第五章 符合运算 练习题
1.求符号函数f=ax+by+cx+d分别对x,y进行三次微分;对 y进行定积分和不定积分,对y的定积分区间为(0,1);对y趋向于1求极限。
3
2
>> syms x y
>> f=sym('a*x^3+b*y^2+c*x+d'); >> diff(f,x,3) ans = 6*a
>> diff(f,y,3) ans = 0
>> int(f,y,0,1) ans =
a*x^3 + c*x + b/3 + d >> int(f,y) ans =
(b*y^3)/3 + (a*x^3 + c*x + d)*y
>> limit(f,y,1) ans =
a*x^3 + c*x + b + d
2. 已知f=1/(1+x^2),g=sin(y),求复合函数f(g(y)).
>> syms x y
>> f=sym('1/(1+x^2)'); >> g=sym('sin(y)'); >> compose(f,g,x,y) ans =
1/(sin(y)^2 + 1)
x22x10x3z43.求三元非线性方程组
y*z1的解。 >> f1=sym('x^2+2*x+1'); >> f2=sym('x+3*z-4'); >> f3=sym('y*z+1'); >> [x,y,z]=solve(f1,f2,f3)
x =
-1
y =
-3/5
z =
5/3
dydxzcosx4.解方程组dz当y(0)=1,z(0)=0时,求微分方程组的解。
dxy1>> [y,z]=dsolve('Dy-z=cos(x), Dz+y=1','y(0)=1','z(0)=0','x') y =
sin(x)/2 + (x*cos(x))/2 + 1
z =
-(x*sin(x))/2
5.求级数11221321k2和1+x+x2+…+xk+…的和。
>> syms k
>> symsum(1/(k^2),k,1,inf)
ans =
pi^2/6
>> syms x k
>> symsum(x^k,k,0,inf) ans =
piecewise([1 <= x, Inf], [abs(x) < 1, -1/(x - 1)])
xdx6计算积分 21(1+x)
>> f=sym('x^(1/2)/(1+x)^2'); >> int(f,1,inf) ans =
pi/4 + 1/2
xdz7计算积分 1 2 1+z
>> syms x z
>> f=sym('x/(1+z^2)'); >> int(f,z,1,inf) ans =
(pi*x)/4
8求函数 1 2 x 3 3 1 3 x x 2 的5阶泰勒级数展开式 x
>> syms x a
>>f=sym('(1-2*x+x^3)^(1/2)-(1-3*x+x^2)^(1/3)'); >>taylor(f,x,a,'order',5) ans =
(a^3 - 2*a + 1)^(1/2) - (a - x)^4*(((5*(3*a^2 - 2)*((3*(a^3 - 2*a + 1)^(1/2))/2 - (3*(3*a^2 - 2)*(3*a*(a^3 - 2*a + 1)^(1/2) - (3*a^2 - 2)^2/(4*(a^3 - 2*a + 1)^(1/2))))/(4*(a^3 - 2*a + 1))))/(6*(a^3 - 2*a + 1)) - (3*a^2 - 2)/(4*(a^3 - 2*a + 1)^(1/2)) + (3*a*(3*a*(a^3 - 2*a + 1)^(1/2) - (3*a^2 - 2)^2/(4*(a^3 - 2*a + 1)^(1/2))))/(2*(a^3 - 2*a + 1)))/(4*(a^3 - 2*a + 1)) + ((2*((2*(2*a - 3)^2)/(9*(a^2 - 3*a + 1)^(2/3)) - (2*(a^2 - 3*a + 1)^(1/3))/3))/(3*(a^2 - 3*a + 1)) + (8*(2*a - 3)*((2*a - 3)/(9*(a^2 - 3*a + 1)^(2/3)) - (5*((2*(2*a - 3)^2)/(9*(a^2 - 3*a + 1)^(2/3)) - (2*(a^2 - 3*a + 1)^(1/3))/3)*(2*a - 3))/(6*(a^2 - 3*a + 1))))/(9*(a^2 - 3*a + 1)))/(4*(a^2 - 3*a + 1))) - ((3*a^2 - 2)/(2*(a^3 - 2*a + 1)^(1/2)) - (2*a - 3)/(3*(a^2 - 3*a + 1)^(2/3)))*(a - x) - (a^2 - 3*a + 1)^(1/3) - (((2*a - 3)/(9*(a^2 - 3*a + 1)^(2/3)) - (5*((2*(2*a - 3)^2)/(9*(a^2 - 3*a + 1)^(2/3)) - (2*(a^2 - 3*a + 1)^(1/3))/3)*(2*a - 3))/(6*(a^2 - 3*a + 1)))/(3*(a^2 - 3*a + 1)) + ((3*(a^3 - 2*a + 1)^(1/2))/2 - (3*(3*a^2 - 2)*(3*a*(a^3 - 2*a + 1)^(1/2) - (3*a^2 - 2)^2/(4*(a^3 - 2*a + 1)^(1/2))))/(4*(a^3 - 2*a + 1)))/(3*(a^3 - 2*a + 1)))*(a - x)^3 + (a - x)^2*((3*a*(a^3 - 2*a + 1)^(1/2) - (3*a^2 - 2)^2/(4*(a^3 - 2*a + 1)^(1/2)))/(2*(a^3 - 2*a + 1)) + ((2*(2*a - 3)^2)/(9*(a^2 - 3*a + 1)^(2/3)) - (2*(a^2 - 3*a + 1)^(1/3))/3)/(2*(a^2 - 3*a + 1)))
xey9.计算下列函数的倒数:z2,求zx’, zy’。
y>> syms x y
>> z=sym('x*exp(y)/(y^2)'); >> diff(z,x)
ans =
exp(y)/y^2
>> diff(z,y)
ans =
(x*exp(y))/y^2 - (2*x*exp(y))/y^3
因篇幅问题不能全部显示,请点此查看更多更全内容