutionChannelEstimationforOFDMSystem
Jia(Jasmine)Meng,StudentMember,IEEE,WotaoYin,YingyingLi,NamTuanNguyen,StudentMember,IEEE,
andZhuHan,SeniorMember,IEEE
Abstract—Orthogonalfrequencydivisionmultiplexing(OFDM)isatechniquethatwillprevailinthenext-generationwirelesscommunication.ChannelestimationisoneofthekeychallengesinOFDM,sincehigh-resolutionchannelestimationcansignifi-cantlyimprovetheequalizationatthereceiverandconsequentlyenhancethecommunicationperformances.Inthispaper,weproposeasystemwithanasymmetricdigital-to-analogcon-verter/analog-to-digitalconverter(DAC/ADC)pairandformulateOFDMchannelestimationasacompressivesensingproblem.Byskillfullydesigningpilotsandtakingadvantagesofthesparsityofthechannelimpulseresponse,theproposedsystemrealizeshigh-resolutionchannelestimationatalowcost.Thepilotdesign,theuseofahigh-speedDACandaregular-speedADC,andtheestimationalgorithmtailoredforchannelestimationdistinguishtheproposedapproachfromtheexistingestimationapproaches.Wetheoreticallyshowthatintheproposedsystem,a-resolu-tionchannelcanbefaithfullyobtainedwithanADCspeedat
=(2log()),whereisalsotheDACspeedandisthechannelimpulseresponsesparsity.Sinceissmalland
isrelativelycheap,weincreasingtheDACspeedto
obtainahigh-resolutionchannelatalowcost.Wealsopresentanovelestimatorthatisbothfasterandmoreaccuratethanthetypical1minimization.Inthenumericalexperiments,wesimulatedvariousnumbersofmultipathsanddifferentSNRsandletthetransmitterDACrunat16timesthespeedofthereceiverADCforestimatingchannelsatthe16resolution.Whilethereisnosimilarapproaches(forasymmetricDAC/ADCpairs)tocomparewith,wederivetheCramér–Raolowerbound.
IndexTerms—Channelestimation,compressivesensing,orthog-onalfrequencydivisionmultiplexing(OFDM).
I.INTRODUCTION
I
ManuscriptreceivedMarch28,2011;revisedAugust06,2011;acceptedAugust31,2011.DateofpublicationSeptember26,2011;dateofcurrentversionJanuary18,2012.TheworkofZ.HanwassupportedinpartbyNSFCNS-0910461,NSFCNS-0901425,NSFECCS-1028782,andNSFCAREERAwardCNS-0953377.TheworkofW.YinwassupportedinpartbyNSFECCS-1028790,NSFCAREERAwardDMS-07-48839,andONRGrantN00014-08-1-1101.TheassociateeditorcoordinatingthereviewofthismanuscriptandapprovingitforpublicationwasProf.PhilippeCiblat.
J.MengiswiththeCGGVeritas,LLC,Houston,TX77072USA(e-mail:jmeng2@uh.edu).
W.YiniswiththeDepartmentofComputationalandAppliedMathematics,RiceUniversity,Houston,TX77005USA(e-mail:wotao.yin@rice.edu).
Y.LiiswiththeDepartmentofComputationalandAppliedMathematics,RiceUniversity,Houston,TX77005USA,andalsowiththeDepartmentofElectricalandComputerEngineering,UniversityofHouston,Houston,TX77204USA(e-mail:yingyingli1985@gmail.com).
N.T.NguyeniswiththeDepartmentofElectricalandComputerEngineering,UniversityofHouston,Houston,TX77004USA(e-mail:tuannam79@gmail.com).
Z.HaniswiththeDepartmentofElectricalandComputerEngineering,Uni-versityofHouston,Houston,TX77004USA,andalsowiththeDepartmentofElectronicsandRadioEngineering,KyungHeeUniversity,Seoul130-701,Korea(e-mail:zhan2@mail.uh.edu).
Colorversionsofoneormoreofthefiguresinthispaperareavailableonlineathttp://ieeexplore.ieee.org.
DigitalObjectIdentifier10.1109/JSTSP.2011.21699
NATYPICALwirelessscenario,thetransmittedsignalarrivesatthereceiverviavariouspathsofdifferentlengths.Thisleadstointersymbolinterference(ISI)andpostsamajordifficultytoinformationdecoding,forexample,inorthogonalfrequencydivisionmultiplexing(OFDM).OFDMhasbeenwidelyappliedinwirelesscommunicationsystemsbecauseittransmitsatahighrate,achieveshighbandwidthefficiency,andisrelativelyrobusttomultipathfadinganddelay[1].OFDMapplicationscanbefoundindigitalaudiobroadcasting(DAB),HDTV-digitalvideobroadcasting(DVB),wirelessLANnet-work,3GPPLongTermEvolution(LTE),andIEEE802.16broadbandwirelessaccesssystem,etc.CurrentOFDM-basedWLANstandards(suchasIEEE802.11a/g)requireacoherentdetectionattheOFDMreceiver.Thisrequirementneedsanaccuratemultipathchannelestimationofchannelstateinfor-mation(CSI),whichcomeswithcomputationandbandwidthoverheads.ThereisrichliteratureonOFDMchannelestima-tion.Below,weprovideabriefoverview.
Therearetwomajorclassesofchannelestimationschemes.Onedoesnotusepilotsymbolsandiscalleddecision-directed,andtheotherusespilotsymbols[13].Theapproachesintheformerclasscanbedeployedwherethesendingpilotsignalsisnotapplicable(e.g.,passivelisteninginamilitarycontext)[14],[15].Ontheotherhand,theyrequirealargeamountofdatatoconvergeduetothereceiverbeing“blind.”Theapproachesinthelatterclasscantakeadvantagesofthepilotsinthetrans-mitteddata,whicharethetrainingsequencesknownbyboththetransmitterandreceiver,andtherefore,theyachievemoreaccuratechannelestimationandarefaster.Theapproachdevel-opedinthispaperbelongstothisclass.
