您好,欢迎来到尚车旅游网。
搜索
您的当前位置:首页导热系数实验报告

导热系数实验报告

来源:尚车旅游网
 .

一、[实验目的]

用稳态法测定金属、空气、橡皮的导热系数。

二、[实验仪器]

导热系数测定仪、铜-康导热电偶、游标卡尺、数字毫伏表、台秤(公用)、杜瓦瓶、秒表、待测样品(橡胶盘、铝芯)、冰块

T1

ABC

T2

冰水混合物

测1

测1 表 测2 风扇

220V

电源 输入

测2

110V

导热系数测定仪

数字电压表 调零

FD-TX-FPZ-II导热系数电压表

图4-9-1 稳态法测定导热系数实验装置

三、[实验原理]

1、良导体(金属、空气)导热系数的测定

根据傅里叶导热方程式,在物体部,取两个垂直于热传导方向、彼此间相距为h、温度分别为θ1、θ2的平行平面(设θ1>θ2),若平面面积均为S,在t时间通过面积S的热量Q免租下述表达式:

Q()S12 (3-26-1) th式中,

Q为热流量;即为该物质的导热系数,在数值上等于相距单位长度的两平面t的温度相差1个单位时,单位时间通过单位面积的热量,其单位是W(mK)。

在支架上先放上圆铜盘P,在P的上面放上待测样品B,再把带发热器的圆铜盘A放

1 / 9

.

在B上,发热器通电后,热量从A盘传到B盘,再传到P盘,由于A,P都是良导体,其温度即可以代表B盘上、下表面的温度θ1、θ2,θ1、θ2分别插入A、P盘边缘小孔的热电偶E来测量。热电偶的冷端则浸在杜瓦瓶中的冰水混合物中,通过“传感器切换”开关G,切换A、P盘中的热电偶与数字电压表的连接回路。由式(3-26-1)可以知道,单位时间通过待测样品B任一圆截面的热流量为

Q()212RB (3-26-2) thB式中,RB为样品的半径,hB为样品的厚度。当热传导达到稳定状态时,θ1和θ2的值不变,

遇事通过B 盘上表面的热流量与由铜盘P向周围环境散热的速率相等,因此,可通过铜盘P在稳定温度T2的散热速率来求出热流量

Q。实验中,在读得稳定时θ1和θ2后,即可t将B盘移去,而使A盘的底面与铜盘P直接接触。当铜盘P的温度上升到高于稳定时的θ2值若干摄氏度后,在将A移开,让P自然冷却。观察其温度θ随时间t变化情况,然后由此求出铜盘在θ2的冷却速率

t,而mc2t,就是铜盘P在温度为θ2时的散热速率。

22、不良导体(橡皮)的测定

导热系数是表征物质热传导性质的物理量。材料结构的变化与所含杂质的不同对材料导热系数数值都有明显的影响,因此材料的导热系数常常需要由实验去具体测定。

测量导热系数在这里我们用的是稳态法,在稳态法中,先利用热源对样品加热,样品部的温差使热量从高温向低温处传导,样品部各点的温度将随加热快慢和传热快慢的影响而变动;适当控制实验条件和实验参数可使加热和传热的过程达到平衡状态,则待测样品部可能形成稳定的温度分布,根据这一温度分布就可以计算出导热系数。而在动态法中,最终在样品部所形成的温度分布是随时间变化的,如呈周期性的变化,变化的周期和幅度亦受实验条件和加热快慢的影响,与导热系数的大小有关。

本实验应用稳态法测量不良导体(橡皮样品)的导热系数,学习用物体散热速率求传导速率的实验方法。

1898年C.H.Le e s.首先使用平板法测量不良导体的导热系数,这是一种稳态法,实验中,样品制成平板状,其上端面与一个稳定的均匀发热体充分接触,下端面与一均匀散热体相接触。由于平板样品的侧面积比平板平面小很多,可以认为热量只沿着上下方向垂直传递,横向由侧面散去的热量可以忽略不计,即可以认为,样品只有在垂直样品平面的方向上有温度梯度,在同一平面,各处的温度相同。

设稳态时,样品的上下平面温度分别为

12,根据傅立叶传导方程,在t时间通过样

2Q1ShhBQ满足下式:t品的热量 (1) 式中为样品的导热系数,B为

样品的厚度,S为样品的平面面积,实验中样品为圆盘状。设圆盘样品的直径为dB,则半径为RB,则由(1)式得:

Q212RBthB (2)

2 / 9

.

