您好,欢迎来到尚车旅游网。
搜索
您的当前位置:首页A framework for mapping

A framework for mapping

来源:尚车旅游网
MolecularSystemsBiology8;Articlenumber578;doi:10.1038/msb.2012.12Citation:MolecularSystemsBiology8:578&2012EMBOandMacmillanPublishersLimitedAllrightsreserved1744-4292/12www.molecularsystemsbiology.comAframeworkformapping,visualisationandautomaticmodelcreationofsignal-transductionnetworks

´r3,EddaKlipp2,StefanHohmann1,HiroakiKitano3,5,6,7Carl-FredrikTiger1,2,8,FalkoKrause2,8,GunnarCedersund1,3,4,RobertPalme

andMarcusKrantz1,2,5,*

¨teborg,Sweden,2TheoreticalBiophysics,Humboldt-Universita¨tzuBerlin,Berlin,Germany,DepartmentofCellandMolecularBiology,UniversityofGothenburg,Go

¨pingUniversity,Linko¨ping,Sweden,4FreiburgInstituteofDepartmentofClinicalandExperimentalMedicine,DiabetesandIntegrativeSystemsBiology,Linko

AdvancedSciences,SchoolofLifeSciences,Freiburg,Germany,5TheSystemsBiologyInstitute,Tokyo,Japan,6SonyComputerScienceLaboratories,Inc.,Tokyo,Japanand7OkinawaInstituteofScienceandTechnology,Okinawa,Japan8Theseauthorscontributedequallytothiswork

¨tzuBerlin,Invalidenstr.42,Berlin10115,Germany.Tel.:þ493020938389;*Correspondingauthor.TheoreticalBiophysics,Humboldt-Universita

Fax:þ493020938813;E-mail:marcus.krantz@biologie.hu-berlin.de

31Received8.7.11;accepted16.3.12

Intracellularsignallingsystemsarehighlycomplex.Thiscomplexitymakeshandling,analysisandvisualisationofavailableknowledgeamajorchallengeincurrentsignallingresearch.Here,wepresentanovelframeworkformappingsignal-transductionnetworksthatavoidsthecombinatorialexplosionbybreakingdownthenetworkinreactionandcontingencyinformation.Itprovidestwonewvisualisationmethodsandautomaticexporttomathematicalmodels.WeusethisframeworktocompilethepresentlymostcomprehensivemapoftheyeastMAPkinasenetwork.Ourmethodimprovespreviousstrategiesbycombining(I)moreconcisemappingadaptedtoempiricaldata,(II)individualreferencingforeachpieceofinformation,(III)visualisationwithoutsimplificationsoraddeduncertainty,(IV)automaticvisualisationinmultipleformats,(V)automaticexporttomathematicalmodelsand(VI)compatibilitywithestablishedformats.Theframeworkissupportedbyanopensourcesoftwaretoolthatfacilitatesintegrationofthethreelevelsofnetworkanalysis:definition,visualisationandmathematicalmodelling.Theframeworkisspeciesindependentandweexpectthatitwillhavewiderimpactinsignallingresearchonanysystem.

MolecularSystemsBiology8:578;publishedonline24April2012;doi:10.1038/msb.2012.12

SubjectCategories:metabolicandregulatorynetworks;computationalmethods;simulationanddataanalysis

Keywords:combinatorialcomplexity;mathematicalmodelling;networkmapping;signaltransduction;visualisation

Introduction

Alllivingcellsinteractwithandrespondtotheirenvironmentviathecellularsignal-transductionnetwork.Thisnetworkencompassesallcellularcomponentsandprocessesthatarerequiredtoreceive,transmitandinterpretinformation.Duetoitskeyroleincellularphysiology,thesignallingnetwork,andseveralofitssubnetworks,havebeenintenselystudiedinarangeoforganisms.However,suchnetworksarehighlycomplexanddifficulttoanalyseduetotheso-calledcombinatorialexplosion(Hlavaceketal,2003).Thisexplosionreferstothefactthatthespecificstateofeachcomponentisdeterminedbymultiplecovalentmodificationsorinteractionpartners,andthatthesepossibilitiesrapidlycombinetoaverylargenumberofpossiblespecificstates.Experimentaldatadonotgenerallydistinguishbetweenallthesespecificstates,butinsteadfocusmostlyonreactionsbetweenpairsofcompo-nents,usuallygivingnoorlimitedinformationonothermodificationsorinteractionpartnersofthereactants.Hence,&2012EMBOandMacmillanPublishersLimitedthereisadiscrepancybetweenthegranularityoftheempiricaldataandthehighlydefinedspecificstatesusedinmostmathematicalmodels.Thismakestheinterpretationanduseofempiricaldatainthecontextofsuchmodelstatesambiguousandoftenarbitrary.Theseproblemsposemajorchallengesforsystemsbiology,astheypreventusfrom(i)unambiguouslydescribinganetwork,(ii)visualisingitwith-outsimplificationsorunsupportedassumptionsand(iii)automaticallygeneratingmathematicalmodelsfromknowl-edgeindatarepositories.

Largeeffortshavebeeninvestedinaddressingtheseissues.Signallingsystemsarecommonlyvisualisedthroughtheinformal‘biologist’sgraph’thatissimpleandintuitive,butlacksthestringentformalismandprecisionrequiredtomeetthethreecriteriaabove(exemplifiedbyThorneretal,2005).Thelackofstandardisedglyphs(defininge.g.,mechanismofinformationtransferandhowedgescombinestoregulatetargetnodes)makestheinformationinthe‘biologist’sgraph’ambiguousanddifficulttoreuse.Toaddressthis,the

MolecularSystemsBiology20121Aframeworkformapping,visualisationandautomaticmodelcreationC-FTigeretalcommunityhasdevelopedtheSystemsBiologyGraphicalNotation,SBGN(LeNovereetal,2009).Thisincludesthreevisualformats;theactivityflowdiagram,theentityrelation-shipdiagramandtheprocessdescription(orprocessdiagram).Theactivityflowdiagramsharesmanypropertieswiththe‘biologist’sgraph’,buttheentityrelationshipdiagramandprocessdescriptionallowpreciserepresentations.Theprocessdescriptioncorrespondstothestatetransitionreactionformatusedinmostmodelsdevelopedbythesystemsbiologycommunity,andwhichhavebeenstandardisedintheSystemsBiologyMarkupLanguage(SBML;Huckaetal,2003).Theprocessdescriptioncouldmeeteachofthethreecriteriaabovebutitsutilityisseverelyaffectedbythecombinatorialexplosion.Itisbasedonaspecificstatedescription,whichmeansthat,foreachcomponent,eachpossiblecombinationofmodificationsandinteractionpartnersmustbeaccountedforexplicitly.Hence,onlyverysimplesystemscanbedescribedcompletelyandonlyveryfewmodelsincludetheentirestatespace(Kiselyovetal,2009)whilethevastmajorityincludesimplifyingomissions.Whilesimplificationsareoftenneces-sary,thelackofdiscriminationbetweenarbitraryomissionsandexclusionsbasedonexperimentalevidenceisasignificantshortcoming.Theseissuesarepartiallyaddressedintheentityrelationshipdiagram,ormolecularinteractionmap,whichcomesintwoflavours;explicitandimplicit(calledheuristicandcombinatorialbytheauthor(Kohnetal,2006)).Theexplicitversionrequiresallspecificstatestobedisplayedandhencesharethelimitationsoftheprocessdescription.Incontrast,theimplicitversiondisplaysonlythepossiblereactiontypes(orelementalreactions,aswewillcallthembelow)andhencelargelyavoidsthecombinatorialexplosion.Theentityrelationshipdiagramrepresentseachcomponentasasinglenodeandreactionsinacondensedformat.WhilenotasintuitiveastheotherSBGNformats,ithastheadvantageofconcentratingallinformationonagivenproteinandworksespeciallywellforsimpleregulatorycircuits,astheconcen-tratedinformationmakesitdifficulttotracetheorderofeventsinmorecomplexnetworks.ThethreeSBGNformathascomplementarystrengths,butthereiscurrentlynosoftwareavailableforconversionbetweenthethreedifferentvisualisa-tionformats.However,theSBGNstandardsareundercontinuousdevelopmentandtheseissueswilllikelybeaddressedinthefuturethroughtheSBGNmarkuplanguage,SBGN-ML.

Similareffortsonthemodellingsidehaveresultedinrule-basedmodellingandassociatedvisualisationformats(Faederetal,2005).Briefly,rulesaredefinedasreactionsthatarevalidunderaparticularsetofcontingencies,andeachreactionisspecifiedforeachsuchcontingencyset.Thismeansthatwhenareaction’srateisincreasedbyphosphorylationofonecomponentitwillbedefinedbytworules;onewherethatcomponentisphosphorylatedandonewhereitisnot.Whiletheserulesdefinetheentirestatespaceandthesystemstayssubjecttothefullcombinatorialexplosion,theruledescriptionhasalleviatedthecombinatorialproblemintworespects:(1)thesystemhasbeendescribedmorecompactlyand(2)theactualisedstatespacemightbesignificantlyreducedbyintroducingonlythosestatesthatareactuallypopulated(LokandBrent,2005),orbyusingagent-basedstochasticmodelling(Sneddonetal,2011).Theruledefinitionformatis

2MolecularSystemsBiology2012alsoasignificantsteptowardsthegranularityofempiricaldata,ascomparedwiththeabstract-specificstates.Theseadvantagesaremirroredonthevisualisationsidebygraphicalreactionrules,whichusetheprocessdescriptionformattodisplayindividualrules(Blinovetal,2006).Networklevelvisualisationhasusedeithertopologicalcontactmaps(Danos,2007)orentityrelationshipdiagrams(LeNovereetal,2009),andthesecomplementaryvisualisationformatshaverecentlybeencombinedintheextendedcontactmap(Chyleketal,2011).Contactmapshavesoftwaresupport,butneitherentityrelationshipdiagramsnorextendedcontactmapscanbegeneratedautomaticallyfromtherule-basedmodels.Hence,therule-basedformatpartiallyaddressestheautomaticcreationofmodelsfromdatarepositories(iii),asitprovidesthetoolstogeneratemathematicalmodelsautomaticallyoncetheknowledgehasbeenreformulatedasrules.However,therule-basedsystemprovidesacumbersomeformatfor(i)unambiguousnetworkdescriptionandisnotdevelopedfor(ii)comprehensivevisualisations.Takentogether,thisraisesthequestionwhethergraphical-andmodel-basedformatsarethemostappropriateforstringentnetworkdefinition,orwhethertherearemoresuitablenetworkdefinitionformatsthatallowbothvisualisationandautomaticmodelgeneration.

Here,wepresentanewframeworktodescribecellularsignal-transductionnetworks.Ournetworkdefinitionhasthesamegranularityasexperimentaldata,avoidsthecombina-torialcomplexity,canbeautomaticallyvisualisedincomple-mentarygraphicalformatsincludingallthreeSBGNformatsandunambiguouslydefinesmathematicalmodels.Therxnconsoftwaretoolcomplementstheframeworkbyautomatingvisualisationandmodelcreation.Thekeyfeatureofourframeworkisthestrictseparationofelementalreactions(andtheircorrespondingstates);whichdefinesthepossiblesignallingeventsinthenetwork,fromcontingencies;whichdescribesthecontextualconstrainsonthesereactions.Importantly,eachelementalreactioncorrespondsdirectlytoasingleempiricalobservation,suchasaprotein–proteininteractionoraspecificphosphorylation.Thecontingenciesdefinetheconstraintsontheseelementalreactionsintermsofoneormoreelementalstates,forexample,bydefiningtheactivestateofaproteinkinaseorthecompositionofafunctionalproteincomplex.Hence,theformatdirectlylinkmodelstatestoempiricalobservationsatthesamelevelofgranularity,whichpre-emptstheneedforadditionalassump-tionsorextrapolations.Moreover,theseparationbetweenreactionsandcontingencieslargelyavoidsthecombinatorialexplosionasonlycombinatorialstateswithknownfunctionalinfluenceareconsidered.Therxncontoolprovidesautomaticexporttoestablishedvisualformatsandtotwonewvisualisa-tionmethods,whichallowcompactcomprehensiverepresen-tation.Finally,theframeworkisstringentandunambiguouslydefinesamathematicalmodel,andtherxncontoolsupportexporttoSBMLandrule-oragent-basedmodels.Thisallowscodingofmodelsinaformatthatmirrorsempiricaldata,whichcanbeautomaticallyvisualisedandwhichishighlysuitableforiterativemodelbuilding.WeillustrateournewapproachbyconductingthemostcomprehensiveliteraturesurveytodateofthecompleteMAPkinasesignallingnetworkofSaccharomycescerevisiae.Takentogether,weprovideaframeworkthatintegratesthethreelevelsofnetworkanalysis;

&2012EMBOandMacmillanPublishersLimiteddefinition,visualisationandmathematicalmodellingandasupportingsoftwaretoolforautomaticvisualisationandexporttomathematicalmodels.Weexpectthistobehighlyusefulforthecommunityandenvisionacommonframeworktobridgedifferentstandardsaswellasexperimentalandtheoreticalsystemsbiologyefforts.

Results

Thissectiondescribesthearchitectureoftheframework,includingitsdatastructure,thedifferentmethodsofvisualisa-tionandhowitrelatestoamathematicalmodel(Figure1A).Inthefirstpart,wepresenttheresultsofthemethodsdevelopmentanddescribethesystemindetail.Inthesecondpart,wepresentourresultsusingtheMAPkinasenetwork.TheframeworkhasbeenimplementedintherxnconsoftwaretoolthatisdistributedfreelyundertheopensourceLGPLlicenceandcanbedownloadedfromwww.rxncon.org.

Thedatastructure

Theeventsinasignal-transductionnetworkcanbecategorisedinfourtypes:(1)catalyticmodifications,(2)bindingsandinteractions,(3)degradationandsynthesisand(4)changesinlocalisation.Duetothelimitedinformationonspatial(re)distributionofcomponents,wehavefocusedontypes1–3here(TableI).However,theframeworkisfullycapabletoincludelocalisationreactionsandtherxncontoolwillbeupgradedtoencompasstheseinthefuture.Thefirststepofthenetworkdefinitionistodistiltheavailableknowledgeintotwodistinctcategoriesofinformation:whatcanhappen,andwhenitcanhappen.Thewhat-aspect(referredtoasC1,orelementalreactions)specifiesthepossibleevents,includingtheeventtype(1–3above),andwhichcomponentsandsitesthatareinvolved.Thewhen-aspect(referredtoasC2,orcontingencies)specifieshowthereactionrateisaffectedbythestateoftheinvolvedcomponents.Forinstance,theMAPkinaseHog1phosphorylateitstargetHot1(C1—‘what’;Figure1B),andthisreactiononlyoccurswhenHog1isphosphorylatedonbothThr174andTyr176(C2—‘when’).Thissecondcategoryofknowledgethereforerepresentsthecausalrelationships,orcontingencies,betweenthereactionscharacterisedinthefirstclassofknowledge.TheseparationofC1fromC2allowsustodefineevenlargecomplexnetworksstringentlyinaconciseformat,asexemplifiedwiththeyeastMAPkinasenetworkbelow.