Thedesignofapilot-assistedapproachincludesboththepi-lotsandtheestimationalgorithm.Thegoalistoachieveanop-timalcombinationofspectrumefficiencyandestimationaccu-racy[16]–[20].AmongtheexistingOFDMchannelestimationapproaches,somearebasedonthetime-multiplexedpilot,fre-quency-multiplexedpilot,andscatteredpilot[21].Theyachieverelativelyhigherestimationaccuracyyetuserelativelymorepi-lots.TherehavebeenattemptstoreducethenumberofpilotssuchasJ.Byunetal.[22],whichsendsoutasmallnumberofpre-estimationpilotstoestimatethenumberofpilotsneededinthemainestimation.Thereisnoguaranteedoverallreduc-tionofpilotsthough.Anotherapproachistheadaptivechannelestimationproposedin[23],whichusesalogiccontrollertochooseamongseveralavailabletrainingpatterns.Thecontroller
1932-4553/$26.00©2011IEEE
16IEEEJOURNALOFSELECTEDTOPICSINSIGNALPROCESSING,VOL.6,NO.1,FEBRUARY2012
choiceisbasedonthecross-correlationbetweenthepilotsym-bolsovertwoconsecutivetimeinstants,aswellasthedeviationfromthedesiredbiterrorrate(BER).Comparedwiththetra-ditionalleast-squareschannelestimator,thisadaptivechannelestimationhastheadvantagesofalowBERandhighdatarate.Unliketheaforementionedapproacheswithpilotsymbolsonregularlattices,therecentworkofFertlandMatz[24]pro-posesirregularpilotarrangementsandnonuniformsamplingtechniquesalongwithaconjugate-gradient-basedchannelestimator.Theirproposedsystemfeaturesalowcomputationalcomplexitywhilemaintainingasimilarchannelestimationaccuracyasthemean-squared-error-minimization(MMSE)channelestimator.
Webelievethatasasensingproblem,OFDMchannelesti-mationcanbenefitfromcompressivesensing(CS),whichac-quiresasparsesignalfromfewersamplesthanwhatisdic-tatedbytheNyquist–Shannonsamplingtheorem(cf.asurveyofthistopicinthesettingofwirelesscommunication[27]).CSencodesasparsesignalbytakingits“incoherent”linearpro-jectionsandsubsequentlydecodesthesignalusingsparseopti-mizationsuchasminimization.TomaximizethebenefitsofCSforOFDMchannelestimation,oneshallcarefullydesignitsencodinganddecodingsteps.Theycorrespondtothetwofo-cusesofthispaper:thedesignsofthepilotsandtheestimator,respectively.WeshallnotethatCShasbeenappliedtochannelestimationin[28]–[31],andsomepreliminaryresultswithlittleproofandanalysishasbeenpublishedin[39].
ComparedtotheexistingCS-basedwork[2]–[5],ourap-proachisuniqueinvariouswaysasfollows.Weusepilotswithuniformrandomphasesandofferanoveltheoreticalguaranteeforfaithfulestimation.Itsproofisbasedonfirstshowingaconcentration-of-measurephenomenonforacertainsubsam-pledcirculantmatrix,subsequentlyshowingitsrestrictedisom-etryproperty(RIP),andapplyingtheexistingRIP-basedresultstoestablishtherecoveryguarantee.Theresultshowsthatonecanobtainhigh-resolutionchannelbyjustincreasingthetrans-mitterDACspeedwhilekeepingthereceiverADCunchanged.Inaddition,anovelestimatoristailoredforOFDMchannelre-sponse;insteadofusingthegenericminimization,wemodifyittotakeadvantagesofthecharacteristicsofchannelresponse,byusingiterativesupportdetection(ISD)[6]andalimited-sup-portleast-squaressubproblem.Theresultingalgorithmisverysimpleandperformsnoticeablybetterthangenericminimiza-tion.Furthermore,wederiveaCramér–Raolowerboundofthemeansquareerror,whichiscomparedtotheactualperformanceoftheestimator.
Wedemonstratetheefficiencyandeffectivenessofthepro-posedapproach.Wehopethattheresultsofthispapercon-vincethereaderwiththepotentialoftheproposedapproachasalow-costandhigh-performancechannelestimator.
Therestofthispaperisorganizedasfollows.SectionIIreviewsthegeneralOFDMsystemmodel.SectionIIIrelateschannelestimationtoCSandpresentstheproposedpilotdesignwithitstheoreticalproperties.InSectionIV,introducesourOFDM-tailoredestimator,analyzesitscomplexity,andde-rivesaCramér-Raolowerboundforperformancecomparison.
SectionVpresentsthesimulationresults.Finally,SectionVIconcludesthisworkanddiscussessomefuturework.
II.OFDMSYSTEMMODEL
AbasebandOFDMsystemisshowninFig.1.Inthissystem,themodulatedsignalinthefrequencydomain,representedby
,isinsertedwithpilotsignal,andthenan-point
IDFTtransformsthesignalintothetimedomain,denotedby
,whereacyclicextensionoftimelengthisadded
toavoidinter-symbolandinter-subcarrierinterferences.There-sultingtimeseriesdataareconvertedbyadigital-to-analogcon-verter(DAC)withaclockspeedof
Hzintoananalogsignalfortransmission.Weassumethatthechannelresponse
comprises
propagationpaths,whichcanbemodeledbyatime-domaincomplex-basebandvectorwithtaps:
(1)
whereisacomplexmultipathcomponent,standsfortheDiracdelta,andisthemultipathdelay.
Since
isshorterthantheOFDMsymbolduration,thenonzerochannelresponseconcentratesatthebeginning,which
translateto
,i.e.,onlythefirst
componentsofcanpossiblytakenonzerovaluesand
.Assumingthatinterferencesareeliminated,whatarrivesatthereceiveristheconvolutionofthetransmittedsignalandthechannelresponseplusnoise,denotedbygivenby
(2)
wheredenotesconvolutionanddenotestheAWGNnoise.Passingthroughtheanalog-to-digitalconverter(ADC),
issampledas,andthecyclicprefix(CP)isremoved.TraditionalOFDMchannelestimationschemesas-sume
.If,thenisadownsampleof.An-pointDFTconvertsto,wherethepilotsignalwillberemoved.Thegoalistorecoverthechannelvectorfromthemeasurements(or,equivalently),giventhepilots(or,equivalently).Throughoutthepaper,weusecapitallet-tersforfrequencydomainsignalsandlowercaselettersfortimedomainsignals.
III.COMPRESSIVESENSINGANDPILOTDESIGN
Inthissection,wepresentanovelCS-basedOFDMchannelestimationarchitecture.Wefirstprovidethemotivation,aswellastheCSbackground.Next,weproposetodesignpilotswithuniformrandomphasesandgivethereasonsbehind.Alongwithatheoreticalguarantee,wepresentnumericalevidenceshowingthatourdesignachievesanoptimalencodingperformance.Fi-nally,wecompareourproposedapproachwiththerelatedex-istingresults.A.Motivation
CSallowssparsesignalstoberecoveredfromveryfewmea-surements,whichoftentranslatestofewersamplesandshorter
MENGetal.:COMPRESSIVESENSINGBASEDHIGH-RESOLUTIONCHANNELESTIMATIONFOROFDMSYSTEM17
Fig.1.BasebandOFDMsystem.