实验装置如图1所示、固定于底座的三个支架上,支撑着一个铜散热盘P,散热盘P可以借助底座的风扇,达到稳定有效的散热。散热盘上安放面积相同的圆盘样品B,样品B上放置一个圆盘状加热盘C,其面积也与样品B的面积相同,加热盘C是由单片机控制的自适应电加热,可以设定加热盘的温度。

当传热达到稳定状态时,样品上下表面的温度1和2不变,这时可以认为加热盘C通过样品传递的热流量与散热盘P向周围环境散热量相等,因此可以通过散热盘P在稳定温

Q度2时的散热速率来求出热流量t。

实验时,当测得稳态时的样品上下表面温度1和2后,将样品B抽去,让加热盘C与散热盘P接触,当散热盘的温度上升到高于稳态时的

2值20℃或者20℃以上后,移开加

热盘,让散热盘在电扇作用下冷却,记录散热盘温度随时间t的下降情况,求出散热盘在

2时的冷却速率tQmctt2,则散热盘P在

2时的散热速率为:

2 (3) 其中m为散热盘P的质量,c为其比热容。

在达到稳态的过程中,P盘的上表面并未暴露在空气中,而物体的冷却速率与它的散热表面积成正比,为此,稳态时铜盘P的散热速率的表达式应作面积修正:

Qmctt 其中

2R2R22PP2RPhPP2Rh (4)

PRp2为散热盘P的半径,

hp22为其厚度。由(2)式和(4)式可得:

124hBdBmct2R2RPP2RPhPP2Rh (5)

P所以样品的导热系数为:

mct2RP2hPhB12RP2hP12RB2 (6)

四、[实验步骤]

1、金属导热系数的测定

根据上述装置,由傅里叶导热方程可知,通过待测样品B盘的热流量,

Qt 为:Q12RB2,实验时,当热传达到稳态时,θ1、θ的值将稳定不变,这

thB时可以认为发散盘A通过圆盘样品上平面传入的热量与由散热盘向周围环境散热的速率相

3 / 9

.

等。因此可通过散热盘P在稳定温度θ时的散热速率求出热流量

Q,方法如下,当读得t稳态时的θ1、θ2后,将样品B盘抽去,让发热盘A的底面与散热盘P直接接触,使盘P的温度上升到比θ2高出1mV左右时,再将发热盘A移开,附上原盘样品(或绝缘圆盘),让散热盘P冷却电扇仍处于工作状态,每隔30秒钟读一下散热盘的温度示值,选取邻近θ2的温度数据,求出,铜盘P在θ2的冷却速率

t,则 mc2t2Q 就是散t热在θ时的散热速率,带入式(2)得:mct2h (3) 2(12)R(3)式中,m为铜盘质量,C为铜的比热容。 2、空气导热系数的测量步骤同上 3、不良导体导热系数的测定

(1)取下固定螺丝,将橡皮样品放在加热盘与散热盘中间,橡皮样品要求与加热盘散热盘完全对准;要求上下绝热薄板对准加热和散热盘。调节底部的三个微调螺丝,使样品与加热盘、散热盘接触良好,但注意不宜过紧或过松:

(2)按照图1所示,插好加热盘的电源插头;再将2根连接线的一端与机壳相连,另一有传感器端插在加热盘和散热盘小孔中,要求传感器完全插入小孔中,并在传感器上抹一些硅油或者导热硅脂,以确保传感器与加热盘和散热盘接触良好。在安放加热盘和散热盘时,还应注意使放置传感器的孔上下对齐 (注意:加热盘和散热盘两个传感器要一一对应,不可互换)

(3)接上导热系数测定仪的电源,开启电源后,左边表头首先显示从FDHC,然后显示当时温度,当转换至b= =·=时,用户可以设定控制温度。设置完成按“确定”键,加热盘即开始加热。右边显示散热盘的当时温度。