Thewhat-aspectsoftheknowledgearerepresentedinthereactionlist(Figure1C;simplifiedexample).Importantly,wehavebrokendownthereactionnetworkinelementalreactions,whichchangeelementalstates.Anelementalstateissimilartoanempiricalobservation,suchasaninteractionbetweentwoproteinsoraspecificmodificationataspecificsiteonaspecificprotein.Ifaproteinhasbeenphosphorylatedontwosites,thiscorrespondstotwodifferentelementalstates.Inotherwords,theelementalstatescorrespondtooverlapping(non-disjoint)sets.Thisisdifferentfromthespecificstatesinordinarystatetransitionmodels,butanalogoustothemacroscopicstatesusedintheworksbyConzelmannetal(2008)(Borisovetal,2008).Anelementalreactionissimilarly&2012EMBOandMacmillanPublishersLimitedAframeworkformapping,visualisationandautomaticmodelcreation

C-FTigeretaldefinedasatwo-componentreactionthatmodifiesasingleelementalstate.Notethatthisprecludeslumpedreactionsandthat,forexample,akinase–substrateinteractionandphos-phorylationmustbedescribedbytwodifferentelementalreactions.Hence,thereactionlisthasthesamegranularityastypicalempiricaldata,whichpre-emptstheneedforassump-tionsinthemappingprocess.Italsoallowsustousetheestablishedformatforhigh-throughputdata(Starketal,2006),includingspecificreferencingofeachreactionwithPubMedidentifiersandcomplementedwithadditionaldetailssuchasactivedomains,subdomainsandresidues(SupplementaryTablesS1andS2).

Thewhen-aspectoftheknowledgeisdescribedinthecontingencylist(Figure1D;simplifiedexample).Thislistdefinesthecontextualconstraintsonallelementalreactions.Mostcontingencieswillcorrespondtothedirecteffectofsingleelementalstatesofthecomponentsinvolvedintheparticularelementalreaction,butBooleanstatesallowforcombinatorialeffectsandindirecteffectsin,forexample,scaffoldsthatcannotbedirectlyattributedtoasingleelementalstateinoneofthereactants.Therearesixdistinctreactioncontingencies;theEffectorcanbeabsolutelyrequired(!),positive(Kþ),completelyneutral(0),negative(KÀ),absolutelyinhibitory(x)orofunknowneffect(?).Theseoverlappartiallywiththeinfluencesofentityrelationshipdiagrams(LeNovereetal,2011),butdistinguishbetweennoeffect(0)andnoknowneffect(?).TheBooleanstatesprovideamiddlelayerbetweenreactioncontingenciesandacombinationofelementalstatesand/orinputs,usingeither‘AND’or‘OR’todefine,forexample,largecomplexesoralternativemechanisms.Inaddition,inputsandoutputsfunctionaselementalstatesandreactions,respectively,attheinterfacebetweenthenetworkandtheexternalenvironment.EachrowinthecontingencylistcontainsaTarget(elementalreaction,outputorBooleanstate),anEffector(elementalstate,inputorBooleanstate)andasymboldescribinghowtheEffectorinfluencestheTarget(Contingency)thatisacontingencysymbol(!,Kþ,0,KÀ,x,?)whentheTargetisanelementalreactionoranoutputandaBooleanoperator(AND,OR)whentheTargetisaBooleanstate.ThedatastructureisillustratedwithasimplifiedversionoftheShobranchoftheHOGpathway(Figure1B).Thereactionliststatethat,forexample,Hog1phosphorylates(‘Pþ’)Hot1(Figure1C;eighthreaction;onthelastrow),andthecontingencyliststatethatthisreactionrequires(‘!’)thatHog1isphosphorylatedonbothThr174andTyr176(Figure1D,lasttworows).Thesestatesinturncorrespondtothereactionssixandseven,respectively(Figure1C).Hence,thereactionandcontingencyinformationsufficetodescribethenetworkandtheirseparationkeepsthedescriptionconciseandatthegranularityofempiricaldata.Consequently,thedatastructureaddressesthefirstissue;unambiguousnetworkdefinition.

Visualisingthesignal-transductionnetwork

Weaddressthesecondissue;comprehensivevisualisation,withtwonovelformsofvisualisation;thecontingencymatrixandtheregulatorygraph.Thesealsokeepreactionsandcontingenciesseparateandhenceavoidthecombinatorial

MolecularSystemsBiology20123Aframeworkformapping,visualisationandautomaticmodelcreationC-FTigeretalAB

DCEFG

H

I

J

4MolecularSystemsBiology2012&2012EMBOandMacmillanPublishersLimitedAframeworkformapping,visualisationandautomaticmodelcreation

C-FTigeretalexplosionandimplicitassumptions.Bothincludethecom-pleteinformationaboutreactions(C1)andcontingencies(C2).Thisdatastructureisalsowellsuitedforvisualisationinentityrelationshipdiagramsorextendedcontactmaps,andtherxnconsoftwaretoolsupportsexporttotheentityrelationshipformat(Chyleketal,2011;LeNovereetal,2011).Wealsoprovideexporttothereactiongraph/activityflowdiagramandtheprocessdescription,thoughneitherofthesecanfullyandaccuratelyrepresentthenetworkasdiscussedbelow.Never-theless,theyallprovidetheiruniqueadvantagesandcanbeautomaticallygeneratedwiththerxncontoolandtheinformationinthereactionandcontingencylists.

Thecontingencymatrixintegratestheinformationinthereactionandcontingencylists(Figure1E).Thematrixisspannedbythereactionsandtheircorrespondingstates(C1)andpopulatedbythecontingenciesofreactionsonstates(C2).Eachrowcorrespondstooneelementalreactionandeachcolumncorrespondstooneelementalstate.Thesymbolineachreaction–stateintersectionspecifieshowthatspecificreactiondependsonthatspecificstate.Together,onerow

TableIThirteenreactiontypeswereusedtomaptheMAPkinasenetwork

containsthecompletesetofrulesareactionfollows,andhencedescribeshowitworksineveryspecificstate.Thisisrelatedtoadependencymatrix(Yangetal,2010),althoughtheentriesinthecontingencymatrixaremoredetailedandunambiguous.Intheexample(Figure1E),thefirstrowshowsthat(a)thebindingofSho1toSte11cannotoccurifeitherofthecomponentsisalreadypartofsuchadimer(column1),(b)thatwedonotknowwhetherthepriorbindingofSho1toPbs2(column2)orphosphorylationofSte11(column3)effectstheSho1–Ste11bindingand(c)thattheotherstatesappearingintherowareirrelevantforthisspecificbindingreaction—astheydonotdescribepropertiesofSho1orSte11.Theprimaryadvantagesofthecontingencymatrixarethatit(1)allowsacomprehensivedocumentation/visualisa-tionofallreactionsanddependencieswithinthenetwork,(2)thatitdoessowithoutrequiringassumptions,(3)thatitexplicitlydefinesunknownsandhencegapsinourknowledgeand(4)thatthematrixconstitutesatemplatefromwhichmathematicalmodelscanbederivedautomatically(seebelow).

ReactionCategoryCategory

typePþPÀAPPTGEFGAPUbþCUTppiipii

BINDDEG

1111111122223

CovalentmodificationCovalentmodificationCovalentmodificationCovalentmodificationCovalentmodificationaCovalentmodificationaCovalentmodificationCovalentmodificationAssociationAssociationAssociationAssociation

Synthesis/degradation

SubclassSubclassID1.11.11.11.11.21.21.31.42.12.12.22.33.3

(De)Phosphorylation(De)Phosphorylation(De)Phosphorylation(De)PhosphorylationGTP/GDPhydrolysis/exchange

GTP/GDPhydrolysis/exchange

(De)UbiquitinationProteolyticprocessingppiipii

BINDDEG

Modifieror

boundaryPPPPPPUb

TruncatedN/AN/AN/AN/A

ReactionReactionnametypeID1.1.11.1.21.1.31.1.41.2.11.2.21.3.11.42.1.12.1.22.22.33.3

PhosphorylationDephosphorylationAutophosphorylationPhosphotransferGuanineNucleotideExchange

GTPaseActivationUbiquitination

Proteolyticcleaveage

Protein–proteininteractionIntra-proteininteractionInteraction(non-proteins)BindingtoDNADegradation

Thetableindicatesreactiontypeandclassification.Additionaldetailsareprovidedinthe‘ReactionDefinition’sheetofSupplementaryTablesS1andS2.aForconvenience,theG-proteincycleisapproximatedasacovalentmodificationbyaddition/removalofphosphateto/fromabasic,GDP-boundform.

Figure1Schematicrepresentationofthedatastructure.(A)Theinputdataarethereactionandcontingencylists,whichcontainsthe‘what-aspects’and‘when-aspects’ofthereactionnetwork,respectively.Therxnconsoftwareusestheseliststocreatearangeofvisualisationsaswellascomputationalmodels.Theseconversionsrequirenoadditionalinformationandarefullyautomated.(B)AsimplifiedversionoftheSho1branchoftheHogpathwayinS.cerevisiaewillbeusedtoillustratethedatastructure.This‘biologist’sgraph’showstheactivatingphosphorylationcascade(arrows)fromSte20toHot1.ScaffoldingandmembranerecruitmentbySho1facilitatesthefirsttwophosphorylationevents(greylines).(C)The(simplified)reactionlistdefinestheelementalreactionsbetweenpairsofcomponents.Itincludesthetwocomponents(columnsIandIII),reactiontype(columnII;‘ppi’¼protein–proteininteraction,‘Pþ’¼phosphorylation;seeTableIforcompletelistofreactions),reaction(columnIV,aconcatenationofthecomponentsandthereactiontype)andresultantstate(columnV;proteindimersorphosphorylatedstates).Notethateachelementalstateonlydefinesasingleaspectofeachcomponent’sspecificstate.(D)The(simplified)contingencylistdefinestherelationshipbetweenstatesandreactions.Itcontainstheaffectedreaction(Target,columnI),theinfluencingstate(Effector,columnIII),andtheeffectthisparticularstatehasonthatreaction(contingency,columnII).(E)Thereactionandcontingencyinformationissummarisedinthecontingencymatrix.Thematrixisdefinedbyelementalreactions(rows)andstates(columns).Thecellsdefinehow(if)eachreaction(row)isaffectedbyeachstate(column);thatis,thereactions’contingenciesondifferentstates.Notethatonlydirectcontingenciesareconsidered;reaction/stateintersectionswhichdonotsharecomponentsareblackedout.Thegreyfields(‘x’)areautomaticasstatesarebinaryandhenceareactioncannotoccurifthestateisalreadytrue.Thegreenfields(‘!’/‘Kþ’)areimportedfromthecontingencylist,andallotheropenfieldsaredefinedasunknowneffect(‘?’).Thisinformationcanalsobevisualisedinanumberofgraphicalforms:Thereactiongraph(F)displaysnetworktopologywitheithercomponentsortheirdomainsasfunctionalunits.Theregulatorygraph(G)combinesthereactionandcontingencyinformationtodisplaythecausalrelationshipbetweenthereactionsinthenetworkandprovidesacompletegraphicalrepresentationoftheknowledgecompiledinthecontingencymatrix.Thelimitedprocessdescription(H)displaysthecatalyticmodificationsinthesignal-transductionnetworkasstatetransitionswithcatalystsbutwithoutcomplexformation(compareSupplementaryFigureS1).Theinteractionanddistancematrices(I)provideacompactdescriptionofnetworktopologyandallowcalculationofdistancesbetweennodes.Finally,thereactionandcontingencydatacanbevisualisedasanentityrelationshipdiagram(J).Thesevisualisationsandtheequationsystemforthissystem,subsystemoryourownfavouritenetworkdefinedinthesameformatcanbeautomaticallygeneratedusingtherxnconsoftware.

&2012EMBOandMacmillanPublishersLimitedMolecularSystemsBiology20125Aframeworkformapping,visualisationandautomaticmodelcreationC-FTigeretalThereactiongraphdisplaysatopological,directedreactionnetwork(Figure1F).Itrepresentseachentityasasinglenodeandeachrelationshipbetweenapairofentitiesasasingleedge.Edgescanbenon-directional(e.g.,proteinÀproteininteraction),unidirectional(e.g.,phosphorylation)orbidirec-tional(e.g.,phosphotransfer).Thefullreactiongraphdisplaysthedomainsandresiduesinvolvedineachreaction.Theproteinpartsareindependentnodesanddefinedasneigh-bours(proteinscanhavedomainsorresidues,domainscanhavesubdomainsorresidues,subdomainscanhaveresidues).Theinclusionofdomaininformationmakesthereactiongraphsimilartothe(extended)contactmaps(Danos,2007;Chyleketal,2011).Thereactiongraphandcontactmapsarebothpurelytopologicalanddonotincludeanycontextualinformation,incontrasttotheextendedcontactmapwhich,forexample,mayshowthatbindingonlyoccurstophos-phorylatedresidues.Wealsouseacondensedvariantthatdisplaysonlythecentralnodeforeachcomponentandcollapsesmultiplereactionsofthesamekindbetweenapairofcomponentstoasingleedge,andhencecorrespondscloselytotheactivityflowdiagramofSBGN(SupplementaryFigureS1B;LeNovereetal,2009).Theadvantagesofthereactiongraphare(1)therelativesimplicitythatmakesitusefulforvisualisationofevenlargenetworksand(2)thatitissuitedforvisualisationoflarge-scaledatasetswithinthecontextofthatnetwork(seebelow).

Theregulatorygraphshowshowinformationisconveyedthroughthenetwork(Figure1G).Itimprovesonthereactiongraphbyincludinginformationoncausalitybetweenthereactionsinthenetwork(C2data).Theregulatorygraphshowsthenetwork’sregulatorystructure;thatis,whichreactions(viastates)actuallyinfluencetherateofotherreactions.Itisabipartitegraphwiththeelementalreactions(red)andelementalstates(blue)asnodes.Reaction-to-stateedgessimplyshowwhichreactionsproduceorconsumewhichstates.Thestate-to-reactionedgesshowwhichstates(productsofupstreamreactions)affectthedynamicsofwhich(downstream)reactions.Thesestate-to-reactionedgescorre-spondtothesymbolsinthecontingencylist,i.e.,‘!’,‘Kþ’,‘KÀ’or‘x’.Theregulatorygraphcaneasilybetranslatedintoaninfluencegraph,whichcanbeusedforstructuralanalysisofthenetwork(Kaltenbachetal,2011).Incontrasttotheinfluencegraphor‘story’(Danos,2007),theregulatorygraphstrictlyseparatestheeffectsofreactions(productionordestructionofstates)andthemodifiers(increaseordecreaseinreactionrates)viadistinctedgetypes.Furthermore,onlythe(modified)elementalstatesaredisplayedandthe(theunmodified)complementarysource/targetstateisimplicit.Hence,likeinthe‘stories’,cyclicmotifsonlyappearwhenthereisatruefeedbackinthesystem.Thisvisualisesboththe(possible)sequenceofeventsandthefeedbacksclearly.However,incontrasttothe‘story’,theregulatorygraphiscomprehensiveandsimultaneouslyvisualisesallpossiblepathsor‘stories’.Inthisexample(Figure1G),theuppermostnodepaircorrespondstothereactionwhereSho1bindsSte11(Sho_ppi_Ste11)andtheresultingstateSho1–Ste11.Thereaction-to-stateedgelinkingthesetwonodesidentifiesSho1–Ste11astheproductofthisbindingreaction.Notethatthesourcestatesforthisreactionareomitted(i.e.,Sho1notboundtoSte11andSte11notboundtoSho1).The

6MolecularSystemsBiology2012state-to-reactionedgefromSho1–Ste11toSte20_Pþ_Ste11showsthatthephosphorylationofSte11bySte20isenhancedintheSho1–Ste11complex.ThisreactioninturnproducesthestateSte11-{P},whichisrequiredforphosphorylationofPbs2onbothSer514andThr518.Hence,theinformationflowcanbefollowedthroughoutthenetworkasalledgesareunidirectional.Themainadvantagesoftheregulatorygrapharethatit(1)allowsacomprehensivedocumentation/visualisationofallreactionsandcontingencieswithinthenetwork,(2)thatitdoessoinaverycompactformat(3)withoutforcingnon-supportedassumptions,(4)thatitcanbeusedforstructuralanalysisofthenetworkand(5)thatitclearlyshowstheinformationflowthroughthenetwork.