Fig.2LogicBlockDiagramoftheproposedCS-OFDM.
sensingtimes.Becausethechannelimpulseresponseisverysparse(especiallyintheoutdoorcase),wearemotivatedtoapplyCStorecoverahigh-dimensionalfromasmallnumberofsamples.Sinceinchannelestimation,thesamplenumberisdeterminedbythereceiverADCspeedandthedimensionofbythetransmitterDACspeed,weproposetoobtainahigh-di-mensional(thushigh-resolution)byemployingapairofhigh-speedDACandregular-speedADC.Hereregular-speedmeansthespeedforgeneraldatatransmission.Intoday’smarket,thepriceforDACismuchlowerthanthatofADC.SincetheADCrunsataregularspeed,weconsiderourhigh-speed-DACap-proachaninexpensivewaytoobtainhigh-resolutionchannelestimation.B.CSBackground
CStheories[7],[8],[25]statethatan-sparsesignal1canbestablyrecoveredfromlinearmeasurements,
rowsandcolumns,whereisacertainmatrixwith
,andisnoise,byminimizingthe-normof.ClassicCSoftenassumesthatthesensingmatrix,afterscaling,satisfiestherestrictedisometryproperty(RIP)
(3)
istheRIPparameter.forall-sparse,where
Theworksin[36],[37],and[43]alsostudythestablerecoveryoffromnoisyobservationsbasedonconditionson.TheRIPissatisfiedwithhighprobabilitybyalargeclassofrandom
1In
matricessuchasthosewithentriesindependentlysampledfromasubgaussiandistribution.
However,theclassicrandomsensingmatricesarenotadmis-sibleinOFDMchannelestimationbecausethechannelresponseisnotdirectlymultipliedbyarandommatrix;instead,asde-scribedinSectionII,isconvolutedwith,followedbynoisecontaminationanduniformdownsampling.Becauseconvolu-tionisacirculantlinearoperator,wecanpresentthisprocessby
(4)
whererepresentsafullcirculant(convolution)matrixdeter-denotestheuniformdown-samplingfrompointsminedby,
toitssubset,isnoise.Asiswidelyperceived,CSfavorsfullyrandomand
matrices,whichenjoyRIPsandthusadmitstablerecoveryfromfewestmeasurements(intermsoforderofmagnitude),butboth
andinourcasearenotas“random.”Thesefactorsseem-wouldbeunlikelytoworkwellforCS.inglysuggestthat
Nevertheless,carefullydesignedcirculantmatricescandeliverthesameoptimalCSperformance.C.PilotsWithRandomPhases
Todesignthesensingmatrix,weproposetogeneratepilotsineitheroneofthefollowingtwoways:1)therealandimag-aresampledindependentlyfromthestan-inarypartsof
;2)(sameas[30])dardGaussiandistribution,
,,haveindependentrandomphasesbutauniformamplitude.NotethatsinceistheinversediscreteFouriertransformof,theentriesoftheresultingoftype1)areindependentandidenticallydistributed(i.i.d.)standardGaussian.Furthermore,oftype1)haveindependentrandomamplitudes,sotype2)ismorerestrictivethantype1).Onthe
ofbothtypeshaverandomphases.Letde-otherhand,
notethediscreteFouriertransform.Fromtheconvolutionthe-and,wehaveorem
ourcase,SisequaltoP,thenumberofnonzerotapsin(1).
18IEEEJOURNALOFSELECTEDTOPICSINSIGNALPROCESSING,VOL.6,NO.1,FEBRUARY2012
,sothemeasurementscanbewritten
as
(5)
whichisillustratedinFig.2.
Notethattheproposedsamplingisverydifferentfrompartial
Fouriersampling
orwidelyusedincompressiveimaging(e.g.,MRI).Thelatterrequiresarandomtoavoidaliasingartifactsintherecoveredimage.Incontrast,thepro-posedschemepermitsarbitrarytypesofincludingtheonecorrespondingtouniformdownsampling,whichnaturallyoc-curswhentheADCrunsataspeedlowerthantheDAC.There-fore,theproposedschemeiseasytoimplementintheOFDMsystem.Inthenexttwosubsections,weshowtheencodingef-ficiencyofthisschemeboththeoreticallyandnumerically.Tokeepourexpositiongeneral,thediscussionsinthissectiondonotassumethatthenonzeroentriesofonlyoccurinitsfirst
positions.ThispropertyofOFDMchannelsshallbe
exploitedinthenextsectiontoimproveboththetheoreticalandnumericalperformances.
D.CSbyRandomConvolution
WefirstreviewtheexistingCSresultsofrandomconvolu-tion.In[28],Toeplitz2measurementmatricesareconstructedwithi.i.d.randomrow1[thesameastype1)]butwithonly1or{1,0,1};theirdownsamplingeffectivelytakesthefirstrows;andthenumberofmeasurementsneededforstablerecoveryisshownas.[29]usesa“partial”Toeplitzmatrix,withi.i.d.BernoulliorGaussianrow1,forsparsechannelestimationwherethedownsampling
effectivelyalsotakesthefirst
rows.Theirschemerequiresforstablerecovery.In[30],random
convolutionoftype2)witheitherrandomdownsamplingorrandomdemodulationisproposedandstudied.Itisshownthattheresultingmeasurementmatrixisincoherentwithany
givensparsebasiswithahighprobabilityand
recoveryisstablegiven
.Ourproposedtype2)ismotivatedby[30].Recentresultsin[38]showthatseveralrandomcirculantmatricessatisfytheRIPinexpectation
given
witharbitrarydownsampling.Therestofthissubsectionfocusesonprovingtherecoveryguaranteesfortheproposedtype-1)sensingscheme.Inshort,weshallestablishstablerecovery
underthecondition
,thatis,whenthechannelissparse,therecanbeuptoalogdifferencebetweentherecoveredchannelresolutionandthereceiverADCspeed.
Wenotethatonemighthopetoimprove
to,likeinthesameofi.i.d.Gaussiansensingmatrices,butitwillrequireanovelapproach.
Letthetype-1)CSsensingmatrixbedenotedby
(6)
2which
isslightlymoregeneralthancirculant.
whereisjustafactorforthenormalizationpurpose,isadownsamplingoperatorthatkeepstheentriesinanarbitrary
indexsetofcardinality
anddiscardstherest,and..
.
isacirculantmatrixwithcomplexstandardGaussianrandom
.
Theproofsketchisthefollowing.Themainstepisacon-centration(isometry)result:foranarbitrary-sparsevectorwith,isconcentratedarounditsmean,whichequals1.Theunit-normofgivestheunitmean;theyarenotessential.Theremainingstepsfollowtheargumentsin[40],withminorchangestosomeformulasandnumbers:roughly
speaking,wefixanarbitraryindexsetwith
,pickan-net—andusetheaboveconcentrationresultforasingletoestablish
theisometryfor
uniformlyover;then,basedonthe-nettrickandaunionbound,theisometryisex-tendedfromtoall
uniformly;andfinally,theunionboundisappliedagaintoextendtheisometrypropertyfrom
withafixedtothesetofall-sparsevectors.Thises-tablishestheRIPof,moreaccurately,withhighprobability
given
.QuotingexistingRIP-basedre-coveryresults,wethenobtainstablerecoveryguaranteesforall-sparsevectors.
