您好,欢迎来到尚车旅游网。
搜索
您的当前位置:首页(2021年整理)六年级奥数分数巧算学生版

(2021年整理)六年级奥数分数巧算学生版

来源:尚车旅游网
六年级奥数分数巧算学生版

六年级奥数分数巧算学生版

编辑整理:

尊敬的读者朋友们:

这里是精品文档编辑中心,本文档内容是由我和我的同事精心编辑整理后发布的,发布之前我们对文中内容进行仔细校对,但是难免会有疏漏的地方,但是任然希望(六年级奥数分数巧算学生版)的内容能够给您的工作和学习带来便利。同时也真诚的希望收到您的建议和反馈,这将是我们进步的源泉,前进的动力。

本文可编辑可修改,如果觉得对您有帮助请收藏以便随时查阅,最后祝您生活愉快 业绩进步,以下为六年级奥数分数巧算学生版的全部内容。

1

六年级奥数分数巧算学生版

分数的速算与巧算

1、 裂项:是计算中需要发现规律、利用公式的过程,裂项与通项归纳是密不可分的,本讲要求

学生掌握裂项技巧及寻找通项进行解题的能力

2、 换元:让学生能够掌握等量代换的概念,通过等量代换讲复杂算式变成简单算式.

3、 循环小数与分数拆分:掌握循环小数与分数的互化,循环小数之间简单的加、减运算,涉及

循环小数与分数的主要利用运算定律进行简算的问题. 4、通项归纳法

通项归纳法也要借助于代数,将算式化简,但换元法只是将“形同”的算式用字母代替并参与计算,使计算过程更加简便,而通项归纳法能将“形似”的复杂算式,用字母表示后化简为常见的一般形式. 知识点拨

一、裂项综合

(一)、“裂差”型运算

(1)对于分母可以写作两个因数乘积的分数,即即ab,那么有

1111() abbaab1形式的,这里我们把较小的数写在前面,ab(2)对于分母上为3个或4个连续自然数乘积形式的分数,即:

11,形式的,我们有:

n(n1)(n2)n(n1)(n2)(n3)1111[]

n(n1)(n2)2n(n1)(n1)(n2)1111[]

n(n1)(n2)(n3)3n(n1)(n2)(n1)(n2)(n3)裂差型裂项的三大关键特征:

(1)分子全部相同,最简单形式为都是1的,复杂形式可为都是x(x为任意自然数)的,但是只要将x提取出来即可转化为分子都是1的运算。

(2)分母上均为几个自然数的乘积形式,并且满足相邻2个分母上的因数“首尾相接\" (3)分母上几个因数间的差是一个定值。

(二)、“裂和”型运算:

1

六年级奥数分数巧算学生版

常见的裂和型运算主要有以下两种形式:

a2b2a2b2ababab11(1)  (2)

abababbaabababba裂和型运算与裂差型运算的对比:

裂差型运算的核心环节是“两两抵消达到简化的目的”,裂和型运算的题目不仅有“两两抵消”型的,同时还有转化为“分数凑整”型的,以达到简化目的.

三、整数裂项

(1) 122334...(n1)n(n1)n(n1)

(2) 123234345...(n2)(n1)n(n2)(n1)n(n1)

1314二、换元

解数学题时,把某个式子看成一个整体,用另一个量去代替它,从而使问题得到简化,这叫换元法.换元的实质是转化,将复杂的式子化繁为简.

三、循环小数化分数 1、循环小数化分数结论:

纯循环小数 循环节中的数字所组成的数 混循环小数 循环小数去掉小数点后的数字所组成的数与不循环部分数字所组成的数的差 分子 分母 ·n个9,其中n等于循环节所含按循环位数添9,不循环位数添0,组成分的数字个数 母,其中9在0的左侧 ······abcaaabab1ab; ; ; ,…… 0.abc0.a0.ab0.0ab9909999910990

2、单位分数的拆分: 例:

11111111111===== 102020分析:分数单位的拆分,主要方法是: 从分母N的约数中任意找出两个m和n,有:

2

六年级奥数分数巧算学生版

11(mn)mn11= NN(mn)N(mn)N(mn)AB本题10的约数有:1,10,2,5.。 例如:选1和2,有:

11(12)1211 1010(12)10(12)10(12)3015本题具体的解有:

111111111 1011110126014351530例题精讲

模块一、分数裂项

【例 1】

11111 123423453456678978910333【巩固】 ......1234234517181920

【例 2】 计算:

5712323419 .