Processdescriptionsarewellestablishedandallowvisuali-sationoftheinformationflowandmechanisticdetailsimultaneously(Kitanoetal,2005).Theyareexcellentforrepresentationofsmallnetworkswhicharecompletelyknown,butlackofdata(oftherightgranularity)invariablyleadtounsupportedassumptions.Inaddition,thesediagramsrapidlybecomeverycomplex,generallyforcingadhocreductionandadditionalimplicitandunsupportedassump-tions.Therefore,processdescriptionsdonotallowacompletedescriptionofthenetworkwiththestringencywerequire.However,theprocessdescriptioncanbeclearandeasytoread,andwegeneratealimitedversionwhichexcludescomplexformationandhenceavoidsmostofthecombinatorialcomplexity.Thedifferenceishighlightedbytheupperthreenodesintheexample(Figure1H),whereSte20phosphorylatesSte11.Incontrasttofullprocessdescription,thebindingofSte11toSho1,andhowthisbindingwouldaffectthephosphorylation,isnotincluded(compareSupplementaryFigureS1).The(limited)processdescriptionhasseveraladvantages:It(1)isintuitivetoreadand(2)definesinwhichinternalstate(s)anenzymeisactive,itssubstrateandtheexacttargetresidue,which(3)conveystheinformationflowthroughthepathway,theenzyme–substraterelationshipsaswellasthegapsinourunderstandingoftheseaspects.

Theinformationcanalsobeusedtogenerateinteractionmatricesthatspecifywhichcomponentsreactwithwhichcomponents.Thesecanberenderedatseverallevelsofdetailrangingfromacompleteinteractionmatrixincludingproteindomainsandtargetresiduesthatdefineseachinteractiontype,viacondensedinteractionmatriceswithonlyonerowandcolumnperproteinthatstillcontainsreactiontypeinforma-tion(Figure1I,uppermatrix),tonumericalmatricesthatonlyincludeinformationonconnectionanddirectionality.Weusedthelattertocalculatethedistanceswithinthenetworktogenerateadistancematrix(Figure1I,lowermatrix).

Finally,therxncontoolprovidesexporttoentityrelationshipdiagrams(Figure1J).Liketheregulatorygraph,theentityrelationshipdiagramdisplaysreactionsandcontingenciesseparatelyandhencelargelyavoidsthecombinatorialcom-plexity.Theentityrelationshipdiagramhastheadvantageofconcentratingallinformationonagivenproteinaroundacentralnode,whichworksespeciallywellforsimpleregula-torycircuits.Thisemphasisestheroleofeachcomponentwithinthenetwork,incontrasttotheregulatorygraphwhichemphasisestheinformationflowthroughthenetwork.Theentityrelationshipdiagramisgeneratedautomaticallybythe

&2012EMBOandMacmillanPublishersLimitedAframeworkformapping,visualisationandautomaticmodelcreation

C-FTigeretalrxnconsoftwareandvisualisedviaBiographer(Biographer).Inthesameway,therxnconsoftwarecanbeusedtogeneratethecontingencymatrix,thereactiongraphs,theregulatorygraph,and,viaBioNetGen(Blinovetal,2004),theSBMLfilethatconstitutethebasisfortheprocessdescription.Thesegenerationsarefullyautomatedandhencetheframeworkaddressestheissueof(ii)automaticnetworkvisualisationwithoutfurtherassumptionsand—inthecaseofthecon-tingencymatrixandregulatorygraph—withoutanysimplifications.

proteinsin,forexample,homodimers,andcanthereforenotdefinestricttrans-reactionswithinsuchdimers.Apartfromtheseissues,wecanreproducethesamemodelwithonlycosmetic/nomenclaturedifferences(seeSupplementaryinformationfordetails).Hence,theframeworkaddressestheissueof(iii)automaticmodelgenerationfromthedatabaseofbiologicalinformation.

MappingtheMAPkinasenetwork

Asabenchmark,wehaveusedthepresentedframeworkandanextensiveliteraturesearchtocreateacomprehensivemapfortheyeastMAPkinasenetwork(SupplementaryTableS1).Reactionshavebeendefinedwithspecificresiduesanddomainswheneverexperimentalsupportwassufficient.Thedegreeofexperimentalevidencehasbeenevaluatedmanuallyandindividuallyforeachentry,andreferencestoprimaryresearchpaperssupportingeachinteractionhavebeenincludedinthereactionandcontingencylists(column‘PubMedIdentifier(s)’).Wehaveusedmechanisticdataonreactions(C1)andacombinationofmechanisticandgeneticdataoncontingencies(C2)betweenreactionsandreactants’statesfromprimaryresearchliterature.Themappingisbasedsolelyonprimaryresearchpapersanddefactoshowndatatoensureahigh-qualitynetworkreconstruction.Wechosetoexcludealmostallgeneticdataasindirecteffectscannotberuledouteveninwell-performedgeneticscreens.Finally,wedecidednottoincludespatialdata,aswefoundinformationespeciallyonregulationof(re)localisationtoosparse.Tothebestofourknowledge,wehaveeliminatedallquestionableinformationfromthecompileddataset,andconvincingreactionslackingsolidmechanisticevidencehavebeenincludedbutclearlyanddistinctlylabelled.

TheMAPkinasenetworkcontains84components,181elementarystatesand222elementaryreactions,correspond-ingtomanyhundredsofthousandsofspecificstates.Thisnetworkislargeenoughtobeaseverechallengetotheestablishedvisualisationandanalysismethods.WedidinfactfailtogeneratethecompletestatespaceandterminatedtheBioNetGenexpansionafterthefirstthreeiterationswhichgenerated207,1524and372097specificstates,respectively.Weusearangeofgraphicalformatstovisualisedifferentaspectsofthishighlycomplexnetwork.First,wedisplaythenetworktopologyinthereactiongraphs(Figure2).These

Generationofmathematicalmodels

Thecontingencymatrixisatemplateforautomaticgenerationofmathematicalmodels.Eachelementalreactioncorrespondstoabasic(context-free)ruleinarule-oragent-basedmodel(TableII),or,inotherwords,asetofrulesthatshareareactioncentre(Chyleketal,2011).Allcontextualconstrainsonanelementalreactionisdefinedinasinglerowinthecontingencymatrix,andthisrowdefinestheelementalreaction’simplementationintherule-basedformat.Thebasicrulesufficesiftherearenoknownmodifiersofaparticularelementalreaction(i.e.,only‘0’and‘?’apartfromtheintersectionwithitsownstate(s)(whichisalways‘x’foraproductstateand‘!’forasourcestate)).Everyothercontingencysplitstheexpressionintworules;onewhenthatelementalstateistrueandonewhenitisfalse.Thenumberofrulesneededonlyincreaseswiththenumberofquantitativemodifiers(‘Kþ’and‘KÀ’)asthequalitativemodifierssetstherateconstanttozeroineitherthe‘true’(for‘x’)orfalse(for‘!’)case(seeSupplementaryinformationfordetails).TheexpansiontorulesisfullydefinedinourdataformatandtherxnconsoftwaretoolautomaticallygeneratestheinputfileforthecomputationaltoolBioNetGen(Blinovetal,2004).Thisfilecanbeusedforrule-basedmodelling,network-freesimulationandcreationofSBMLfiles.Thetranslationtoandfromtherule-basedformatisunambiguousinbothdirections,andweillustratethiswithtranslationofarule-basedmodelofthepheromoneresponsepathway(yeastpheromonemodel.org).Thismodelcontainslumpedreactionswhichwetranslatetocombinationsofelementalreactions,resultinginadifferentequationstructurebutthesamefunctionalitygivenappropriatechoiceofrateconstants(SupplementaryTableS3).Furthermore,wecannotdistinguishdifferentidentical

TableIIImplementationofelementalreactionsintherule-basedformat

Elementalreaction

Interactions(‘‘ppi’’,‘‘i’’or‘‘bind’’)Intra-proteininteractions(ipi)Phosphorylations(Pþ)Autophosphorylations(AP)Phosphotransfers(PT)Dephosphorylations(PÀ)Nucleotideexchanges(GEF)Nucleaseactivations(GAP)Ubiquitination(Ubþ)

Proteolyticcleavages(CUT)Degradations(DEG)

BioNetGenruleimplementation

A(B)þB(A)oÀ4A(B!1).B(A!1)A(A1,A2)oÀ4A(A1!1,A2!1)

AþB(PsiteBU)À4AþB(PsiteBP)A(PsiteBU)À4A(PsiteBP)

A(PsiteBP)þB(PsiteBU)oÀ4A(PsiteBU)þB(PsiteBP)AþB(PsiteBP)À4AþB(PsiteBU)AþB(GnPBU)À4AþB(GnPBP)AþB(GnPBP)À4AþB(GnPBU)

AþB(UBsiteBU)À4AþB(UBsiteBUB)

AþB(DomainBU)À4AþB(DomainBtruncated)AþBÀ4A

kf,krkfkfkfkf,krkfkfkfkfkfkf

ThetabledisplayshowthedifferentelementalreactionsinTableIaretranslatedtotherule-basedformat.SeeSupplementaryinformationforadditionaldetails.

&2012EMBOandMacmillanPublishersLimitedMolecularSystemsBiology20127Aframeworkformapping,visualisationandautomaticmodelcreationC-FTigeretalfiguresshowthatthenumberofcharacterisedphosphoryla-tionreactionsvastlyoutnumbersthatofcharacteriseddephosphorylationreactions(68to16;Figure2A),andthatseveralwell-establishedprocessesareonlysupportedbygeneticdata(includingtheentireMAPkinasecascadebelowPkc1;Figure2B,dashedlines).Thereactiongraphalsoallowscomparisonbetweentheestablishedpathwayarchi-tectureandtheunbiasedglobalproteinÀproteininteractionstudiesandsyntheticlethalnetworks(Figure3AandB,respectively).

A

B

8MolecularSystemsBiology2012&2012EMBOandMacmillanPublishersLimitedAframeworkformapping,visualisationandautomaticmodelcreation

C-FTigeretalInthecontingencymatrix(Figure4),wevisualisethecombinedknowledgewehaveabouttheMAPkinasesystem(C1andC2).Thecorematrix(redblockofrowsandblueblockofcolumns)describealltheelementalreactions,elementalstatesandthe(possible)contingenciesofreactiononstates.Theblackfieldshereshowwhenthereisnooverlapbetweenthecomponentsinthereactionsandthosedefinedinthestates.Therefore,thematrixwillalwaysbesparselypopu-lated.However,wealsoseethatmostoftheremainingfieldsaregrey;thatis,effectnotknown(‘?’).Thismeansthatourknowledgeofreactions(C1;whichdefinesrowsandcolumns)ismuchstrongerthanourknowledgeofthecausalitybetweenthesereactions(C2;thecells).Weonlyhavedataonaminorityofallpossiblecontingencies,andthesegapsareexplicitlyshowninthecontingencymatrix.Itshouldalsobenotedthatnotalleffectscanbeascribedtosingleelementalstates.WehaveaddedanouterlayerofBooleanstates(purplerowsandcolumns)toaccountforthesecases.TheBooleanstatesdescribecomplexmechanismssuchasscaffoldingandcaninprinciplecorrespondtothespecificstatesof,forexample,processdescriptions.However,theyareonlyaddedwhenneededtodescribeempiricalresults.NotethatonlyasmallfractionofthestatesareBoolean,whichreflectsthelowabundanceofempiricaldataonthecombinatorialeffectofelementalstates(i.e.,specificstates).Therefore,webelieveittobebettertousemappingstrategieswhichdonotrequiresuchdata.Finally,thematrixcontainsalayerofinputsandoutputs(grey;columnsandrows,respectively).Theseconstitutethesystem’sinterfacewiththeoutside.

Theregulatorygraph(Figure5)displaystheinformationinthecontingencymatrixgraphically,byshowinghowreactionsproduceorconsumestates,andhowstatesinfluencereactions.ThisgraphcontainsthefullC1andC2information,andwouldfallapartwithouteither.Infact,theisolatedreaction–statepairsthatfalloutsidethegraphdosobecausetheyhavenoknownincomingoroutgoingcontingencies.ThegraphshowsthattheMAPkinasenetworkisratherwellconnected,asmostreactionsareindeedlinkedinasinglegraphbycontingencies.However,therearerelativelyfewinputandoutputpoints;manyreactionsdonothaveknownregulatorsandmanystatesdonothavedefinedregulatoryeffects.Onlyreaction–statepairsthatappearbetweenthesystem’sinputandoutputwouldbeabletotransmitinformation.Thismeanseitherthatallotherpairsareirrelevantforthedynamicsofthesignal-transductionprocess,orthatwearelackinginformationabouttheirroleinthisprocess.Infact,suchloseendsmightbeexcellentcandidatesfortargetedempiricalanalysis.OneexamplewouldbeMsb2’sbindingtoCdc42,whichisreportedtobeimportantforthe

pseudohyphaldifferentiationpathway;raisingthequestionofwhetherthisbindingisregulatedinresponsetothestimulithatactivatethispartoftheMAPkinasenetwork.Anotherpointthatstandsoutisthealmostcompletelackof(documented)informationexchangebetweenpathways.TheexceptionistheShobranchoftheHogpathway,whichiscloselyintertwinedwiththematingpathway,asbothareactivatedbythesharedMAPkinasekinasekinaseSte11andpartsofthecellpolaritymachinery.

Wehavealsogeneratedanetworkmapintheestablishedprocessdescriptionformat,butwithoutcomplexformations(Figure6).Thisdecisioneliminatedmostofthecombinatorialexplosionandtheneedforimplicitassumptions.However,thereisstilluncertaintyinthespecificphosphorylationstateoftheactivestateofcertaincatalysts,suchasSsk2,Ste11andSte7.Likewise,wedonotknowifphosphorylationorderisanissueforproteinswithmultiplephosphorylationsites.Incontrasttotheregulatorygraph(Figure5),theprocessdescriptionbecomesmorecomplicatedthemoreunknownswehaveandFigure6issimplified(compareSupplementaryFigureS2).However,thelimitedprocessdescriptioninFigure6clearlyshowsthecatalyst–targetrelationships,andreinforcestheimpressionthatveryfewoftheknownphosphorylationreactionsarebalancedbyknowndephosphorylationreactions.

Finally,weautomaticallygeneratedamathematicaldescrip-tionoftheentirenetworkasaproofofprinciple.TherxnconsoftwareusedthecontingencymatrixtogeneratetheinputfileforBioNetGen(Blinovetal,2004).Thecorrespondingnetworkistoolargetocreatebutcouldbesimulatedwiththenetwork-freesimulatorNFSim(Sneddonetal,2011).Furtheranalysisofthissystemfallsoutsidethescopeofthispaper,buttheinputfiletoBioNetGenand/orNFSimwithtrivialparametersisincludedasasupplement.Hence,acompletemathematicalmodelcanbeautomaticallygeneratedfromthereactionandcontingencydata,andtoourknowledgethisisthefirstframeworkthatintegratesnetworkdefinitionatthegranularityofempiricaldatawithautomaticvisualisationandautomaticmodelcreation.