Themajorworktoprovetheconcentrationresultisbasedon
reducing
toandapplyingthefollowingresultfrom[42]thatrelatestheconcentrationoftotheparameters.
Lemma1(Sec.4.1of[42]):Assumethat
fori.i.d.and.Let.Thefollowinginequalitiesholdforany:
(7)(8)
Therefore,weshallexpress
asandboundand.
1)ConcentrationResultofRandomCirculantMatrices:Letbesuchthatand.(Weshallremovetheunit-normassumptionlater.)Webreakthedevelop-mentintoafewsteps:
Step1)Basedonthesymmetryofconvolution,wecan
rewrite
MENGetal.:COMPRESSIVESENSINGBASEDHIGH-RESOLUTIONCHANNELESTIMATIONFOROFDMSYSTEM19
whereand
..
.
Step2)Letbethefull-sizesingularvalue
decomposition(SVD)ofmatrix
,andassume.Introduce.
Sinceisunitary,iscomplexstandardGuassianaswell.Forsimplicity,weassumethereal-valued
,whichcausesalossoffactorof
butdoesnotchangetheresultsbelowinanyessentialway.Hence,
(9)
ToapplyLemma1,weletand.Weshallbound
and.
Step3)Since
,wehave.
Step4)Sinceeveryroworcolumnofhasaunit2-norm
andatmostnonzeroentries,theroworcolumn
hasamaximal1-normof.Hence,wehaveand
.Therefore,
(10)(11)
andapplyingLemma1to
(12)
gives
(13)(14)
Let
andobtain
.Combining(13)and
(14)andnoting
(15)
wegetconcentrationinequality
(16)
where
.
Theorem1:Amatrixgeneratedby(6)satisfiestheconcen-trationinequality(16)forany-sparsevector.
2)FromConcentrationtoRIP:Inequality(16)letsusfollowtheargumentsof[40]andobtainthefollowingtworesults.
Lemma2:Foranygivenindexsetwith
and,amatrixgeneratedby(6)satisfiestheinequality
(17)
holdswithprobabilityatleast
From(17)totheRIPinequality(3),weshallapplyingtheunion
boundwiththemultiple
.Hence,(3)failstoholdwithprobabilityatmost
(18)
Ifwechoose
andlet,thenandtheright-handsideof(18)
.Hence,foreachwecanchoosesmallenoughtoen-sure
.Therefore,wegetthefollowing:Theorem2:Letmatrixbegeneratedby(6).If
,thensatisfiestheRIPwithaprescribed
withprobabilityatleast,wheretheconstantsin
dependonlyon.FromTheorem2andthefact[43]thatisasuffi-cientconditionfor-minimizationtorecoverall-sparsevec-torsuniversallyandrecoverallnearly-sparsevectorsstably,wecanconcludethatuniversalstablyrecoveryconditionforma-trixgeneratedby(6)is.E.IntuitiveExplanations
Letusexplainintuitivelywhy(5)isaneffectiveencoding
schemeforasparsevector.ThekeyofsuccessfulCSencodingisthatnomatterwherethenonzerosinare,eachmeasure-mentmustcontainaroughlyequalamountofinformationfromeachnonzeroin;inotherwords,theinformationinmustspreadoutinthemeasurements,andthespreadingmustnotde-pendonwheretheinformationislocalizedin.Itiscommonly
knownthataslongasissparse,
isnon-sparse(theuncer-taintyprinciple)andthusitsinformationisspreadoverallits
components.Thechallengesaretoavoid
fromde-spreading
.Therandomphasesofbydesignareofcrit-icalimportance.They“scramble”thecomponentsof
andbreakthe\"delicaterelations\"amongthesecomponentsinaway
20IEEEJOURNALOFSELECTEDTOPICSINSIGNALPROCESSING,VOL.6,NO.1,FEBRUARY2012
Fig.3.Meansquareerrorversusnumberofmultipath(SNR=30dB).
that,contrarytobeingsparse,isnotsparseatall.Onecanseethisbyrecallingthatthephases
of
encodethelocationoftheinformationin.Whenissparse,itsinformationishighlylocalized.Randomly“scram-bling”thephasescausestheinformationtospreadover.Duetoaphenomenoncalledconcentrationofmeasures,theinforma-tioninspreadsoverthecomponents
inawaythat,withhighprobability,thesizesofall-sparseareuniformlypre-served(scaledbyafactor
)bywithofasizeessentiallylinearin
and.Preservingsizemeanspreservingpair-wisedistances,sothosedownsampledmeasure-mentsperformstableembedding,whichsubsequentlyallowsminimizationtoobtainastablerecoveryof.
F.NumericalEvidenceofEffectiveRandomConvolutionCSperformanceismeasuredbythenumberofmeasurementsrequiredforstablerecovery.Tocomparetheproposedsensingschemeswiththewell-establishedGaussianrandomsensing,weconductnumericalsimulationsandshowitsresultsinFig.3.WecomparethreetypesofCSencodingmatrices:thei.i.d.Gaussianrandomcomplexmatrix,andthetwocirculantrandomcomplexmatricescorrespondingtotypes1)andtype2)above.Inaddi-tion,thestandardminimizationiscomparedtoourproposedalgorithmCS-OFDM,whichisdetailedinthenextsection.ThesimulationsresultsshowthattherandomconvolutionsofbothtypesperformjustaswellastheGaussianrandomsensingma-trix,andouralgorithmCS-OFDMfurtherimprovestheperfor-mancebyhalfofamagnitude.
G.RelationshiptoExistingCS-BasedChannelEstimationOurworkiscloselyrelatedto[29]and[31].In[29],i.i.d.BernoulliorGaussianvectorisusedastrainingsequence,anddownsampleiscarriedoutbytakingonlythefirstrows,whilechannelestimationisobtainedasasolutiontotheDantzigse-lector.In[31],MIMOchannelsareestimatedbyactivatingallsourcessimultaneously.Thereceiversmeasurethecumulative
response,whichconsistsofrandomconvolutionsbetweenmul-tiplepairsofsourcesignalsandchannelresponses.Theirgoalistoreducethechannelestimationtime.minimizationisusedtorecoverthechannelresponse.
Ourcurrentworkislimitedtoestimatingasingle-vector.Althoughourworkisbasedonsimilarrandomconvolutiontech-niques,wehaveproposedtouseapairofhigh-speedDACtransmitterandregular-speedADCreceiverforthenovelgoalofhigh-resolutionchannelestimation.Furthermore,wederivetheoreticalguaranteesandapplyanovelalgorithmtailoredfortheOFDMchannel,whichisdescribedindetailsinSectionIVbelow.
