【知识梳理】
由平行四边形的结构知,平行四边形可以分解为一些全等的三角形,并且包含着平行线的有关性质,因此,平行四边形是全等三角形知识和平行线性质的有机结合,平行四边形包括矩形、菱形、正方形。
另一方面,平行四边形有许多很好的性质,使得构造平行四边形成为解几何题的有力工具。 【例题精讲】
【例1】四边形四条边的长分别为m、n、p、q,且满足m2n2p2q22mn2pq,则这个四边形是( )
A.平行四边形 B.对角线互相垂直的四边形 C.平行四边形或对角线互相垂直的四边形 D.对角线相等的四边形
【例2】如图①,四边形ABCD是正方形, 点G是BC上任意一点,DE⊥AG于点E,BF⊥AG于点F.
(1) 求证:DE-BF = EF. (2) 当点G为BC边中点时, 试探究线段EF与GF之间的数量关系, 并说明理由.
(3) 若点G为CB延长线上一点,其余条件不变.请你在图②中画出图形,写出此时DE、BF、EF之间的数量关系(不需要证明).
【巩固】如图1,在边长为5的正方形ABCD中,点E、F分别是BC、DC边上的点,且AEEF,BE2. (1)求EC∶CF的值; (2)延长EF交正方形外角平分线CP于点P(如图13-2),试判断AE与EP的大小关系,并说明理由;
(3)在图2的AB边上是否存在一点M,使得四边形DMEP是平行四边形?若存在,请给予证明;若不存在,请说明理由.
【例3】如图,在矩形ABCD中,已知AD=12,AB=5,P是AD边上任意一点,PE⊥BD于E,
B
E 图1
F C
B
E 图2
F P C
A D A D PF⊥AC于F,求PE+PF的值。
【例4】如图,在△ABC中,∠BAC=90°,AD⊥BC,BE、AF分别是∠ABC、∠DAC的平分线,
BE和AD交于G,求证:GF∥AC。
【例5】如图所示,Rt△ABC中,∠BAC=90°,AD⊥BC于D,BG平分∠ABC,EF∥BC且交
AC于F。求证:AE=CF。
【巩固】如图,在平行四边形ABCD中,∠B,∠D的平分线分别交对边于点E、F,交四边形的对角线AC于点G、H。求证:AH=CG。
BEDAGFC
因篇幅问题不能全部显示,请点此查看更多更全内容
Copyright © 2019- sceh.cn 版权所有 湘ICP备2023017654号-4
违法及侵权请联系:TEL:199 1889 7713 E-MAIL:2724546146@qq.com
本站由北京市万商天勤律师事务所王兴未律师提供法律服务