Discussion

Itisclearthatthecomplexityofsignal-transductionnetworksisoneofthemajorchallengesinsystemsbiology,impedingourabilitytovisualise,simulateandultimatelyunderstandthesenetworks.Thisissuehasbeenwidelyrecognisedandsubstantialeffortshavebeencommittedtoimproveandstandardiseourtoolsforvisualisationandmodellingof

Figure2ThereactiongraphcompactlydisplaysthetopologyoftheS.cerevisiaeMAPkinasenetwork.(A)ThereactiongraphoftheMAPKnetworkdisplaysthecomponentsasnodesandthereactionsasedges.Eachcomponentisdefinedbyacentralmajornodeandperipheralminornodesindicatingdomains,subdomainsandspecificresidues(blue).Wheninteractingdomainsandtargetresiduesareknown,reactionsaredisplayedasedgesbetweentheseminornodes.Incontrast,thecondensedreactiongraph(B)displayseachcomponentasasinglenode,andeachtypeofreactionbetweentwonodesasasingleedge.Nodesareeitherproteins(circles),smallmolecules(diamonds)orDNA(square).Edgecoloursindicatereactiontype(co-substratesandco-products):Grey;protein–proteininteraction(N/A),red;phosphorylation(ÀATP,þADP),orange;guaninenucleotideexchange(ÀGTP,þGDP),blue;dephosphorylationorGTPaseactivation(þPi),gold;ubiquitination(Àubiquitin,ÀATP,þADP,þPi),black;phosphotransferorproteolyticcleavage(N/A).Thedomainlayoutin(A)prioritisesreadabilityanddomainorganisationdoesnotreflectlinearsequenceorproteinstructure.Arrowheadsindicatedirectionalityforunidirectionalorreciprocalcatalyticmodifications.Reactionsforwhichwefoundnodirectevidencebutwhicharesupportedbyconvincinggeneticdatahasbeenincludedasdashedlines.Notethemuchhigherfrequencyofreportedphosphorylationreactionsascomparedwithdephosphorylationreactions;intotalthenetworkincludes68phosphorylationreactionsbutonly16dephosphorylationreactions(A).

&2012EMBOandMacmillanPublishersLimitedMolecularSystemsBiology20129Aframeworkformapping,visualisationandautomaticmodelcreationC-FTigeretalcellularnetworks(Huckaetal,2003;LeNovereetal,2009).Thesestandardisationeffortsareessentialfordataexchangeandreusability,butmanyoftheexistingtoolsareunsuitablefordefinition,visualisationandmathematicalmodellingoflargenetworks.Thearguablymostimportantproblemsarethecombinatorialcomplexity,thegranularitydifferencebetween

A

B

10MolecularSystemsBiology2012&2012EMBOandMacmillanPublishersLimitedAframeworkformapping,visualisationandautomaticmodelcreation

C-FTigeretalempiricalandtheoreticaldata,andthelackofexchangeformatsbetweendifferenttheoreticaldescriptions.Here,wehaveintroducedanewframeworkfornetworkdefinitionatthesamegranularityasmostempiricaldata.ThisformatwasalreadyavailableforC1(reaction)information,asourlistofelementalreactionsusesthesameformatashigh-throughputdata(PSICQUIC).Wedescribecontextualinformationatthesamegranularityinourcontingencylist(C2),whichnotonlyallowsanintuitiveandaccuratetranslationofempiricaldatabutalsolargelyavoidsthecombinatorialcomplexity.Contrarytostatetransitionbaseddescriptionsbutliketherelatedrule-basedformat,thereactionandcontingencybaseddescriptionbecomessmallerthelessknowledgewehaveasonlyknownreactionsandcontingenciesareconsidered.Thisformatalsoprovidesforhighlydetailedreferencingaseachelementalreactionandcontingencycanandshouldbetiedtoempiricalevidence(i.e.,researchpaper(s)).Furthermore,weshowthatthisformatisstringentandunambiguouslydefinebothrule-basedmodelsandgraphicalformats,suchastheactivityflowdiagram(condensedreactiongraph),entityrelationshipdiagramandprocessdescriptionformatsofSBGN.Ourframeworkalsosupportstwonewvisualisationformatsthatweintroducehereandthatcandisplayourcompleteknowl-edgedatabase(thecompletereactionandcontingencylists).Finally,ourframeworkprovidesaveryhighreusabilityandextendibility,astheunderlyingnetworkdefinition—inlistformat—isveryeasytoextend,mergeandreuseinothercontext,whichisnotthecaseformostgraphicallyormathematicallydefinedsystems.Ofcourse,thislevelofdefinitionstillleavestheissuesofparameterestimationandgraphicallayout,butthesewouldtypicallyneedtoberepeatedevenwhenmerginggraphicalandmathematicalnetworkdefinitions.Hence,weadvocateamorefundamentallevelofnetworkdefinitionthangraphicalormathematicalformalism.Weenvisagethisorasimilarframeworkasastandardtogreatlyfacilitatemodel/networkconstruction,exchangeandreusability.

WehaveappliedthismethodtomapouttheMAPkinasenetworkofS.cerevisiae.Thisnetworkwaschosenasabenchmarksinceitisbothwellcharacterisedandrepresenta-tiveforsignaltransductioningeneral.Itconsistsofthreeclearsubgraphs,whichhavetraditionallybeenconsideredmoreorlessinsulatedpathways;theHighOsmolarityGlycerol(Hog)pathway,theProteinKinaseC(PKC)pathwayandtheMATing(MAT)pathway,whichalmostcompletelyoverlapswiththePseudoHyphalDifferentiation(PHD)pathway.Thesepath-wayshavealsobeenmappedordocumentedinseveralotherefforts.KEGGpresentsacombinedmapofthetraditionalMAPkinasepathwaysinaformatsimilartoitsmetabolicpathways(Kanehisaetal,2006,2010).However,thestringentedgedefinitionsusedforthemetabolicnetworkshavebeenabandonedandthisisa‘biologist’sgraph’.ThepictureissimilarwiththemapsofyeastMAPkinasepathwaysatScienceSTKE(e.g.,Thorneretal,2005).Forexample,thesemapsdisplaySte11withfourupstreamregulators,butitisunclearhowtheyregulateSte11andhowtheircontributionscombine(e.g.,ANDorOR?).Therefore,thesenetworkmapsmayprovideanexcellentintroductiontothenetworksbyprovidingacomponentslistandaroughideaofthecomponents’rolesinthenetwork,buttheyneitherdefinereactions(C1)norcontingencies(C2)unambiguously.Ontheoppositeend,wehavetherecentlypublishedprocessdescriptionofthecellcycleanditssurroundingsignallingnetwork(Kaizuetal,2010).ThiscontainsexplicitdefinitionofbothC1andC2information.However,thetremendousnumberofspecificstatesinsuchanetworkforcessimplifications,whichnotonlyleadstoalossofknowledge,butalsomixesupknowncontingencies(C2)witharbitraryassumptionsmadetosimplifythenetwork.OneexampleinthisparticularcasewouldbetheseparationoftheupstreamactivationofSte11anditsdownstreameffectontheHogandMatingpathways.Theoutputofthismoduleisdefinedbythecontextofitsactivation,andthisinformationislostduetothesearguablynecessarysimplifications.Inaddition,thegranularitydifferencebetweenthehighlyspecificmapstatesandtheunderlyingbiologicaldatamakesthemappingambiguous,leadingtofurtherunsupportedassumptions.Despitetheseshortcomings,theprocessdescriptionisusefulforvisualisationofcertainnetworkpropertiesduetotheexplicitrepresentationofhighlydetailedknowledgesuchastargetresidues.However,westressthatneitheroftheseestablishedandwidelyusedmethodsaresufficienttoaccuratelycapturetheentiresignal-transductionnetwork.Instead,weintroducethecontingencymatrixandthebipartiteregulatorygraphasalternativemethods,whichareabletofullycapturetheentireknowledgedatabasewithoutsimplifi-cationsorassumptions.Togetherwiththeestablishedmeth-ods,thesevisualisationsprovideanunprecedentedviewonthechosenbenchmarksystem,andwetrustthatthiscompletelyreferencedandcomprehensivemapoftheMAPkinasesignallingnetworkinS.cerevisiaewillbeausefulreferencematerialfortheresearchcommunity.

Theseresultshavedirectbearingonthemanyeffortstocreatelargedatarepositories.Purereaction(C1)data,suchasproteinÀproteininteractionnetworks,canberetrievedusingthestandardisedMolecularInteractionQueryLanguage(MIQL;whichourreactionlistisdesignedtobecompatiblewith)andPSICQUIC(PSICQUIC).PSICQUICaccesses,forexample,ChEMBL(Overington,2009),BioGrid(Breitkreutzetal,2010),IntAct(Arandaetal,2010),DIP(Xenariosetal,2002),MatrixDB(Chautardetal,2009)andReactome(Croftetal,2010).Severalofthesedatabaseshaveadditionalinformationincludingcontingency(C2)informationandastandardised(non-graphical)formatfordefinitionand

Figure3Thecondensedreactiongraphisanexcellenttoolforvisualisationofhigh-throughputdata.(A)PhysicalinteractionswithintheMAPKnetwork.Theglobalprotein–proteininteractionnetworkwasretrievedfromBiogrid(Starketal,2006),filteredforphysicalinteractionsexcludingtwohybrid,andvisualisedonthecondensedreactiongraph(Figure2A).Purpleedgesindicateprotein–proteininteractionsandtheirthicknessindicatesthenumberoftimestheywerepickedup,rangingfromasingletime(dashedline)to19times.NodesthatappearfadedhavenointeractionswithanyothercomponentintheMAPKnetworkreportedinthisdataset.NotethatthenodesthatdonotcorrespondtosingleORFswouldbeexcludedautomatically(e.g.,theSCFcomplex,DNA,lipids).Thesmaller,boxednetworkdisplaythecorrespondingtwo-hybridinteractionnetwork.(B)GeneticinteractionswithintheMAPKnetwork.SyntheticlethalinteractionswereretrievedfromBiogridandvisualisedasper(A).Alsoquantitativedata,suchasmutantphenotypesandgeneexpressionlevels,canbedirectlyvisualisedonthenetwork.

&2012EMBOandMacmillanPublishersLimitedMolecularSystemsBiology201211Aframeworkformapping,visualisationandautomaticmodelcreationC-FTigeretalElemental statesBool.InFigure4Thecontingencymatrixprovidesacompletedescriptionofthenetworkornetworkmodule.Thecorecontingencymatrixisspannedbytheelementalreactions(rows,inred)andtheelementalstates(columns,inblue).Theadditionalblocksarederivedfromthecontingencylistandcontaintheformationrules(rows)andeffects(columns)ofBooleanstates(bothpurple)aswellastheoutputof(rows)andinputto(columns)thenetwork(bothgrey).Thecellsinthematrixdefinehoweachreaction(row)dependsoneachstate(column).Theeffectsrangefrombeingabsolutelyrequired(‘!’),viapositiveeffector(‘Kþ’),noeffect(‘0’)andnegativeeffector(‘K–’)toabsolutelyinhibitory(‘x’),oritcanbeunknownorundefined(‘?’).EachBooleanstateisdefinedbyasingleoperator(‘AND’or‘OR’)fortheelementalstates,otherBooleansand/orinputsthatdefinesit.ThecontingencymatrixdisplayedherecontainsthecompleteMAPKnetwork.Notethatthecontingencymatrixissparselypopulated.Thisisbothbecausemostcombinationsofreactionsandstateslackoverlapincomponents(blacksquares)andbecausewehaveverylimitedknowledgeofthepossiblecontingencies(greysquares).Overall,theinformationonwhatreactionscanoccurismuchmoreabundantthanonhowtheyareregulated.

OutBool.Elemental reactionsretrievalwouldfurtherimprovetheusefulnessoftheseresourcesandfacilitatefurtheranalysisofthestoredinforma-tion.Theframeworkweproposehereprovidessuchaformatwiththekeyadvantageofincludingexporttomathematical

12MolecularSystemsBiology2012models.Sincemathematicalmodellingisthemostcentralandnaturalsteptobringtheknowledgeinthesedatabasesintoausefulform,wherequantitativesystemspropertiescanmostexhaustivelybeanalysed,theintroductionofsuchanexportis

&2012EMBOandMacmillanPublishersLimitedAframeworkformapping,visualisationandautomaticmodelcreation

C-FTigeretalFigure5Theregulatorygraphvisualisethecausalitybetweenreactionsandrevealstheregulatorystructureofthenetwork.Thisbipartitegraphillustratestherelationshipsbetweenthereactions(rednodes)andstates(bluenodes)withinthenetwork.Edgesfromreactionstostatesdefinehowstatesareproduced(blue)orconsumed(purple),andeachsuchedgecorrespondstoasingleelementalreaction.Edgesfromstatestoreactionsdefinehowstatesregulateotherreactions,andeachsuchedgecorrespondtoasinglecontingency(Green;absoluterequirement(‘!’)orpositiveeffector(‘Kþ’),red;negativeeffector(‘K–’)orabsolutelyinhibitory(‘x’)).Booleansareusedwhentheeffectonareactioncannotbeattributedtosingleelementalstates(whitediamonds(OR)ortriangles(AND)connectedtothestates/Booleans/inputsthatdefinethemwithblacklines).Inputsaredisplayedingreyandconnectedtotheelementalreaction(s)theyinfluence.Likewise,outputsaredisplayedingreyandconnectedtothestatestheyareinfluencedby.Signalscanbefollowedthroughthenetworkfromexternalcues(grey;top)totranscriptionalresponse(grey;bottom)asalledgesaredirectional.Reactionswithoutinputarenot(knowntobe)regulatedandwouldthereforebeexpectedtohaveconstantrates;likewisestateswithoutoutputhaveno(defined)impactonthesystem.Wehavealsoincludedlikelybutundocumentedrequirementsforenzyme–substratebindingsbeforecatalysisasdashedlines.Theregulatorygraphistheonlygraphicalrepresentationusingthecompleteinformationinthecontingencymatrix,andhencetheonlycompleteandcompletelygraphicalvisualisationofthenetwork.Itisalsothemostpotentvisualisationtoevaluatethedegreeofknowledgeaboutthenetwork.Forexample,visualisationofhigh-throughputdatawouldresultindisconnectedreaction–statepairsonly,duetothelackofregulatoryinformation(noC2data).

animportantstepforward.Thisframeworkisstillnotasflexibleasdirectmodeldefinitionbutitprovidesdistinctadvantages.Formulatingmodelsdirectlyusingclassicalstatetransitionreactionsiseithersubjectiveorverycumbersomeinpracticeduetothecombinatorialexplosion,andstatetransitionbasedmodelsforthenetworksofthesizeweconsiderherearetoolargetobesimulated.Theclosestrelatedmodellingframeworkisrule-basedmodelling,inwhichmodelscanbeformulatedwithoutthesecombinatorialexplosionproblems,anditisalsotoarule-basedformatthatweexportourmodels.However,theclassicalrule-basedmodellingframeworkslackallthedatabasepropertiesofourframework,suchasthecontingencymatrixanditsexporttovariousnovelvisualisationformats.Inshort,onecouldthereforesaythatourframeworkcombinesthebestofexistingknowledgedatabaseswithnewvisualisationtoolsandrule-basedmodelling.