IV.OFDMCHANNELESTIMATOR
Inthissection,wefirstformulatetheproblemfortheOFDMchannelestimator.Then,wepresentthenumericalalgorithm,aswellasitscomplexityanalysis.Finally,anestimatedperfor-mancelowerboundisgiventoevaluatetheproposedalgorithm.A.ProblemFormulation
Asaresultofrapiddecayingofwirelesschannels,—thenumberofsignificantmultipathcomponents—issmall,sothechannelresponseishighlysparse.Recallthatthenonzero
componentsofonlyappearinthefirst
components.3Weshallrecoverasparsehigh-resolutionsignalwithaconstraintfromthemeasurementsatalowerresolutionof.Wede-fineastheamplitudeofacomplexnumber,asthetotal
numberofnonzerosof
,and.Thecorre-spondingmodelis
(19)
wheredenotes
in(5).Generallyspeaking,problem(19)isNP-hardandisimpossibletosolveevenformoderate.Acommonalternativeisitsrelaxationmodelwiththesameconstraints:
(20)
whichisconvexandhaspolynomialtimealgorithms.Ifhasnonoise,both(19)and(20)canrecoverexactlygivenenoughmeasurements,but(20)requiresmoremeasurementsthan(19).B.Algorithm
Insteadofusingagenericalgorithmfor(20),wedesignanalgorithmspeciallytoexploittheOFDMsystemfeatures,in-cludingthespecialstructureofandnoisymeasurements.Atthesametime,wemaintainalgorithmsimplicitytoachievelowcomplexityandmatchwitheasyhardwareimplementation.
3fordataN~
isandknown.0.8Comparedsforcyclicwithprefix).N,theEvenratioforis0.81/5ins,thetheWiFinumbersystemofmultipath(3.2sisstillrelativelysmallespeciallyintheoutdoorenvironment.Therefore,thechanneltapsarestillsparse.
MENGetal.:COMPRESSIVESENSINGBASEDHIGH-RESOLUTIONCHANNELESTIMATIONFOROFDMSYSTEM21
Firstofall,wecansimplycombinetwoconstraintsintoone
bylettingthevariablesbe
anddrop-pingtherestcomponentsof.Letbethematrixformed
bythefirst
columnsof.Hence,theonlyconstraintsare.Sincethesolutionsparsityremainstobemuch
smallerthan,thesparseoptimizationisstillneeded.TheRIPresultinthelastsectiontellsusthenumberofrequiredmeasure-mentsis
,whereforOFDM,insteadof.Since,withthesamenumberofmea-surements(receiverADCspeed)onecanestimatethechannel
withalargeandthusanevenlarger.Moveover,fromthecomputationalpointofview,itreducesthesizeandcomplexityofourproblemandthusmakesthealgorithmfaster.
WealsodevelopouralgorithmCS-OFDMforthepurposeofhandlingnoisymeasurements.Theiterativesupportdetection(ISD)schemeproposedin[6]hasaverygoodperformanceforsolving(20)evenwithnoisymeasurements.OuralgorithmusestheISD,aswellasafinaldenoisingstep.Inthemainloop,itestimatesasupportsetfromthecurrentreconstructionandre-constructsanewcandidatesolutionbysolvingtheminimization
problem
,andititeratesthesetwostepsforasmallnumberofiterations.Theideaofiterativelyup-datingtheindexsethelpscatchmissingspikesanderasefakespikes.Thisisan-basedmethodbutoutperformsthestan-dardminimization.Becausethemeasurementshavenoise,thereconstructionisneverexact.Ouralgorithmusesafinalde-noisingstep,whichsolvesleast-squaresoverthefinalsupport,toeliminatetinyspikeslikelyduetonoise.ThepseudocodeoftheproposedalgorithmislistedinAlgorithm1.Algorithm1CS-OFDMInput:;
Initalize:
thefirst
columnsof.and
whilethestoppingconditionisnotmet,do
Subproblem:
(21)
Supportdetection:,
where
.
Weightsupdate:;
,
otherwise.endwhile
Support-restrictedleast-squares:
threshold;solve
and
(22)
}Return
and
.
InAlgorithm1,ateachiteration,(21)solvesaweightedproblem,andthesolutionisusedforsupportdetectiontogenerateanew.Afterthemainloopisdone,asupportisestimatedaboveathreshold,whichisselectedbasedonem-piricalexperiences.Ifthesupportdetectionisexecutedsuccess-fully,wouldbethesetofallchannelmultipathdelay.Finally,isconstructedbysolvingasmallleast-squaresproblem,and
,falltozero.C.ComplexityAnalysis
Thisalgorithmisefficientsinceeverystepissimpleandthetotalnumberofiterationsneededissmall.Thesubproblemisastandardweightedminimizationproblem,whichcanbesolvedbyvarioussolvers.Asisaconvolutionoperator,wechooseYALL1[11]since1)itallowsustocustomizetheoper-atorsinvolvinganditsadjointtotakeadvantagesoftheFFT,makingiteasiertoimplementthealgorithmonhardware,2)YALL1isasymptoticallygeometricallyconvergentandefficientevenwhenthemeasurementsarenoisy.Withourcustomization,allYALL1operationsareeitherFFTsorone-dimensionalvector
operations,sotheoverallcomplexityis
.Moreover,forsupportdetection,werunYALL1withamoreforgivingstoppingtoleranceandalwaysrestartitfromthelaststepsolu-tion.Furthermore,YALL1convergesfasterastheindexgetsclosertothetruesupport.ThetotalnumberofYALL1callsisalsosmallsincethedetectsupportthresholddecaysexponen-tiallyandboundedbelowbyapositivenumber.Numericalex-perienceshowsthatthetotalnumberofYALL1callsneverex-ceeds,whichisthenumberoftaps.
Thecomputationalcostofthefinalleast-squaresstepis
negligiblebecausetheassociatedmatrix
hasitsnumberofcolumnsapproximatelyequalto,namely,theassociated
matrixforleast-squareshassize
.Generallyspeaking,thecomplexityforthisleast-squaresis.Sinceandaremuchsmallerthan,thecomplexityoftheentirealgorithmisdominatedbythatofYALL1,whichis
.D.Cramér-RaoLowerBound
TheCramér–RaoLowerBound(CRLB)isanindicatoroftheperformanceofanyunbiasedestimator,whichhasbeenusedinmanyapplications[12].Inthissubsection,wederiveaCRLBundertheassumptionthatthetaplocations(thesupportof)areknown.Wearenotawareofwaystodropthesupportassump-tion.Sinceourestimatordoesnotknowthesupport,thesupportawareCRLBderivedispessimistic.Ithasavaluelowerthanthe
22IEEEJOURNALOFSELECTEDTOPICSINSIGNALPROCESSING,VOL.6,NO.1,FEBRUARY2012
CRLBwithanunknownsupport.Nevertheless,thepessimisticCRLBdoesservethecomparisonpurpose.