(4)加热盘的温度上升到设定温度值时,开始记录散热盘的温度,可每隔一分钟记录一次,待在1 0分钟或更长的时间加热盘和散热盘的温度值基本不变,可以认为已经达到稳定状态了。

(5)按复位键停止加热,取走样品,调节三个螺栓使加热盘和散热盘接触良好,再设定温度到80℃,加快散热盘的温度上升,使散热盘温度上升到高于稳态时的

2值20℃左右即

可。

(6)移去加热盘,让散热圆盘在风扇作用下冷却,每隔1 0秒(或者3 0秒)记录一次散热

盘的温度示值,由临近

2值的温度数据中计算冷却速率

t2。也可以根据记录数据

做冷却曲线,用镜尺法作曲线在

2点的切线,根据切线斜率计算冷却速率。

1和2以与在温度2时的冷却速率,由公式

(7)根据测量得到的稳态时的温度值

mct2RP2hP4hB12RP2hP12dB2 计算不良导体样品的导热系数。

五、[实验数据处理]

4 / 9

.

1、金属导热系数实验数据处理

实验前测得室温t=18.0℃;

散热盘B的直径为2RB=13.02cm,即半径RB=6.51cm, 厚度为hB=0.79cm,质量mB=889.3.g;

加热盘A的直径为2RA=13.02cm,即半径RA=6.51cm。

铜的比热容c=0.0917cal/(g·K)。

1、用TC—3型固体导热系数测定仪来测量空气的热导率. hC=1.07㎜(所测得数据如下)

稳态时T1、T2的数据(每隔2分钟记录) i 1 3.31 2 3.29 3 3.28 4 3.33 5 3.28 6 3.26 7 3.27 8 3.31 9 3,32 平均 3.288 1(mv) 2(mv) T(s) 2(mV) 1.16 2.86 2.85 2.86 2.87 2.87 2.86 2.85 2.87 2.861 0 3.30 30 3.18 60 3.08 90 3.00 120 2.94 150 2.89 180 2.86 210 2.84 冷却速率图3.43.33.23.1θ/mv32.92.82.72.60306090t/s120150180210

将数据代入公式mch12得λ=407.28wm1k1 t12R5 / 9

.

2、空气导热系数实验数据处理

稳态时T1、T2的数据(每隔2分钟记录) i θ1(mV) θ2(mV) 冷却速率 t(s) θ2(mV) 0 1.82 30 1.71 60 1.62 90 1.53 120 1.44 150 1.35 180 1.26 1 2.92 1.62 2 2.93 1.62 3 2.93 1.62 4 2.93 1.62 5 2.93 1.62 平均 2.93 1.62 t(mV/s) 20.0031

冷却速率图象分析如下: h=1.25mm21.5y = -0.0031x + 1.8093T2(mv)10.50050100t(s)150200

将数据代入(c)可算出λ=3.02×10W/(m•℃)

3、橡胶导热系数实验数据处理

样品:橡胶; 室温: 18 ℃;

散热盘比热容(黄铜):C= 0.0917 J/(Kg·K); 散热盘质量:m= 889.3 g;

散热盘P的厚度

-2

RhP= 0.78 mm;

散热盘P的半径:P= 6.51 mm;

橡皮样品厚度hB= 0.80 mm; 橡皮样品直径dB= 6.51*2 mm;

1 3.52 2.49 3.52 2.50 3.51 2.51 3.50 2.51 3.50 2.52 3.50 2.52 3.49 2.52 3.50 2.53 3.49 2.53 3.49 2.53 2 稳态时(1 0分钟温度基本保持不变,样品上表面的温度示值1= 3.502 ℃,样品下

表面温度示 值2= 2.516 ℃。

6 / 9

.