Inconclusion,wepresentamethodtodocumentandvisualisesignal-transductionnetworksthatimprovesonpreviousstrategiesinthefollowingrespects;(I)itallows&2012EMBOandMacmillanPublishersLimitedconcisemappingatthesamegranularityasbiologicaldata,hencepre-emptingtheneedforimplicit,unsupportedassump-tions,(II)itallowsreferencingofeachelementalreactionandcontingencyseparatelyandhandlesunknownsexplicitly,(III)thenetworkcanbevisualisedwithoutanysimplificationsorassumptionsthatincreasetheuncertainty,(IV)thevisualisa-tionscanbeautomaticallygeneratedfromthedatafiles,(V)thenetworkdefinitionisatemplatefromwhichamathema-ticalmodelcanbeautomaticallygenerated(VI)andexportedtoSBMLand(VII)thesuppliedtemplateandrxncontoolmakesthemethodimmediatelyusefulforanyonewithaninterestinsignaltransduction.Hence,ourframeworkbridgethreecriticallevelsofsignal-transductionnetworkanalysis;definition,visualisationandmathematicalmodelling,aswellasempiricaldataandtheoreticalanalysis.

Materialsandmethods

TheMAPkinasenetworkmapisbasedonthepaperslistedbelow.Thespecificreference(s)arelistedforeachreactionandcontingency

MolecularSystemsBiology201213Aframeworkformapping,visualisationandautomaticmodelcreationC-FTigeretalFigure6Thelimitedprocessdescriptiondisplaysallposttranslationalmodificationsandtheircatalysts,butexcludescomplexformation.Eachspecificinternalstateisrepresentedasadistinctnode,althoughsomeintermediatephosphorylationstateshavebeenexcluded.Phosphorylationsareindicatedwithredarrows(ATPasco-substrateandADPasco-product),GEFreactionsasorangearrows(ÀGTP,þGDP),anddephosphorylationorGAPreactionsasbluearrows(þPi).Onlyafractionofthecatalyticmodificationshaveaknowncatalystforbothforwardandreversereactions,andtherequiredstateofthecatalystknownisinevenfewercases.Therefore,eventhishighlysimplifiedprocessdescriptionincludesuncertaintyintherequiredstatesofbothcatalystsandsubstrates.Inthisvisualisation,thisuncertaintyhasbeenshownbyusingasinglecatalysisarrowfromaboxincludingallpotentiallyactivestateofthecatalysttothebasicstateofthesubstrate(completelyunphosphorylatedforkinasereactions,orcompletelyphosphorylatedforphosphatasereactions).Whilethesesimplificationsareunsupported,includingadditionalcatalyticarrowswouldbeequallyarbitrarywiththeaddeddrawbackofmakingthefiguremorecomplex(seeSupplementaryFigureS2).Despitetheneedforimplicitassumptions,theprocessdescriptionisusefulasitisveryexplicitandintuitivetoread.

individuallyinthereactionandcontingencylistsinthe‘PubMedI-dentifier(s)’columnwiththeirPMIDnumber.

(Aietal,2002;Alepuzetal,2003;Alepuzetal,2001;AndrewsandHerskowitz,1989;AndrewsandMoore,1992;Apanovitchetal,1998;BaetzandAndrews,1999;Baetzetal,2001;Ballonetal,2006;Baoetal,2004;Baoetal,2010;Baretal,2003;Bardwelletal,1996;Bardwelletal,1998a;Bardwelletal,1998b;BenderandSprague,1986;Bilsland-Marchesanetal,2000;Blumeretal,1988;Breitkreutzetal,2001;Bruckneretal,2004;Buttyetal,1998;Chouetal,2004;Chouetal,2006;Cismowskietal,2001;Clarketal,1993;Collisteretal,2002;Cooketal,1996;Crosbyetal,2000;Cullenetal,2004;Davenportetal,1999;deNadaletal,2003;DodouandTreisman,1997;Doietal,1994;Dolanetal,1989;Dowelletal,1998;Drogenetal,2000;Elionetal,1993;Erredeetal,1993;Escoteetal,2004;Fengetal,1998;Fitchetal,2004;Flandezetal,2004;Flothoetal,2004;Friantetal,2001;Garcia-GimenoandStruhl,2000;Garrisonetal,1999;Gartneretal,1998;Gartneretal,1992;Goodetal,2009;Greenetal,2003;Guoetal,2009;Hagenetal,1986;Hagenetal,1991;HahnandThiele,2002;Heenanetal,2009;Heiseetal,2010;Hoetal,2002;Horieetal,2008;Inagakietal,1999;Inouyeetal,1997a;Inouyeetal,1997b;Irieetal,1993;Jacobyetal,1997;Jungetal,2002;Kamadaetal,1995;Kamadaetal,1996;Ketelaetal,1999;Kimetal,2010;Kimetal,2008;Kranzetal,1994;Kusarietal,2004;Lamsonetal,2002;LeeandLevin,1992;Leeuwetal,1995;Leeuwetal,1998;Lietal,1998;Liuetal,2005;MacKayetal,1991;MacKayetal,1988;Maddenetal,1997;MadhaniandFink,1997;Madhanietal,1997;Maedaetal,1995;Maedaetal,1994;Malerietal,2004;MapesandOta,2004;Martinetal,2000;14MolecularSystemsBiology2012MattisonandOta,2000;Mattisonetal,1999;Medicietal,1997;MelcherandThorner,1996;Metodievetal,2002;Miyajimaetal,1987;Murakamietal,2008;NasmythandDirick,1991;Nehlinetal,1992;NeimanandHerskowitz,1994;NernandArkowitz,1998;NernandArkowitz,1999;Nonakaetal,1995;Olsonetal,2000;OstranderandGorman,1999;Ozakietal,1996;ParaviciniandFriedli,1996;Parnelletal,2005;Pascual-Ahuiretal,2001;Peteretal,1996;Petersonetal,1994;PhilipandLevin,2001;PosasandSaito,1997;PosasandSaito,1998;Posasetal,1998;Posasetal,1996;Proftetal,2005;Proftetal,2001;ProftandSerrano,1999;ProftandStruhl,2002;Raicuetal,2005;Raittetal,2000;Rajaveletal,1999;Reiseretal,2000;Remenyietal,2005;Repetal,2000;Repetal,1999;RobertsandFink,1994;Schmelzleetal,2002;Schmidtetal,1997;Schmidtetal,2002;Schmitzetal,2002;Shietal,2005;Shimadaetal,2004;SidorovaandBreeden,1993;SiegmundandNasmyth,1996;SiekhausandDrubin,2003;Simonetal,1995;Skowyraetal,1997;Smithetal,2002;Soleretal,1995;Songetal,1996;Tabaetal,1991;TakahashiandPryciak,2007;Taoetal,2002;Tarassovetal,2008;Tatebayashietal,2003;Tatebayashietal,2007;Tatebayashietal,2006;Tedfordetal,1997;Trucksesetal,2006;Trumanetal,2009;Vadaieetal,2008;Valtzetal,1995;Varanasietal,1996;Vernaetal,1997;Vilellaetal,2005;WangandKonopka,2009;Wangetal,2005;Warmkaetal,2001;WassmannandAmmerer,1997;Watanabeetal,1994;Watanabeetal,1995;Watanabeetal,1997;WintersandPryciak,2005;Wuetal,2006;Wuetal,1999;Wuetal,1995;Wuetal,2004;Wurgler-Murphyetal,1997;Yablonskietal,1996;Yamamotoetal,2010;YesilaltayandJenness,2000;Youngetal,2002;YuanandFields,1991;Zarrinparetal,2004;

&2012EMBOandMacmillanPublishersLimitedZarrinparetal,2003;Zarzovetal,1996;Zeitlingeretal,2003;Zhanetal,1997;ZhanandGuan,1999;Zhaoetal,1995;ZhengandGuan,1994;Zhengetal,1994;Zhouetal,1993).

Themethodsusedareanintegralpartoftheresultsandareoutlinedinthatsection.Foradditionaldetails,pleaseseeSupplementaryinformation.

Supplementaryinformation

SupplementaryinformationisavailableattheMolecularSystemsBiologywebsite(www.nature.com/msb).

Conflictofinterest

Theauthorsdeclarethattheyhavenoconflictofinterest.

Acknowledgements

Wethankpastandpresentcolleaguesforhelpfuldiscussions;inparticularAkiraFunahashi,NorikoHiroiandDouglasMurrayforsuggestionsintheconceptionphase,Hans-MichaelKaltenbachforintroductiontothebipartitegraph,ClemensKu¨hnforintroductiontoNFsim,JensNielsenforthesuggestiontousematrixmultiplicationtocalculatenetworkdistanceandNinaArensforproofreading.WeacknowledgesupportfromJSPSandSSF(Japan-SwedencollaborativepostdocgranttoMK),LionsandtheSwedishResearchCouncil(toGC),theGermanMinistryforEducationandResearch(BMBF,SysMO2projectTranslucent2toEK),theEuropeanCommission(UNICELLSYS,Grant201142,AQUAGLYCEROPORIN,Grant35995,CELLCOMPUT,Grant043310andSYSTEMSBIOLOGY,Grant514169,alltoSHandEK)andfromtheMULTIDISCIPLINARYBIOSweden-Japaninitiative(Sweden:FoundationforStrategicResearchSSFandVinnova,Japan:JapanScienceandTechnologyAgencyJST)toSHandHK.WorkinthelaboratoryofSHwasalsosupportedbyagrantfromtheSwedishResearchCouncil(Grant2007-4905).

Authorcontributions:HKinitiatedthemappingproject.MKconceivedtheframework.GCandMKdevelopedtheframeworkwithinputfromalltheauthors.CFTandMKmappedtheMAPkinasenetwork.FKandRPimplementedtheframeworkwithguidancefromGCandMK.FKcreatedtherxnconsoftwaretool.MKdraftedthefirstmanuscriptwithhelpfromGC.SHandEKcontributedbiologicalandtheoreticalbackgroundknowledge,respectively.SH,EKandHKprovidedtheresearchenvironmentsandcontributedtocompletionofthemanuscript.Allauthorsread,editedandapprovedthefinalmanuscript.

References

AiW,BertramPG,TsangCK,ChanTF,ZhengXF(2002)Regulationofsubtelomericsilencingduringstressresponse.MolCell10:1295–1305

AlepuzPM,deNadalE,ZapaterM,AmmererG,PosasF(2003)Osmostress-inducedtranscriptionbyHot1dependsonaHog1-mediatedrecruitmentoftheRNAPolII.EMBOJ22:2433–2442AlepuzPM,JovanovicA,ReiserV,AmmererG(2001)Stress-inducedmapkinaseHog1ispartoftranscriptionactivationcomplexes.MolCell7:767–777

AndrewsBJ,HerskowitzI(1989)IdentificationofaDNAbindingfactorinvolvedincell-cyclecontroloftheyeastHOgene.Cell57:21–29

AndrewsBJ,MooreLA(1992)InteractionoftheyeastSwi4andSwi6cellcycleregulatoryproteinsinvitro.ProcNatlAcadSciUSA89:11852–11856

ApanovitchDM,SlepKC,SiglerPB,DohlmanHG(1998)Sst2isaGTPase-activatingproteinforGpa1:purificationandcharacterizationofacognateRGS-Galphaproteinpairinyeast.Biochemistry37:4815–4822

&2012EMBOandMacmillanPublishersLimitedAframeworkformapping,visualisationandautomaticmodelcreation

C-FTigeretalArandaB,AchuthanP,Alam-FaruqueY,ArmeanI,BridgeA,DerowC,FeuermannM,GhanbarianAT,KerrienS,KhadakeJ,KerssemakersJ,LeroyC,MendenM,MichautM,Montecchi-PalazziL,NeuhauserSN,OrchardS,PerreauV,RoechertB,vanEijkKetal(2010)TheIntActmolecularinteractiondatabasein2010.NucleicAcidsRes38:D525–D531

BaetzK,AndrewsB(1999)RegulationofcellcycletranscriptionfactorSwi4throughauto-inhibitionofDNAbinding.MolCellBiol19:6729–6741

BaetzK,MoffatJ,HaynesJ,ChangM,AndrewsB(2001)Transcriptionalcoregulationbythecellintegritymitogen-activatedproteinkinaseSlt2andthecellcycleregulatorSwi4.MolCellBiol21:6515–6528BallonDR,FlanaryPL,GladueDP,KonopkaJB,DohlmanHG,ThornerJ(2006)DEP-domain-mediatedregulationofGPCRsignalingresponses.Cell126:1079–1093

BaoMZ,SchwartzMA,CantinGT,YatesJR3rd,MadhaniHD(2004)Pheromone-dependentdestructionoftheTec1transcriptionfactorisrequiredforMAPkinasesignalingspecificityinyeast.Cell119:991–1000BaoMZ,ShockTR,MadhaniHD(2010)MultisitephosphorylationoftheSaccharomycescerevisiaefilamentousgrowthregulatorTec1isrequiredforitsrecognitionbytheE3ubiquitinligaseadaptorCdc4anditssubsequentdestructioninvivo.EukaryotCell9:31–36BarEE,EllicottAT,StoneDE(2003)GbetagammarecruitsRho1tothesiteofpolarizedgrowthduringmatinginbuddingyeast.JBiolChem278:21798–21804

BardwellL,CookJG,ChangEC,CairnsBR,ThornerJ(1996)Signalingintheyeastpheromoneresponsepathway:specificandhigh-affinityinteractionofthemitogen-activatedprotein(MAP)kinasesKss1andFus3withtheupstreamMAPkinasekinaseSte7.MolCellBiol16:3637–3650

BardwellL,CookJG,VooraD,BaggottDM,MartinezAR,ThornerJ(1998a)RepressionofyeastSte12transcriptionfactorbydirectbindingofunphosphorylatedKss1MAPKanditsregulationbytheSte7MEK.GenesDev12:2887–2898

BardwellL,CookJG,Zhu-ShimoniJX,VooraD,ThornerJ(1998b)Differentialregulationoftranscription:repressionbyunactivatedmitogen-activatedproteinkinaseKss1requirestheDig1andDig2proteins.ProcNatlAcadSciUSA95:15400–15405

BenderA,SpragueGFJr.(1986)Yeastpeptidepheromones,a-factorandalpha-factor,activateacommonresponsemechanismintheirtargetcells.Cell47:929–937

Bilsland-MarchesanE,ArinoJ,SaitoH,SunnerhagenP,PosasF(2000)Rck2kinaseisasubstratefortheosmoticstress-activatedmitogen-activatedproteinkinaseHog1.MolCellBiol20:3887–3895Biographerhttp://code.google.com/p/biographer/

BlinovML,FaederJR,GoldsteinB,HlavacekWS(2004)BioNetGen:softwareforrule-basedmodelingofsignaltransductionbasedontheinteractionsofmoleculardomains.Bioinformatics(Oxford,England)20:3289–3291

BlinovML,YangJ,FaederJR,HlavacekWS(2006)Depictingsignalingcascades.NatureBiotechnology24:137–138authorreply138

BlumerKJ,RenekeJE,ThornerJ(1988)TheSTE2geneproductistheligand-bindingcomponentofthealpha-factorreceptorofSaccharomycescerevisiae.JBiolChem263:10836–10842

BorisovNM,ChistopolskyAS,FaederJR,KholodenkoBN(2008)Domain-orientedreductionofrule-basednetworkmodels.IETSystBiol2:342–351

BreitkreutzA,BoucherL,TyersM(2001)MAPKspecificityintheyeastpheromoneresponseindependentoftranscriptionalactivation.CurrBiol11:1266–1271