TheCRLBforeachentryofis
,whereistheFisherinformationmatrix,writtenas
,where
denotesexpectationandistheconditionalprobabilitydensityfunction(pdf)ofgiven.Withknown,thechannelestimationmodelcanbewrittenas
(23)
where
,denotesisthesub-matrixofwithcolumnscorrespondingtotheindicesin,andistheAWGNnoisewithdistribution.Following(23),wecanderivetheconditionalpdfofgiven:
(24)
ItisastandardexercisetoobtaintheoverallCRLB:
(25)
TheaboveCRLBiscomparedtotheactualperformanceinthenumericalstudyinthenextsection.
V.NUMERICALSIMULATIONS
Inthissection,wepresentnumericalsimulationstoillus-tratetheperformanceoftheproposedCS-OFDMalgorithmforhigh-resolutionOFDMchannelestimation.Ourevaluationsarebasedonthemeansquareerror(MSE)ofchannelestimationandtherateofsuccessfulmultipathdelaydetectionswithrespecttodifferentchannelprofilesandsignal-to-noiseratios(SNRs).A.SimulationSettings
WeconsideranOFDMsystemwith-pointIDFT
atthetransmitterand-pointDFTatthereceiver.Thisgivesacompressionratioof16.Thenumberofsilentsub-carrierthatactsasguardbandis256among1024sub-carriers.Thechannelisestimatedbasedon768pilottoneswithuniformlyrandomphasesandaunitamplitude(recallthattheunitamplitudedoesnotchangeestimationresultsbutmakesouralgorithmfaster),withmeasurementSNRsrangingfrom10to30dB.Weassumetheusageofcyclicprefixandthattheimpulseresponseofthechannelisshorterthancyclicprefix,i.e.,thereisnointer-symbolinterference.Forallsimulations,wevarythetotalnumberofmultipathfrom5to15.Wedonotconsiderthecompensationofinphase/quadraturephase(I/Q)imbalanceandcarrierfrequencyoffset(CFO),andleavethemforfuturework.B.MSEPerformance
Fig.4isasnapshotofonechannelestimationsimulation.ItshowsthattheproposedpilotarrangementandCS-OFDMsuccessfullydetectanOFDMchannelwithmultipathand
Fig.4.Exampleofreconstructedmultipathdelayprofile.
Fig.5.MSEperformanceversusnumberofmultipath.
SNRdB.Ourmethodnotonlyexactlyestimatesthemul-tipathdelaysbutalsocorrectlyestimatesthevaluesofthecor-respondingmultipathcomponents.
Fig.5depictstheMSEperformanceonOFDMchannelswiththenumbersofmultipathvaryingfrom5to15andSNRlevelsfrom10to30dB.Asthenumberofmultipathgrows,theMSEincreases.WhenthereareonlyamoderatenumberofmultipathontheOFDMchannel,theMSEisverylow.Inaddition,theincreaseofSNRalsoreducestheMSEforabout10timesper20dB.
Fig.6showsthereconstructedSNRsversusthenumberofmultipathatdifferentinputSNRs.WecanseethatCS-OFDMachievesagaininSNR.Forexample,whentheinputSNRis10dB,weobtainareconstructedSNRhigherthan20dBfor5multipath.Asthenumberofmultipathincreases,theSNRgaindecreases.However,evenwhenthenumberofmultipathis10,westillhavea5dBgain,e.g.,thereconstructedSNRis15dBwhentheinputsignalSNRis10dB.ThesimilarSNR
gainappearsforinputSNR
dBandSNRdBcases.MENGetal.:COMPRESSIVESENSINGBASEDHIGH-RESOLUTIONCHANNELESTIMATIONFOROFDMSYSTEM23
Fig.6.ReconstructedSNRversusnumberofmultipath.
Fig.7.CSrecoveredchannelvarianceversusCRLB.
OverthesetofSNRsandmultipathnumbersinourtested,thereisanaveragegainof6dBfromtheinputSNRtotherecoveredSNR.
C.CRLBPerformance
Fig.7depictstheestimatedchannelvarianceversusthesup-port-knownCRLB,correspondingtodifferentSNRsandmul-tipathnumbers.SincethealgorithmdoesnotknowthesupportwhiletheCRLBdoes,webelievethatthesmallgapsindicateastrongperformanceofthealgorithm.D.MultipathDelayDetectionPerformance
Figs.8and9depicttheprobabilityofcorrectdetection(POD)andthefalsealarmrate(FAR)ofmultipathdelayscorrespondingtodifferentSNRsandmultipathnumbers.WhentheSNRisabove10dB,simulationshows100%PODfornomorethan12multipath.Forthelargenumberofmultipath15,theprobabilityofcorrectmultipathdelaydetectionishigherthan95%forSNRdB.EvenwhenSNRisaslowas10dB,aslongasthenumberofmultipathdoesnotexceed10,westillhaveaPODofgreaterthan95%.TheFARperformance
Fig.8.Probabilityofdetectionversusnumberofmultipath.
Fig.9.Probabilityoffalsealarmversusnumberofmultipath.
showstheconsistantresults:astheSNRdecreasesandthenumberofmultipathincreases,theperformancedecreases.For
SNR
dBandthenumberofmultipath,weobtainnearlyzeroFAR.
VI.CONCLUSION
EfficientOFDMchannelestimationwilldriveOFDMtocarrythefutureofwirelessnetworking.Agreatopportunityforhigh-efficiencyOFDMchannelestimationislentbythesparsenatureofchannelresponse.RidingontherecentdevelopmentofCS,weproposeadesignofprobingpilotswithrandomphases,whichpreservestheinformationofchannelresponseduringtheconvolutionanddown-samplingprocesses,andasparserecoveryalgorithm,whichreturnsthechannelresponseinhighSNR.Thesebenefitstranslatetothehigh-resolutionofchannelestimation,aswellasshorterprobingtimes.Inthispaper,thepresentationislimitedtoanidealizedOFDMmodelandsimulatedexperiments.Inthefuture,wewillfusethemintomorerealisticOFDMframeworks.Theresultspresentedherehintahigh-efficiencyimprovementforOFDMinpractice.
24IEEEJOURNALOFSELECTEDTOPICSINSIGNALPROCESSING,VOL.6,NO.1,FEBRUARY2012
REFERENCES
[1]O.Edfors,M.Sandell,J.-J.VandeBeek,D.Landström,andF.Sjöberg,
AnintroductiontoorthogonalfrequencydivisionmultiplexingLuleåTekniskaUniv..Luleå,Sweden,pp.1–58,Sep.1996.
[2]C.R.Berger,S.Zhou,P.Willett,B.Demissie,andJ.Heckenbach,
“CompressedsensingforOFDM/MIMOradar,”inProc.42ndAnnu.AsilomarConf.Signals,Syst.,Comput.,Asilomar,CA,Oct.2008,pp.213–217.
[3]C.R.Berger,S.Zhou,andP.Willett,“Signalextractionusingcom-pressedsensingforpassiveradarwithOFDMsignals,”inProc.11thInt.Conf.Inf.Fusion,Cologne,Germany,Jul.2008.