每隔30秒记录一次散热盘冷却时的温度示值,如下表: 散热盘每隔30秒自然冷却时温度记录 θ/℃ 2.60 22.55 2.50 2.44 2.40 2.36 t﹦0.0016

作冷却曲线得到:

冷却速率图2.652.62.552.5θ/mv2.452.42.352.32.252.203060t/s90120150

mc 将以上数据代入公式(6)计算得到:

t2RP2hP4hB12RP2hP12dB2

=5.02×10∧﹙﹣4﹚cal/﹙s•cm•℃﹚=0.21W/﹙m•℃﹚

[实验总结]:由实验数据可得铜的导热系数最大,导热性能最好,空气的导热系数最小,不良导体的导热系数居中。 1、实验误差 ⑴、黄铜的导热系数

= 407.28wm1k1,0401wm1k1;

0100%=407.28401100%1.57%

0401⑵、空气的导热系数

=3.02 ×10wm1k1,o=2.61102wm1k1;

-2

2203.02102.6110100%=100%=15.71% 202.6110(3)、不良导体(橡皮)的导热系数数据处理

0.21wm1k1,0=0.2wm1k1;

7 / 9

.

0100%=0.210.2100%5% 00.22、误差产生的原因

①实验中电压读数误差为0.01mv,游标卡尺的测量误差为0.02mm。 ②在实验过程中由于人员走动过,导致空气流通,散失热量造成误差且空气的厚度在测量中也会造成误差。

③由于升温、降温不好控制导致实验误差。

④由于实验时间比较长,室温可能在实验中有变化。 ⑤由于仪器使用时间过长发生磨损,可能造成系统误差。

8 / 9

.

综合设计性实验心得

通过测定良导体(铜、空气)、不良导体(橡胶)的导热系数实验,我们组的各同学都明白了要用1、测良导体、不良导体的导热系数的方法是稳态法2、导热系数的物理意义是什么?3、测λ要满足什么条件,怎样保证这些条件?4、测量冷却速率时,为什么要在稳态温度θ2附近取值?

一、 测良导体、不良导体的导热系数的方法是稳态法

测量导热系数我们组用的是稳态法,在稳态法中,先利用热源对样品加热,样品部的温差使热量从高温向低温处传导,样品部各点的温度将随加热快慢和传热快慢的影响而变动;适当控制实验条件和实验参数可使加热和传热的过程达到平衡状态,则待测样品部可能形成稳定的温度分布,根据这一温度分布就可以计算出导热系数。而在动态法中,最终在样品部所形成的温度分布是随时间变化的,如呈周期性的变化,变化的周期和幅度亦受实验条件和加热快慢的影响,与导热系数的大小有关。

本实验应用稳态法测量良导体(铜、空气)、不良导体(橡皮样品)的导热系数,学习用物体散热速率求传导速率的实验方法。 二、 导热系数的物理意义:

导热系数是表征物质热传导性质的物理量。导热系数是指在稳定传热条件下,1m厚的材料,两侧表面的温差为1度(K,°C),在1秒,通过1平方米面积传递的热量,用λ表示,单位为瓦/(米·度),w/(m·k)(W/m·K,此处的K可用℃代替。导热系数与材料的组成结构、密度、含水率、温度等因素有关。材料结构的变化与所含杂质的不同对材料导热系数数值都有明显的影响,因此材料的导热系数常常需要由实验去具体测定。

三、 测λ要满足什么条件,怎样保证这些条件?

(1)测θ1、θ2 系统要处于稳定态,即这两个温度在10分钟保持不变,并且θ1大于θ2。θ1人为控制在3.47——3.53mv (2)测量散热板在θ2 附近的冷却速率。

四、 测冷却速率时,为什么要在稳态温度θ2附近选值?

(1)当散热板处在不同温度时,它的散热速率不同,与本体温度、环境温度有关。

(2)在实验中,当系统处于稳态时,通过待测样品的传热与散热盘向侧面和下面的散热率相同,所以测冷却速率要在稳态温度θ2附近。

总之,通过这次实验,我们收获很大。不仅掌握了与导热系数有关的许多热学知识,而且由于热学实验升温、降温不好控制,培养了我们严谨的科学态度、细致的观察能力、团结合作的意识。 最后衷心感老师的耐心指导!

9 / 9

因篇幅问题不能全部显示,请点此查看更多更全内容

Copyright © 2019- sceh.cn 版权所有

违法及侵权请联系:TEL:199 1889 7713 E-MAIL:2724546146@qq.com

本站由北京市万商天勤律师事务所王兴未律师提供法律服务