BreitkreutzA,ChoiH,SharomJR,BoucherL,NeduvaV,LarsenB,LinZY,BreitkreutzBJ,StarkC,LiuG,AhnJ,Dewar-DarchD,RegulyT,TangX,AlmeidaR,QinZS,PawsonT,GingrasAC,NesvizhskiiAI,TyersM(2010)Aglobalproteinkinaseandphosphataseinteractionnetworkinyeast.Science(NewYork,NY)328:1043–1046

BrucknerS,KohlerT,BrausGH,HeiseB,BolteM,MoschHU(2004)DifferentialregulationofTec1byFus3andKss1conferssignalingspecificityinyeastdevelopment.CurrGenet46:331–342

MolecularSystemsBiology201215Aframeworkformapping,visualisationandautomaticmodelcreationC-FTigeretalButtyAC,PryciakPM,HuangLS,HerskowitzI,PeterM(1998)TheroleofFar1pinlinkingtheheterotrimericGproteintopolarityestablishmentproteinsduringyeastmating.Science282:1511–1516

ChautardE,BallutL,Thierry-MiegN,Ricard-BlumS(2009)MatrixDB,adatabasefocusedonextracellularprotein-proteinandprotein-carbohydrateinteractions.Bioinformatics(Oxford,England)25:690–691ChouS,HuangL,LiuH(2004)Fus3-regulatedTec1degradationthroughSCFCdc4determinesMAPKsignalingspecificityduringmatinginyeast.Cell119:981–990

ChouS,LaneS,LiuH(2006)RegulationofmatingandfilamentationgenesbytwodistinctSte12complexesinSaccharomycescerevisiae.MolCellBiol26:4794–4805

ChylekLA,HuB,BlinovML,EmonetT,FaederJR,GoldsteinB,GutenkunstRN,HaughJM,LipniackiT,PosnerRG,YangJ,HlavacekWS(2011)Guidelinesforvisualizingandannotatingrule-basedmodels.MolBiolSyst7:2779–2795

CismowskiMJ,MetodievM,DraperE,StoneDE(2001)BiochemicalanalysisofyeastG(alpha)mutantsthatenhanceadaptationtopheromone.BiochemBiophysResCommun284:247–254

ClarkKL,DignardD,ThomasDY,WhitewayM(1993)InteractionsamongthesubunitsoftheGproteininvolvedinSaccharomycescerevisiaemating.MolCellBiol13:1–8

CollisterM,DidmonMP,MacIsaacF,StarkMJ,MacDonaldNQ,KeyseSM(2002)YIL113wencodesafunctionaldual-specificityproteinphosphatasewhichspecificallyinteractswithandinactivatestheSlt2/Mpk1pMAPkinaseinS.cerevisiae.FEBSLett527:186–192ConzelmannH,FeyD,GillesED(2008)Exactmodelreductionofcombinatorialreactionnetworks.BMCSystBiol2:78

CookJG,BardwellL,KronSJ,ThornerJ(1996)TwonoveltargetsoftheMAPkinaseKss1arenegativeregulatorsofinvasivegrowthintheyeastSaccharomycescerevisiae.GenesDev10:2831–2848CroftD,O’KellyG,WuG,HawR,GillespieM,MatthewsL,CaudyM,GarapatiP,GopinathG,JassalB,JupeS,KataskayaI,MahajanS,MayB,NdegwaN,SchmidtE,ShamovskyV,YungC,BirneyE,HermjakobHetal(2010)Reactome:adatabaseofreactions,pathwaysandbiologicalprocessesNucleicAcidsRes39(Databaseissue):D691–D697

CrosbyJA,KonopkaJB,FieldsS(2000)ConstitutiveactivationoftheSaccharomycescerevisiaetranscriptionalregulatorSte12pbymutationsattheamino-terminus.Yeast16:1365–1375

CullenPJ,SabbaghWJr.,GrahamE,IrickMM,vanOldenEK,NealC,DelrowJ,BardwellL,SpragueGFJr.(2004)AsignalingmucinattheheadoftheCdc42-andMAPK-dependentfilamentousgrowthpathwayinyeast.GenesDev18:1695–1708

DanosV(2007)Rule-basedmodellingofcellularsignalling.CellSignal17–41

DavenportKD,WilliamsKE,UllmannBD,GustinMC(1999)ActivationoftheSaccharomycescerevisiaefilamentation/invasionpathwaybyosmoticstressinhigh-osmolarityglycogenpathwaymutants.Genetics153:1091–1103

deNadalE,CasadomeL,PosasF(2003)TargetingtheMEF2-liketranscriptionfactorSmp1bythestress-activatedHog1mitogen-activatedproteinkinase.MolCellBiol23:229–237

DodouE,TreismanR(1997)TheSaccharomycescerevisiaeMADS-boxtranscriptionfactorRlm1isatargetfortheMpk1mitogen-activatedproteinkinasepathway.MolCellBiol17:1848–1859

DoiK,GartnerA,AmmererG,ErredeB,ShinkawaH,SugimotoK,MatsumotoK(1994)MSG5,anovelproteinphosphatasepromotesadaptationtopheromoneresponseinS.cerevisiae.EMBOJ13:61–70

DolanJW,KirkmanC,FieldsS(1989)TheyeastSTE12proteinbindstotheDNAsequencemediatingpheromoneinduction.ProcNatlAcadSciUSA86:5703–5707

DowellSJ,BishopAL,DyosSL,BrownAJ,WhitewayMS(1998)MappingofayeastGproteinbetagammasignalinginteraction.Genetics150:1407–1417

DrogenF,O’RourkeSM,StuckeVM,JaquenoudM,NeimanAM,PeterM(2000)PhosphorylationoftheMEKKSte11pbythePAK-like16MolecularSystemsBiology2012kinaseSte20pisrequiredforMAPkinasesignalinginvivo.CurrBiol10:630–639

ElionEA,SatterbergB,KranzJE(1993)FUS3phosphorylatesmultiplecomponentsofthematingsignaltransductioncascade:evidenceforSTE12andFAR1.MolBiolCell4:495–510

ErredeB,GartnerA,ZhouZ,NasmythK,AmmererG(1993)MAPkinase-relatedFUS3fromS.cerevisiaeisactivatedbySTE7invitro.Nature362:261–264

EscoteX,ZapaterM,ClotetJ,PosasF(2004)Hog1mediatescell-cyclearrestinG1phasebythedualtargetingofSic1.NatCellBiol6:997–1002

FaederJR,BlinovML,GoldsteinB,HlavacekWS(2005)Rule-basedmodelingofbiochemicalnetworks.Complexity10:22–41

FengY,SongLY,KincaidE,MahantySK,ElionEA(1998)FunctionalbindingbetweenGbetaandtheLIMdomainofSte5isrequiredtoactivatetheMEKKSte11.CurrBiol8:267–278

FitchPG,GammieAE,LeeDJ,deCandalVB,RoseMD(2004)Lrg1pIsaRho1GTPase-activatingproteinrequiredforefficientcellfusioninyeast.Genetics168:733–746

FlandezM,CosanoIC,NombelaC,MartinH,MolinaM(2004)ReciprocalregulationbetweenSlt2MAPKandisoformsofMsg5dual-specificityproteinphosphatasemodulatestheyeastcellintegritypathway.JBiolChem279:11027–11034

FlothoA,SimpsonDM,QiM,ElionEA(2004)LocalizedfeedbackphosphorylationofSte5pscaffoldbyassociatedMAPKcascadeJBiolChem279:47391–47401

FriantS,LombardiR,SchmelzleT,HallMN,RiezmanH(2001)SphingoidbasesignalingviaPkhkinasesisrequiredforendocytosisinyeast.EMBOJ20:6783–6792

Garcia-GimenoMA,StruhlK(2000)Aca1andAca2,ATF/CREBactivatorsinSaccharomycescerevisiae,areimportantforcarbonsourceutilizationbutnottheresponsetostress.MolCellBiol20:4340–4349

GarrisonTR,ZhangY,PauschM,ApanovitchD,AebersoldR,DohlmanHG(1999)FeedbackphosphorylationofanRGSproteinbyMAPkinaseinyeast.JBiolChem274:36387–36391

GartnerA,JovanovicA,JeoungDI,BourlatS,CrossFR,AmmererG(1998)Pheromone-dependentG1cellcyclearrestrequiresFar1phosphorylation,butmaynotinvolveinhibitionofCdc28-Cln2kinase,invivo.MolCellBiol18:3681–3691

GartnerA,NasmythK,AmmererG(1992)SignaltransductioninSaccharomycescerevisiaerequirestyrosineandthreoninephosphorylationofFUS3andKSS1.GenesDev6:1280–1292

GoodM,TangG,SingletonJ,RemenyiA,LimWA(2009)TheSte5scaffolddirectsmatingsignalingbycatalyticallyunlockingtheFus3MAPkinaseforactivation.Cell136:1085–1097

GreenR,LesageG,SdicuAM,MenardP,BusseyH(2003)AsyntheticanalysisoftheSaccharomycescerevisiaestresssensorMid2p,andidentificationofaMid2p-interactingprotein,Zeo1p,thatmodulatesthePKC1-MPK1cellintegritypathway.Microbiology149:2487–2499

GuoS,ShenX,YanG,MaD,BaiX,LiS,JiangY(2009)AMAPkinasedependentfeedbackmechanismcontrolsRho1GTPaseandactindistributioninyeast.PLoSOne4:e6089

HagenDC,McCaffreyG,SpragueGFJr.(1986)EvidencetheyeastSTE3geneencodesareceptorforthepeptidepheromoneafactor:genesequenceandimplicationsforthestructureofthepresumedreceptor.ProcNatlAcadSciUSA83:1418–1422

HagenDC,McCaffreyG,SpragueGFJr.(1991)Pheromoneresponseelementsarenecessaryandsufficientforbasalandpheromone-inducedtranscriptionoftheFUS1geneofSaccharomycescerevisiae.MolCellBiol11:2952–2961

HahnJS,ThieleDJ(2002)RegulationoftheSaccharomycescerevisiaeSlt2kinasepathwaybythestress-inducibleSdp1dualspecificityphosphatase.JBiolChem277:21278–21284

HeenanEJ,VanhookeJL,TempleBR,BettsL,SondekJE,DohlmanHG(2009)StructureandfunctionofVps15intheendosomalGproteinsignalingpathway.Biochemistry48:6390–6401

&2012EMBOandMacmillanPublishersLimitedHeiseB,vanderFeldenJ,KernS,MalcherM,BrucknerS,MoschHU(2010)TheTEAtranscriptionfactorTec1conferspromoter-specificgeneregulationbySte12-dependentand-independentmechanisms.EukaryotCell9:514–531

HlavacekWS,FaederJR,BlinovML,PerelsonAS,GoldsteinB(2003)Thecomplexityofcomplexesinsignaltransduction.BiotechnolBioeng84:783–794

HoY,GruhlerA,HeilbutA,BaderGD,MooreL,AdamsSL,MillarA,TaylorP,BennettK,BoutilierK,YangL,WoltingC,DonaldsonI,SchandorffS,ShewnaraneJ,VoM,TaggartJ,GoudreaultM,MuskatB,AlfaranoCetal(2002)SystematicidentificationofproteincomplexesinSaccharomycescerevisiaebymassspectrometry.Nature415:180–183

HorieT,TatebayashiK,YamadaR,SaitoH(2008)PhosphorylatedSsk1preventsunphosphorylatedSsk1fromactivatingtheSsk2mitogen-activatedproteinkinasekinasekinaseintheyeasthigh-osmolarityglycerolosmoregulatorypathway.MolCellBiol28:5172–5183

HuckaM,FinneyA,SauroHM,BolouriH,DoyleJC,KitanoH,ArkinAP,BornsteinBJ,BrayD,Cornish-BowdenA,CuellarAA,DronovS,GillesED,GinkelM,GorV,GoryaninII,HedleyWJ,HodgmanTC,HofmeyrJH,HunterPJetal(2003)Thesystemsbiologymarkuplanguage(SBML):amediumforrepresentationandexchangeofbiochemicalnetworkmodels.Bioinformatics(Oxford,England)19:524–531

InagakiM,SchmelzleT,YamaguchiK,IrieK,HallMN,MatsumotoK(1999)PDK1homologsactivatethePkc1-mitogen-activatedproteinkinasepathwayinyeast.MolCellBiol19:8344–8352

InouyeC,DhillonN,DurfeeT,ZambryskiPC,ThornerJ(1997a)MutationalanalysisofSTE5intheyeastSaccharomycescerevisiae:applicationofadifferentialinteractiontrapassayforexaminingprotein-proteininteractions.Genetics147:479–492

InouyeC,DhillonN,ThornerJ(1997b)Ste5RING-H2domain:roleinSte4-promotedoligomerizationforyeastpheromonesignaling.Science278:103–106

IrieK,TakaseM,LeeKS,LevinDE,ArakiH,MatsumotoK,OshimaY(1993)MKK1andMKK2,whichencodeSaccharomycescerevisiaemitogen-activatedproteinkinase-kinasehomologs,functioninthepathwaymediatedbyproteinkinaseC.MolCellBiol13:3076–3083

JacobyT,FlanaganH,FaykinA,SetoAG,MattisonC,OtaI(1997)Twoprotein-tyrosinephosphatasesinactivatetheosmoticstressresponsepathwayinyeastbytargetingthemitogen-activatedproteinkinase,Hog1.JBiolChem272:17749–17755

JungUS,SoberingAK,RomeoMJ,LevinDE(2002)RegulationoftheyeastRlm1transcriptionfactorbytheMpk1cellwallintegrityMAPkinase.MolMicrobiol46:781–789

KaizuK,GhoshS,MatsuokaY,MoriyaH,Shimizu-YoshidaY,KitanoH(2010)Acomprehensivemolecularinteractionmapofthebuddingyeastcellcycle.MolSystBiol6:415

KaltenbachH-M,ConstantinescuS,FeigelmanJ,StellingJ(2011)Graph-BasedDecompositionofBiochemicalReactionNetworksIntoMonotoneSubsystemsAlgorithmsinBioinformatics,PrzytyckaT,SagotM-F(eds)Vol.6833,pp139–150SpringerBerlin/HeidelbergKamadaY,JungUS,PiotrowskiJ,LevinDE(1995)TheproteinkinaseC-activatedMAPkinasepathwayofSaccharomycescerevisiaemediatesanovelaspectoftheheatshockresponse.GenesDev9:1559–1571

KamadaY,QadotaH,PythonCP,AnrakuY,OhyaY,LevinDE(1996)ActivationofyeastproteinkinaseCbyRho1GTPase.JBiolChem271:9193–9196

KanehisaM,GotoS,FurumichiM,TanabeM,HirakawaM(2010)KEGGforrepresentationandanalysisofmolecularnetworksinvolvingdiseasesanddrugs.NucleicAcidsRes38:D355–D360

KanehisaM,GotoS,HattoriM,Aoki-KinoshitaKF,ItohM,KawashimaS,KatayamaT,ArakiM,HirakawaM(2006)Fromgenomicstochemicalgenomics:newdevelopmentsinKEGG.NucleicAcidsRes34:D354–D357&2012EMBOandMacmillanPublishersLimitedAframeworkformapping,visualisationandautomaticmodelcreation

C-FTigeretalKetelaT,GreenR,BusseyH(1999)Saccharomycescerevisiaemid2pisapotentialcellwallstresssensorandupstreamactivatorofthePKC1-MPK1cellintegritypathway.JBacteriol181:3330–3340