[4]G.TauböckandF.Hlawatsch,“Acompressedsensingtechniquefor
OFDMchannelestimationinmobileenvironments:Exploitingchannelsparsityforreducingpilots,”inProc.IEEEInt.Conf.Acoust.,Speech,SignalProcess.(ICASSP),LasVegas,NV,Apr.2008,pp.2885–2888.[5]C.R.Berger,S.Zhou,W.Chen,andP.Willett,“Sparsechanneles-timationforOFDM:Over-completedictionariesandsuper-resolutionmethods,”inProc.IEEEInt.WorkshopSignalProcess.Adv.WirelessCommun.,Perugia,Italy,Jun.2009,pp.196–200.
[6]Y.WangandW.Yin,“Sparsesignalreconstructionviaiterativesupport
detection,”SIAMJ.ImagingSci.,no.3,pp.462–491,Aug.2010,no.3.[7]E.Candes,J.Romberg,andT.Tao,“Robustuncertaintyprinciples:
Exactsignalreconstructionfromhighlyincompletefrequencyinfor-mation,”IEEETrans.Inf.Theory,vol.52,no.2,pp.4–509,Feb.2006.
[8]E.CandesandT.Tao,“Nearoptimalsignalrecoveryfromrandompro-jections:Universalencodingstrategies,”IEEETrans.Inf.Theory,vol.52,no.12,pp.06–25,Dec.2006.
[9]M.Ledoux,“Theconcentrationofmeasurephenomenon,”Amer.Math.
Soc.,2001,082182.
[10]W.GuoandW.Yin,“EdgeCS:Anedgeguidedcompressivesensing
reconstruction,”inProc.Vis.Commun.ImageProcess.(VCIP),HuangShan,AnHui,China,Jul.2010.
[11]J.YangandY.Zhang,Alternatingdirectionalgorithmsfor`-problems
incompressivessensingRiceCAAMRep.TR09-37.
[12]H.Zayyani,M.Babaie-Zadeh,andC.Jutten,“BayesianCramer–Rao
boundfornoisy.non-blindandblindcompressedsensing,”ComputingResearchRepository(CoRR),abs/1005.4316,2010.
[13]Y.Li,“Pilot-symbol-aidedchannelestimationforOFDMinwireless
systems,”IEEETrans.Veh.Technol.,vol.49,no.4,pp.1207–1215,Jul.2000.
[14]P.CiblatandL.Vandendorpe,“Non-dataaidedcarrierfrequencyoffset
estimationforOFDManddownlinkDS-CDMAsystems,”inProc.IEEEthVeh.Technol.Conf.,AtlanticCity,NJ,Oct.2001,vol.4,pp.2618–2622.
[15]P.CiblatandL.Vandendorpe,“Blind,carrier,frequencyoffsetesti-mationfornoncircularconstellation-basedtransmissions,”IEEETrans.SignalProcess.,vol.51,no.5,pp.1378–13,May2003.
[16]P.CiblatandL.Vandendorpe,“Onthemaximum-likelihoodbased
data-aidedfrequencyoffsetandchannelestimates,”inProc.Eur.SignalProcess.Conf.,Toulouse,France,Sep.2002,vol.1,pp.627–630.
[17]S.Coleri,M.Ergen,A.Puri,andA.Bahai,“Channelestimationtech-niquesbasedonpilotarrangementinOFDMsystems,”IEEETrans.Broadcasting,vol.48,no.3,pp.223–229,Sep.2002.
[18]H.WuandX.Huang,“Jointphase/amplitudeestimationandsymbol
detectionforwirelessICIself-cancellationcodedOFDMsystems,”IEEETrans.Broadcasting,vol.50,no.1,pp.49–55,Mar.2004.
[19]A.Punchihewa,Q.Zhang,O.Dobre,C.Spooner,S.Rajan,andR.
Inkol,“OnthecyclcostationarityofOFDMandsinglecarrierlinearlydigitallymodulatedsignalsintimedispersivechannels:Theoreticalde-velopmentsandapplication,”IEEETrans.WirelessCommun.,vol.9,no.8,pp.2588–2599,Aug.2010.
[20]R.Carrasco-Alvarez,R.Parra-Michel,A.Orozco-Lugo,andJ.Tugnait,
“Enhancedchannelestimationusingsuperimposedtrainingbasedonuniversalbasisexpansion,”IEEETrans.SignalProcess.,vol.57,no.3,pp.1217–1222,Mar.2009.
[21]S.TakaokaandF.Adachi,“Pilot-assistedadaptiveinterpolation
channelestimationforOFDMsignalreception,”inProc.Veh.Technol.Conf.,Milan,Italy,May2004,vol.3,pp.1777–1781.
[22]J.ByunandN.P.Natarajan,“AdaptivepilotutilizationforOFDM
channelestimationinatimevaryingchannel,”inProc.WirelessMi-crow.Technol.Conf.,Clearwater,FL,Apr.2009,pp.1–5.
[23]W.M.AfifiandH.M.Elkamchouchi,“Anewadaptivechannelesti-mationforfrequencyselectivetimevaryingfadingOFDMchannels,”inProc.Int.Conf.Comput.Eng.Syst.,Cairo,Egypt,Dec.2009.
[24]P.FertlandG.Matz,“ChannelestimationinwirelessOFDMsystems
withirregularpilotdistribution,”IEEETrans.SignalProcess.,vol.58,no.6,pp.3180–3194,Jun.2010.
[25]D.Donoho,“Compressedsensing,”IEEETrans.Inf.Theory,vol.52,
no.4,pp.12–1306,Apr.2006.
[26]E.Candes,J.Romberg,andT.Tao,“Stablesignalrecoveryfromin-completeandinaccuratemeasurements,”Commun.PureAppl.Math.,vol.59,no.8,pp.1207–1223,Aug.2006.
[27]Y.Li,Z.Han,H.Li,andW.Yin,CompressiveSensingforWireless
Networks.Cambridge,U.K.:CambridgeUniv.Press,2012.
[28]W.U.Bajwa,J.D.Haupt,G.M.Raz,S.J.Wright,andR.D.Nowak,
“Toeplitz-structurescompressedsensingmatrices,”inProc.IEEE/SP14thWorkshopStatist.SignalProcess.,Madison,WI,Aug.2007,pp.294–298.
[29]J.D.Haupt,W.U.Bajwa,G.M.Raz,andR.D.Nowak,“Toeplitz
compressedsensingmatriceswithapplicationstosparsechannelesti-mation,”IEEETrans.Inf.Theory,vol.56,no.11,pp.5862–5875,Nov.2010.
[30]J.Romberg,“Compressivesensingbyrandomconvolution,”SIAMJ.
Imag.Sci.,vol.2,no.4,pp.1098–1128,Nov.2009.
[31]J.K.RombergandR.Neelamani,“Sparsechannelseparationusing
randomprobes,”InverseProblems,vol.26,115015.