KimKY,TrumanAW,CaesarS,SchlenstedtG,LevinDE(2010)YeastMpk1cellwallintegritymitogen-activatedproteinkinaseregulatesnucleocytoplasmicshuttlingoftheSwi6transcriptionalregulator.MolBiolCell21:1609–1619

KimKY,TrumanAW,LevinDE(2008)YeastMpk1mitogen-activatedproteinkinaseactivatestranscriptionthroughSwi4/Swi6byanoncatalyticmechanismthatrequiresupstreamsignal.MolCellBiol28:2579–2589

KiselyovVV,VersteyheS,GauguinL,DeMeytsP(2009)HarmonicoscillatormodeloftheinsulinandIGF1receptors’allostericbindingandactivation.MolSystBiol5:243

KitanoH,FunahashiA,MatsuokaY,OdaK(2005)Usingprocessdiagramsforthegraphicalrepresentationofbiologicalnetworks.NatBiotechnol23:961–966

KohnKW,AladjemMI,KimS,WeinsteinJN,PommierY(2006)Depictingcombinatorialcomplexitywiththemolecularinteractionmapnotation.MolSystBiol2:51

KranzJE,SatterbergB,ElionEA(1994)TheMAPkinaseFus3associateswithandphosphorylatestheupstreamsignalingcomponentSte5.GenesDev8:313–327

KusariAB,MolinaDM,SabbaghWJr.,LauCS,BardwellL(2004)AconservedproteininteractionnetworkinvolvingtheyeastMAPkinasesFus3andKss1.JCellBiol164:267–277

LamsonRE,WintersMJ,PryciakPM(2002)Cdc42regulationofkinaseactivityandsignalingbytheyeastp21-activatedkinaseSte20.MolCellBiol22:2939–2951

LeNovereN,HuckaM,MiH,MoodieS,SchreiberF,SorokinA,DemirE,WegnerK,AladjemMI,WimalaratneSM,BergmanFT,GaugesR,GhazalP,KawajiH,LiL,MatsuokaY,VillegerA,BoydSE,CalzoneL,CourtotMetal(2009)Thesystemsbiologygraphicalnotation.NatBiotechnol27:735–741

LeNovereN,DemirE,MiH,MoodieS,VillegerA(2011)Systemsbiologygraphicalnotation:entityrelationshiplanguageLevel1(Version1.2).AvailablefromNaturePrecedings(http://dx.doi.org/10.1038/npre.2011.5902.1)

LeeKS,LevinDE(1992)Dominantmutationsinageneencodingaputativeproteinkinase(BCK1)bypasstherequirementforaSaccharomycescerevisiaeproteinkinaseChomolog.MolCellBiol12:172–182

LeeuwT,Fourest-LieuvinA,WuC,ChenevertJ,ClarkK,WhitewayM,ThomasDY,LebererE(1995)Pheromoneresponseinyeast:associationofBem1pwithproteinsoftheMAPkinasecascadeandactin.Science270:1210–1213

LeeuwT,WuC,SchragJD,WhitewayM,ThomasDY,LebererE(1998)InteractionofaG-proteinbeta-subunitwithaconservedsequenceinSte20/PAKfamilyproteinkinases.Nature391:191–195

LiE,CismowskiMJ,StoneDE(1998)Phosphorylationofthepheromone-responsiveGbetaproteinofSaccharomycescerevisiaedoesnotaffectitsmating-specificsignalingfunction.MolGenGenet258:608–618

LiuK,ZhangX,LesterRL,DicksonRC(2005)ThesphingoidlongchainbasephytosphingosineactivatesAGC-typeproteinkinasesinSaccharomycescerevisiaeincludingYpk1,Ypk2,andSch9.JBiolChem280:22679–22687

LokL,BrentR(2005)AutomaticgenerationofcellularreactionnetworkswithMoleculizer1.0.NatBiotechnol23:131–136

MacKayVL,ArmstrongJ,YipC,WelchS,WalkerK,OsbornS,SheppardP,ForstromJ(1991)CharacterizationoftheBarproteinase,anextracellularenzymefromtheyeastSaccharomycescerevisiae.AdvExpMedBiol306:161–172

MacKayVL,WelchSK,InsleyMY,ManneyTR,HollyJ,SaariGC,ParkerML(1988)TheSaccharomycescerevisiaeBAR1geneencodesanexportedproteinwithhomologytopepsin.ProcNatlAcadSciUSA85:55–59

MolecularSystemsBiology201217Aframeworkformapping,visualisationandautomaticmodelcreationC-FTigeretalMaddenK,SheuYJ,BaetzK,AndrewsB,SnyderM(1997)SBFcellcycleregulatorasatargetoftheyeastPKC-MAPkinasepathway.Science275:1781–1784

MadhaniHD,FinkGR(1997)CombinatorialcontrolrequiredforthespecificityofyeastMAPKsignaling.Science275:1314–1317

MadhaniHD,StylesCA,FinkGR(1997)MAPkinaseswithdistinctinhibitoryfunctionsimpartsignalingspecificityduringyeastdifferentiation.Cell91:673–684

MaedaT,TakekawaM,SaitoH(1995)ActivationofyeastPBS2MAPKKbyMAPKKKsorbybindingofanSH3-containingosmosensor.Science269:554–558

MaedaT,Wurgler-MurphySM,SaitoH(1994)Atwo-componentsystemthatregulatesanosmosensingMAPkinasecascadeinyeast.Nature369:242–245

MaleriS,GeQ,HackettEA,WangY,DohlmanHG,ErredeB(2004)PersistentactivationbyconstitutiveSte7promotesKss1-mediatedinvasivegrowthbutfailstosupportFus3-dependentmatinginyeast.MolCellBiol24:9221–9238

MapesJ,OtaIM(2004)Nbp2targetsthePtc1-type2CSer/ThrphosphatasetotheHOGMAPKpathway.EMBOJ23:302–311MartinH,Rodriguez-PachonJM,RuizC,NombelaC,MolinaM(2000)RegulatorymechanismsformodulationofsignalingthroughthecellintegritySlt2-mediatedpathwayinSaccharomycescerevisiaeJBiolChem275:1511–1519

MattisonCP,OtaIM(2000)Twoproteintyrosinephosphatases,Ptp2andPtp3,modulatethesubcellularlocalizationoftheHog1MAPkinaseinyeast.GenesDev14:1229–1235

MattisonCP,SpencerSS,KresgeKA,LeeJ,OtaIM(1999)Differentialregulationofthecellwallintegritymitogen-activatedproteinkinasepathwayinbuddingyeastbytheproteintyrosinephosphatasesPtp2andPtp3.MolCellBiol19:7651–7660

MediciR,BianchiE,DiSegniG,Tocchini-ValentiniGP(1997)Efficientsignaltransductionbyachimericyeast-mammalianGproteinalphasubunitGpa1-GsalphacovalentlyfusedtotheyeastreceptorSte2.EMBOJ16:7241–7249

MelcherML,ThornerJ(1996)IdentificationandcharacterizationoftheCLK1geneproduct,anovelCaMkinase-likeproteinkinasefromtheyeastSaccharomycescerevisiae.JBiolChem271:29958–29968

MetodievMV,MatheosD,RoseMD,StoneDE(2002)RegulationofMAPKfunctionbydirectinteractionwiththemating-specificGalphainyeast.Science296:1483–1486

MiyajimaI,NakafukuM,NakayamaN,BrennerC,MiyajimaA,KaibuchiK,AraiK,KaziroY,MatsumotoK(1987)GPA1,ahaploid-specificessentialgene,encodesayeasthomologofmammalianGproteinwhichmaybeinvolvedinmatingfactorsignaltransduction.Cell50:1011–1019

MurakamiY,TatebayashiK,SaitoH(2008)TwoadjacentdockingsitesintheyeastHog1mitogen-activatedprotein(MAP)kinasedifferentiallyinteractwiththePbs2MAPkinasekinaseandthePtp2proteintyrosinephosphatase.MolCellBiol28:2481–2494NasmythK,DirickL(1991)TheroleofSWI4andSWI6intheactivityofG1cyclinsinyeast.Cell66:995–1013

NehlinJO,CarlbergM,RonneH(1992)YeastSKO1geneencodesabZIPproteinthatbindstotheCREmotifandactsasarepressoroftranscription.NucleicAcidsRes20:5271–5278

NeimanAM,HerskowitzI(1994)Reconstitutionofayeastproteinkinasecascadeinvitro:activationoftheyeastMEKhomologueSTE7bySTE11.ProcNatlAcadSciUSA91:3398–3402

NernA,ArkowitzRA(1998)AGTP-exchangefactorrequiredforcellorientation.Nature391:195–198

NernA,ArkowitzRA(1999)ACdc24p-Far1p-Gbetagammaproteincomplexrequiredforyeastorientationduringmating.JCellBiol144:1187–1202

NonakaH,TanakaK,HiranoH,FujiwaraT,KohnoH,UmikawaM,MinoA,TakaiY(1995)AdownstreamtargetofRHO1smallGTP-bindingproteinisPKC1,ahomologofproteinkinaseC,whichleadstoactivationoftheMAPkinasecascadeinSaccharomycescerevisiae.EMBOJ14:5931–593818MolecularSystemsBiology2012OlsonKA,NelsonC,TaiG,HungW,YongC,AstellC,SadowskiI(2000)TworegulatorsofSte12pinhibitpheromone-responsivetranscriptionbyseparatemechanisms.MolCellBiol20:4199–4209OstranderDB,GormanJA(1999)TheextracellulardomainoftheSaccharomycescerevisiaeSln1pmembraneosmolaritysensorisnecessaryforkinaseactivity.JBacteriol181:2527–2534

OveringtonJ(2009)ChEMBL.AninterviewwithJohnOverington,teamleader,chemogenomicsattheEuropeanBioinformaticsInstituteOutstationoftheEuropeanMolecularBiologyLaboratory(EMBL-EBI).InterviewbyWendyA.Warr.JComputAidedMolDes23:195–198

OzakiK,TanakaK,ImamuraH,HiharaT,KameyamaT,NonakaH,HiranoH,MatsuuraY,TakaiY(1996)Rom1pandRom2pareGDP/GTPexchangeproteins(GEPs)fortheRho1psmallGTPbindingproteininSaccharomycescerevisiae.EMBOJ15:2196–2207

ParaviciniG,FriedliL(1996)Protein-proteininteractionsintheyeastPKC1pathway:Pkc1pinteractswithacomponentoftheMAPkinasecascade.MolGenGenet251:682–691

ParnellSC,MarottiLAJr.,KiangL,TorresMP,BorchersCH,DohlmanHG(2005)PhosphorylationoftheRGSproteinSst2bytheMAPkinaseFus3anduseofSst2asamodeltoanalyzedeterminantsofsubstratesequencespecificity.Biochemistry44:8159–8166

Pascual-AhuirA,PosasF,SerranoR,ProftM(2001)MultiplelevelsofcontrolregulatetheyeastcAMP-responseelement-bindingproteinrepressorSko1pinresponsetostress.JBiolChem276:37373–37378

PeterM,NeimanAM,ParkHO,vanLohuizenM,HerskowitzI(1996)FunctionalanalysisoftheinteractionbetweenthesmallGTPbindingproteinCdc42andtheSte20proteinkinaseinyeast.EMBOJ15:7046–7059

PetersonJ,ZhengY,BenderL,MyersA,CerioneR,BenderA(1994)InteractionsbetweenthebudemergenceproteinsBem1pandBem2pandRho-typeGTPasesinyeast.JCellBiol127:1395–1406PhilipB,LevinDE(2001)Wsc1andMid2arecellsurfacesensorsforcellwallintegritysignalingthatactthroughRom2,aguaninenucleotideexchangefactorforRho1.MolCellBiol21:271–280PosasF,SaitoH(1997)OsmoticactivationoftheHOGMAPKpathwayviaSte11pMAPKKK:scaffoldroleofPbs2pMAPKK.Science276:1702–1705

PosasF,SaitoH(1998)ActivationoftheyeastSSK2MAPkinasekinasekinasebytheSSK1two-componentresponseregulator.EMBOJ17:1385–1394

PosasF,WittenEA,SaitoH(1998)RequirementofSTE50forosmostress-inducedactivationoftheSTE11mitogen-activatedproteinkinasekinasekinaseinthehigh-osmolarityglycerolresponsepathway.MolCellBiol18:5788–5796

PosasF,Wurgler-MurphySM,MaedaT,WittenEA,ThaiTC,SaitoH(1996)YeastHOG1MAPkinasecascadeisregulatedbyamultistepphosphorelaymechanismintheSLN1-YPD1-SSK1‘two-component’osmosensor.Cell86:865–875

ProftM,GibbonsFD,CopelandM,RothFP,StruhlK(2005)GenomewideidentificationofSko1targetpromotersrevealsaregulatorynetworkthatoperatesinresponsetoosmoticstressinSaccharomycescerevisiae.EukaryotCell4:1343–1352

ProftM,Pascual-AhuirA,deNadalE,ArinoJ,SerranoR,PosasF(2001)RegulationoftheSko1transcriptionalrepressorbytheHog1MAPkinaseinresponsetoosmoticstress.EMBOJ20:1123–1133ProftM,SerranoR(1999)Repressorsandupstreamrepressingsequencesofthestress-regulatedENA1geneinSaccharomycescerevisiae:bZIPproteinSko1pconfersHOG-dependentosmoticregulation.MolCellBiol19:537–546

ProftM,StruhlK(2002)Hog1kinaseconvertstheSko1-Cyc8-Tup1repressorcomplexintoanactivatorthatrecruitsSAGAandSWI/SNFinresponsetoosmoticstress.MolCell9:1307–1317

PSICQUIChttp://www.ebi.ac.uk/Tools/webservices/psicquic/view/main.xhtml

RaicuV,JansmaDB,MillerRJ,FriesenJD(2005)Proteininteractionquantifiedinvivobyspectrallyresolvedfluorescenceresonanceenergytransfer.BiochemJ385:265–277

&2012EMBOandMacmillanPublishersLimitedRaittDC,PosasF,SaitoH(2000)YeastCdc42GTPaseandSte20PAK-likekinaseregulateSho1-dependentactivationoftheHog1MAPKpathway.EMBOJ19:4623–4631

RajavelM,PhilipB,BuehrerBM,ErredeB,LevinDE(1999)Mid2isaputativesensorforcellintegritysignalinginSaccharomycescerevisiae.MolCellBiol19:3969–3976

ReiserV,SalahSM,AmmererG(2000)PolarizedlocalizationofyeastPbs2dependsonosmostress,themembraneproteinSho1andCdc42.NatCellBiol2:620–627

RemenyiA,GoodMC,BhattacharyyaRP,LimWA(2005)Theroleofdockinginteractionsinmediatingsignalinginput,output,anddiscriminationintheyeastMAPKnetwork.MolCell20:951–962

RepM,KrantzM,TheveleinJM,HohmannS(2000)ThetranscriptionalresponseofSaccharomycescerevisiaetoosmoticshock.Hot1pandMsn2p/Msn4parerequiredfortheinductionofsubsetsofhighosmolarityglycerolpathway-dependentgenesJBiolChem275:8290–8300

RepM,ReiserV,GartnerU,TheveleinJM,HohmannS,AmmererG,RuisH(1999)Osmoticstress-inducedgeneexpressioninSaccharomycescerevisiaerequiresMsn1pandthenovelnuclearfactorHot1p.MolCellBiol19:5474–5485

RobertsRL,FinkGR(1994)ElementsofasingleMAPkinasecascadeinSaccharomycescerevisiaemediatetwodevelopmentalprogramsinthesamecelltype:matingandinvasivegrowth.GenesDev8:2974–2985

SchmelzleT,HelliwellSB,HallMN(2002)YeastproteinkinasesandtheRHO1exchangefactorTUS1arenovelcomponentsofthecellintegritypathwayinyeast.MolCellBiol22:1329–1339

SchmidtA,BickleM,BeckT,HallMN(1997)TheyeastphosphatidylinositolkinasehomologTOR2activatesRHO1andRHO2viatheexchangefactorROM2.Cell88:531–542

SchmidtA,SchmelzleT,HallMN(2002)TheRHO1-GAPsSAC7,BEM2andBAG7controldistinctRHO1functionsinSaccharomycescerevisiae.MolMicrobiol45:1433–1441

SchmitzHP,LorbergA,HeinischJJ(2002)RegulationofyeastproteinkinaseCactivitybyinteractionwiththesmallGTPaseRho1pthroughitsamino-terminalHR1domain.MolMicrobiol44:829–840

ShiC,ShinYO,HansonJ,CassB,LoewenMC,DurocherY

(2005)PurificationandcharacterizationofarecombinantG-protein-coupledreceptor,SaccharomycescerevisiaeSte2p,transientlyexpressedinHEK293EBNA1cells.Biochemistry44:15705–15714

ShimadaY,WigetP,GulliMP,BiE,PeterM(2004)ThenucleotideexchangefactorCdc24pmayberegulatedbyauto-inhibition.EMBOJ23:1051–1062

SidorovaJ,BreedenL(1993)AnalysisoftheSWI4/SWI6proteincomplex,whichdirectsG1/S-specifictranscriptioninSaccharomycescerevisiae.MolCellBiol13:1069–1077

SiegmundRF,NasmythKA(1996)TheSaccharomycescerevisiaeStart-specifictranscriptionfactorSwi4interactsthroughtheankyrinrepeatswiththemitoticClb2/Cdc28kinaseandthroughitsconservedcarboxyterminuswithSwi6.MolCellBiol16:2647–2655

SiekhausDE,DrubinDG(2003)Spontaneousreceptor-independentheterotrimericG-proteinsignallinginanRGSmutant.NatCellBiol5:231–235

SimonMN,DeVirgilioC,SouzaB,PringleJR,AboA,ReedSI(1995)RolefortheRho-familyGTPaseCdc42inyeastmating-pheromonesignalpathway.Nature376:702–705

SkowyraD,CraigKL,TyersM,ElledgeSJ,HarperJW(1997)F-boxproteinsarereceptorsthatrecruitphosphorylatedsubstratestotheSCFubiquitin-ligasecomplex.Cell91:209–219

SmithGR,GivanSA,CullenP,SpragueGFJr.(2002)GTPase-activatingproteinsforCdc42.EukaryotCell1:469–480

SneddonMW,FaederJR,EmonetT(2011)Efficientmodeling,simulationandcoarse-grainingofbiologicalcomplexitywithNFsim.NatMethods8:177–183&2012EMBOandMacmillanPublishersLimitedAframeworkformapping,visualisationandautomaticmodelcreation

C-FTigeretalSolerM,PlovinsA,MartinH,MolinaM,NombelaC(1995)CharacterizationofdomainsintheyeastMAPkinaseSlt2(Mpk1)requiredforfunctionalactivityandinvivointeractionwithproteinkinasesMkk1andMkk2.MolMicrobiol17:833–842

SongJ,HirschmanJ,GunnK,DohlmanHG(1996)RegulationofmembraneandsubunitinteractionsbyN-myristoylationofaGproteinalphasubunitinyeast.JBiolChem271:20273–20283StarkC,BreitkreutzBJ,RegulyT,BoucherL,BreitkreutzA,TyersM(2006)BioGRID:ageneralrepositoryforinteractiondatasets.NucleicAcidsRes34:D535–D539

TabaMR,MuroffI,LydallD,TebbG,NasmythK(1991)ChangesinaSWI4,6-DNA-bindingcomplexoccuratthetimeofHOgeneactivationinyeast.GenesDev5:2000–2013

TakahashiS,PryciakPM(2007)Identificationofnovelmembrane-bindingdomainsinmultipleyeastCdc42effectors.MolBiolCell18:4945–4956

TaoW,MaloneCL,AultAD,DeschenesRJ,FasslerJS(2002)Acytoplasmiccoiled-coildomainisrequiredforhistidinekinaseactivityoftheyeastosmosensor,SLN1.MolMicrobiol43:459–473

TarassovK,MessierV,LandryCR,RadinovicS,SernaMolinaMM,ShamesI,MalitskayaY,VogelJ,BusseyH,MichnickSW(2008)Aninvivomapoftheyeastproteininteractome.Science320:1465–1470

TatebayashiK,TakekawaM,SaitoH(2003)AdockingsitedeterminingspecificityofPbs2MAPKKforSsk2/Ssk22MAPKKKsintheyeastHOGpathway.EMBOJ22:3624–3634

TatebayashiK,TanakaK,YangHY,YamamotoK,MatsushitaY,TomidaT,ImaiM,SaitoH(2007)TransmembranemucinsHkr1andMsb2areputativeosmosensorsintheSHO1branchofyeastHOGpathway.EMBOJ26:3521–3533

TatebayashiK,YamamotoK,TanakaK,TomidaT,MaruokaT,KasukawaE,SaitoH(2006)AdaptorfunctionsofCdc42,Ste50,andSho1intheyeastosmoregulatoryHOGMAPKpathway.EMBOJ25:3033–3044

TedfordK,KimS,SaD,StevensK,TyersM(1997)RegulationofthematingpheromoneandinvasivegrowthresponsesinyeastbytwoMAPkinasesubstrates.CurrBiol7:228–238

ThornerJ,WestfallPJ,BallonDR(2005)HighOsmolarityGlycerol(HOG)pathwayinyeast.Sci.Signal(ConnectionsMapintheDatabaseofCellSignaling,asseen10January2011)http://stke.sciencemag.org/cgi/cm/stkecm;CMP_14620

TrucksesDM,BloomekatzJE,ThornerJ(2006)TheRAdomainofSte50adaptorproteinisrequiredfordeliveryofSte11totheplasmamembraneinthefilamentousgrowthsignalingpathwayoftheyeastSaccharomycescerevisiae.MolCellBiol26:912–928

TrumanAW,KimKY,LevinDE(2009)MechanismofMpk1mitogen-activatedproteinkinasebindingtotheSwi4transcriptionfactoranditsregulationbyanovelcaffeine-inducedphosphorylation.MolCellBiol29:6449–6461

VadaieN,DionneH,AkajagborDS,NickersonSR,KrysanDJ,CullenPJ(2008)CleavageofthesignalingmucinMsb2bytheaspartylproteaseYps1isrequiredforMAPKactivationinyeast.JCellBiol181:1073–1081

ValtzN,PeterM,HerskowitzI(1995)FAR1isrequiredfororientedpolarizationofyeastcellsinresponsetomatingpheromones.JCellBiol131:863–873

VaranasiUS,KlisM,MikesellPB,TrumblyRJ(1996)TheCyc8(Ssn6)-Tup1corepressorcomplexiscomposedofoneCyc8andfourTup1subunits.MolCellBiol16:6707–6714

VernaJ,LodderA,LeeK,VagtsA,BallesterR(1997)AfamilyofgenesrequiredformaintenanceofcellwallintegrityandforthestressresponseinSaccharomycescerevisiae.ProcNatlAcadSciUSA94:13804–13809

VilellaF,HerreroE,TorresJ,delaTorre-RuizMA(2005)Pkc1andtheupstreamelementsofthecellintegritypathwayinSaccharomycescerevisiae,Rom2andMtl1,arerequiredforcellularresponsestooxidativestress.JBiolChem280:9149–9159

MolecularSystemsBiology201219Aframeworkformapping,visualisationandautomaticmodelcreationC-FTigeretalWangHX,KonopkaJB(2009)Identificationofaminoacidsattwodimerinterfaceregionsofthealpha-factorreceptor(Ste2).Biochemistry48:7132–7139

WangY,ChenW,SimpsonDM,ElionEA(2005)Cdc24regulatesnuclearshuttlingandrecruitmentoftheSte5scaffoldtoaheterotrimericGproteininSaccharomycescerevisiae.JBiolChem280:13084–13096

WarmkaJ,HannemanJ,LeeJ,AminD,OtaI(2001)Ptc1,atype2CSer/Thrphosphatase,inactivatestheHOGpathwaybydephosphorylatingthemitogen-activatedproteinkinaseHog1.MolCellBiol21:51–60

WassmannK,AmmererG(1997)OverexpressionoftheG1-cyclingeneCLN2repressesthematingpathwayinSaccharomycescerevisiaeattheleveloftheMEKKSte11.JBiolChem272:13180–13188

WatanabeM,ChenCY,LevinDE(1994)SaccharomycescerevisiaePKC1encodesaproteinkinaseC(PKC)homologwithasubstratespecificitysimilartothatofmammalianPKC.JBiolChem269:16829–16836

WatanabeY,IrieK,MatsumotoK(1995)YeastRLM1encodesaserumresponsefactor-likeproteinthatmayfunctiondownstreamoftheMpk1(Slt2)mitogen-activatedproteinkinasepathway.MolCellBiol15:5740–5749

WatanabeY,TakaesuG,HagiwaraM,IrieK,MatsumotoK(1997)Characterizationofaserumresponsefactor-likeproteininSaccharomycescerevisiae,Rlm1,whichhastranscriptionalactivityregulatedbytheMpk1(Slt2)mitogen-activatedproteinkinasepathway.MolCellBiol17:2615–2623

WintersMJ,PryciakPM(2005)InteractionwiththeSH3domainproteinBem1regulatessignalingbytheSaccharomycescerevisiaep21-activatedkinaseSte20.MolCellBiol25:2177–2190

WuC,JansenG,ZhangJ,ThomasDY,WhitewayM(2006)AdaptorproteinSte50plinkstheSte11pMEKKtotheHOGpathwaythroughplasmamembraneassociation.GenesDev20:734–746

WuC,LebererE,ThomasDY,WhitewayM(1999)FunctionalcharacterizationoftheinteractionofSte50pwithSte11pMAPKKKinSaccharomycescerevisiae.MolBiolCell10:2425–2440

WuC,WhitewayM,ThomasDY,LebererE(1995)MolecularcharacterizationofSte20p,apotentialmitogen-activatedproteinorextracellularsignal-regulatedkinasekinase(MEK)kinasekinasefromSaccharomycescerevisiae.JBiolChem270:15984–15992WuYL,HooksSB,HardenTK,DohlmanHG(2004)Dominant-negativeinhibitionofpheromonereceptorsignalingbyasinglepointmutationintheGproteinalphasubunit.JBiolChem279:35287–35297

Wurgler-MurphySM,MaedaT,WittenEA,SaitoH(1997)RegulationoftheSaccharomycescerevisiaeHOG1mitogen-activatedproteinkinasebythePTP2andPTP3proteintyrosinephosphatases.MolCellBiol17:1289–1297

XenariosI,SalwinskiL,DuanXJ,HigneyP,KimSM,EisenbergD(2002)DIP,theDatabaseofInteractingProteins:aresearchtoolforstudyingcellularnetworksofproteininteractions.NucleicAcidsRes30:303–305

YablonskiD,MarbachI,LevitzkiA(1996)DimerizationofSte5,amitogen-activatedproteinkinasecascadescaffoldprotein,isrequiredforsignaltransduction.ProcNatlAcadSciUSA93:13864–13869YamamotoK,TatebayashiK,TanakaK,SaitoH(2010)DynamiccontrolofyeastMAPkinasenetworkbyinducedassociationand

20MolecularSystemsBiology2012dissociationbetweentheSte50scaffoldandtheOpy2membraneanchor.MolCell40:87–98

YangJ,MengX,HlavacekWS(2010)Rule-basedModelingandSimulationofBiochemicalSystemswithMolecularFiniteAutomata23yeastpheromonemodel.org

YesilaltayA,JennessDD(2000)Homo-oligomericcomplexesoftheyeastalpha-factorpheromonereceptorarefunctionalunitsofendocytosis.MolBiolCell11:2873–2884

YoungC,MapesJ,HannemanJ,Al-ZarbanS,OtaI(2002)RoleofPtc2type2CSer/Thrphosphataseinyeasthigh-osmolarityglycerolpathwayinactivation.EukaryotCell1:1032–1040

YuanYL,FieldsS(1991)PropertiesoftheDNA-bindingdomainoftheSaccharomycescerevisiaeSTE12protein.MolCellBiol11:5910–5918

ZarrinparA,BhattacharyyaRP,NittlerMP,LimWA(2004)Sho1andPbs2actascoscaffoldslinkingcomponentsintheyeasthighosmolarityMAPkinasepathway.MolCell14:825–832

ZarrinparA,ParkSH,LimWA(2003)Optimizationofspecificityinacellularproteininteractionnetworkbynegativeselection.Nature426:676–680

ZarzovP,MazzoniC,MannC(1996)TheSLT2(MPK1)MAPkinaseisactivatedduringperiodsofpolarizedcellgrowthinyeast.EMBOJ15:83–91

ZeitlingerJ,SimonI,HarbisonCT,HannettNM,VolkertTL,FinkGR,YoungRA(2003)Program-specificdistributionofatranscriptionfactordependentonpartnertranscriptionfactorandMAPKsignaling.Cell113:395–404

ZhanXL,DeschenesRJ,GuanKL(1997)DifferentialregulationofFUS3MAPkinasebytyrosine-specificphosphatasesPTP2/PTP3anddual-specificityphosphataseMSG5inSaccharomycescerevisiae.GenesDev11:1690–1702

ZhanXL,GuanKL(1999)Aspecificprotein-proteininteractionaccountsfortheinvivosubstrateselectivityofPtp3towardstheFus3MAPkinase.GenesDev13:2811–2827

ZhaoZS,LeungT,ManserE,LimL(1995)PheromonesignallinginSaccharomycescerevisiaerequiresthesmallGTP-bindingproteinCdc42panditsactivatorCDC24.MolCellBiol15:5246–5257

ZhengCF,GuanKL(1994)ActivationofMEKfamilykinasesrequiresphosphorylationoftwoconservedSer/Thrresidues.EMBOJ13:1123–1131

ZhengY,CerioneR,BenderA(1994)Controloftheyeastbud-siteassemblyGTPaseCdc42.CatalysisofguaninenucleotideexchangebyCdc24andstimulationofGTPaseactivitybyBem3.JBiolChem269:2369–2372

ZhouZ,GartnerA,CadeR,AmmererG,ErredeB(1993)Pheromone-inducedsignaltransductioninSaccharomycescerevisiaerequiresthesequentialfunctionofthreeproteinkinases.MolCellBiol13:2069–2080

MolecularSystemsBiologyisanopen-accessjournalpublishedbyEuropeanMolecularBiologyOrganiza-tionandNaturePublishingGroup.ThisworkislicensedunderaCreativeCommonsAttribution-Noncommercial-ShareAlike3.0UnportedLicense.

&2012EMBOandMacmillanPublishersLimited

因篇幅问题不能全部显示,请点此查看更多更全内容

Copyright © 2019- sceh.cn 版权所有

违法及侵权请联系:TEL:199 1889 7713 E-MAIL:2724546146@qq.com

本站由北京市万商天勤律师事务所王兴未律师提供法律服务