[32]Z.TianandG.Giannakis,“Compressedsensingforwidebandcogni-tiveradios,”inProc.IEEEInt.Conf.Acoust.,Speech,SignalProcess.(ICASSP),Apr.2007,pp.1357–1360.
[33]J.Meng,W.Yin,H.Li,E.Houssain,andZ.Han,“Collaborativespec-trumsensingfromsparseobservationsincognitiveradionetworks,”IEEEJ.Sel.AreasCommun.SpecialIss.CognitiveRadioNetworkingCommun.,vol.29,no.2,pp.327–337,Feb.2011.
[34]J.Paredes,G.Arce,andZ.Wang,“Ultra-widebandcompressed
sensing:Channelestimation,”IEEEJ.Sel.TopicsSignalProcess.,vol.1,no.3,pp.383–395,Oct.2007.
[35]J.Meng,J.Ahmadi-Shokouh,H.Li,Z.Han,S.Noghanian,andE.Hos-sain,“Samplingratereductionfor60GHzUWBcommunicationusingcompressivesensing,”inProc.AsilomarConf.Signals,Syst.,Comput.,Asilomar,CA,Nov.2009.
[36]D.L.Donoho,M.Elad,andV.Temlyakov,“Stablerecoveryofsparse
overcompleterepresentationsinthepresenceofnoise,”IEEETrans.Inf.Theory,vol.52,no.1,pp.6–18,Jan.2006.
[37]J.Tropp,“Justrelax:Convexprogrammingmethodsforidentifying
sparsesignalsinnoise,”IEEETrans.Inf.Theory,vol.52,no.3,pp.1030–1051,Mar.2006.
[38]H.Rauhut,J.Romberg,andJ.A.Tropp,“Restrictedisometriesfor
partialrandomcirculantmatrices,”arXiv:1010.1847,2010.
[39]J.Meng,Y.Li,N.Nguyen,W.Yin,andZ.Han,“Highresolution
OFDMchannelestimationwithlowspeedADCusingcompressivesensing,”inProc.IEEEInt.Conf.Commun.,Kyoto,Japan,Jun.2011.[40]R.Baraniuk,M.Davenport,R.DeVore,andM.Wakin,“Asimpleproof
oftherestrictedisometrypropertyforrandommatrices,”Construct.Approx.,vol.28,no.3,pp.253–263,2008.
[41]E.CandesandT.Tao,“Decodingbylinearprogramming,”IEEETrans.
Inf.Theory,vol.51,no.12,pp.4203–4215,Dec.2005.
[42]B.LaurentandP.Massart,“Adaptiveestimationofaquadraticfunc-tionalbymodelselection,”Ann.Statist.,pp.1302–1338,2000.
[43]Q.MoandS.Li,“Newboundsontherestrictedisometryconstantk,”
Appl.Comput.Harmon.Anal.,vol.31,no.3,pp.460–468,2011.
Jia(Jasmine)Meng(S’10)receivedtheB.S.andM.S.degreesinelectricalengineeringfromtheSouthwestPetroleumUniversity,Chengdu,China,in2004and2007,respectively,andthePh.D.degreeinelectricalengineeringfromtheUniversityofHouston,Houston,TX,in2010.
Herresearchinterestsaretheframeworkofcom-pressivesensingandimplementationforcommuni-cationandsignalprocessing.
MENGetal.:COMPRESSIVESENSINGBASEDHIGH-RESOLUTIONCHANNELESTIMATIONFOROFDMSYSTEM25
WotaoYinreceivedtheB.S.degreeinmathematicsfromNanjingUniversity,Nanjing,China,in2001,andtheM.S.andPh.D.degreesinoperationsresearchfromColumbiaUniversity,NewYork,in2003and2006,respectively.
Since2006,hehasbeenwiththefacultyoftheDepartmentofComputationalandAppliedMathe-matics,RiceUniversity,Houston,TX.Hisresearchinterestsincludeoptimization,aswellasitsapplica-tionsininverseproblems,compressedsensing,signalprocessing,andvariationalimageprocessing.
Dr.YinwontheNSFCAREERAwardin2008andtheAlfredP.SloanRe-searchFellowshipin2009.
NamTuanNguyen(S’11)receivedtheB.E.degreeinelectricalandcomputerengineeringfromHanoiUniversityofTechnology,Hanoi,Vietnam,in2002andtheM.E.degreeinelectricalandcomputerengineeringfromtheSouthernIllinoisUniversity,Edwardsville,in2009.HeiscurrentlypursuingthePh.D.degreeattheUniversityofHouston,Houston,TX.
Hisresearchinterestsincludeapplicationsofma-chinelearningandinformationtheoryincognitiveradio,wirelesssecurity,wirelessnetworks,andwire-lesscommunicationsystems.
YingyingLireceivedtheB.S.degreeinmathematicsfromPekingUniversity,Beijing,China,in2006andthePh.D.degreeinappliedmathematicsfromtheUniversityofCalifornia,LosAngeles.
SheiscurrentlyapostdocjointlyattheUniver-sityofHouston,Houston,TX,andRiceUniversity,Houston.Herresearchinterestsincludesparseopti-mization,machinelearning,andalgorithmdesign.
ZhuHan(S’01–M’04–SM’09)receivedtheB.S.de-greeinelectronicengineeringfromTsinghuaUniver-sity,Beijing,China,in1997,andtheM.S.andPh.D.degreesinelectricalengineeringfromtheUniversityofMaryland,CollegePark,in1999and2003,respec-tively.
From2000to2002,hewasanR&DEngineerwithJDSU,Germantown,MD.From2003to2006,hewasaResearchAssociateattheUniversityofMaryland.From2006to2008,hewasanAssistantProfessoratBoiseStateUniversity,Boise,ID.Currently,heisan
AssistantProfessorintheElectricalandComputerEngineeringDepartment,UniversityofHouston,Houston,TX.Hisresearchinterestsincludewirelessresourceallocationandmanagement,wirelesscommunicationsandnetworking,gametheory,wirelessmultimedia,security,andsmartgridcommunication.Dr.HanhasbeenanAssociateEditoroftheIEEETRANSACTIONSONWIRELESSCOMMUNICATIONSsince2010.HeisthewinnerofFredW.EllersickPrizein2011.HeisanNSFCAREERawardrecipientin2010.HeisthecoauthorforthepapersthatwonthebestpaperawardsattheIEEEInternationalConferenceonCommunications2009andthe7thInternationalSymposiumonModelingandOptimizationinMobile,AdHoc,andWirelessNetworks(WiOpt09).
因篇幅问题不能全部显示,请点此查看更多更全内容
Copyright © 2019- sceh.cn 版权所有 湘ICP备2023017654号-4
违法及侵权请联系:TEL:199 1889 7713 E-MAIL:2724546146@qq.com
本站由北京市万商天勤律师事务所王兴未律师提供法律服务