8910【解析】 如果式子中每一项的分子都相同,那么就是一道很常见的分数裂项的题目.但是本题

中分子不相同,而是成等差数列,且等差数列的公差为2.相比较于2,4,6,……这一公差为2的等差数列(该数列的第n个数恰好为n的2倍),原式中分子所成的等差数列每一项都比其大3,所以可以先把原式中每一项的分子都分成3与另一个的和再进行计算.也可以直接进行通项归纳.根据等差数列的性质,可知分子的通项公式为2n3,

3

六年级奥数分数巧算学生版

2n3232所以,再将每一项的与nn1n2n1n2nn1n2n1n23分别加在一起进行裂项.后面的过程与前面的方法相同.

nn1n2

【巩固】 计算:1155(

【巩固】 计算: 【例 3】 【例 4】

572343451719 )89109101134512452356346712

1011131412342232342345923410

111112123112100

【解析】 本题为典型的“隐藏在等差数列求和公式背后的分数裂差型裂项”问题.此类问题需要

从最简单的项开始入手,通过公式的运算寻找规律.从第一项开始,对分母进行等差数列求和运算公式的代入有1112112,,……,

(11)11212(12)22322

4

六年级奥数分数巧算学生版

【例 5】

【解析】 这题是利用平方差公式进行裂项:a2b2(ab)(ab), 113【例 6】 21111(1)(1)22311999 111(1)(1)(1)231999111111 . 22222231517191111131 【例 7】

12123123422323412350

2350(1n)nn(n1)2【解析】 找通项an (1n)nn(n1)212

121222122232122232421222262【例 8】 33 3333333333311212312341226n(n1)(2n1)12n22n12116an3() 【解析】

n2(n1)2123n33n(n1)3nn14222

2232【例 9】 计算:221321

n1n1992) 2__________(项公式:an991n11n11nn25

22六年级奥数分数巧算学生版

1222【巩固】 计算:2211005000220050009922 9999005000n2【解析】 本题的通项公式为2,没办法进行裂项之类的处理.注意到分母

n100n5000n2100n50005000n100n5000100n100100n,可以看出如果把n换成

100n的话分母的值不变,所以可以把原式子中的分数两两组合起来,最后单独剩下一

502个2.将项数和为100的两项相加,得 5050005000n2100n100nn22n2200n1000022,

n2100n5000100n2100100n5000n2100n5000n100n500022所以原式249199.(或者,可得原式中99项的平均数为1,所以原式19999)

11111124【例 10】 222021112212221022345【解析】 虽然很容易看出

 

111111=,=……可是再仔细一看,并没有什么效果,因23234545为这不象分数裂项那样能消去很多项.我们再来看后面的式子,每一项的分母容易让我们想到公式 ,于是我们又有

16..减号前面括号=122232n2n(n1)(2n1)里的式子有10项,减号后面括号里的式子也恰好有10项,是不是“一个对一个”呢?

模块二、换元与公式应用

【例 11】 计算:1333537393113133153

6

六年级奥数分数巧算学生版

111111【例 12】 计算:123456

333333设S1

1311111111111364则,,整理可得. 3S313SS3S1234562345633333333333729(2242621002)(123252992)【例 13】 计算:

12391098321

12222232324242522000220012【例 14】 计算: 1223344520002001

【例 15】 20078.58.51.51.5101600.3 .

【例 16】 计算:(1

1111111111)()(1)() 24246246247

六年级奥数分数巧算学生版

三、循环小数与分数互化

【例 17】 计算:0.1+0.125+0.3+0.16,结果保留三位小数.

【例 18】 某学生将1.23乘以一个数a时,把1.23误看成1。23,使乘积比正确结果减少0.3。则正

确结果该是多少?

252413【例 19】 有8个数,0.51,,,0.51,,是其中6个,如果按从小到大的顺序排列时,第

3947254个数是0.51,那么按从大到小排列时,第4个数是哪一个数?

【例 20】 真分数

a化为小数后,如果从小数点后第一位的数字开始连续若干个数字之和是71992,那么a是多少?

8

六年级奥数分数巧算学生版

【例 21】

20021和化成循环小数后第100位上的数字之和是_____________。 2009287【解析】 如果将

20021和转化成循环小数后再去计算第100位上的数字和比较麻烦,通过观察200928720021计算我们发现1,而10.9,则第100位上的数字和为9。

2009287

【例 22】

11111111111 45注:这里要先选10的三个约数,比如5、2和1,表示成连减式5-2-1和连加式5+2+1.

【例 23】 所有分母小于30并且分母是质数的真分数相加,和是__________。

【例 24】 若

111,其中a、b都是四位数,且a9

六年级奥数分数巧算学生版

课后练习:

练习1.

123456 121231234123451234561234567123练习2. (1)(2)(3)234

练习3. 计算:133353

1练习4. 计算:1289(8)(9)

910993___________.

111200723111200821112008231 2007

····11练习5. ⑴ 0.150.2180.3; ⑵ 2.2340.9811 (结果表示成循环小数)

111

月测备选 【备选1】计算:

233!4!99 。 100!10

六年级奥数分数巧算学生版

12222232【备选2】计算:1223

20042200522005220062 20042005200520061233320063【备选3】计算:

1232006

【备选4】计算:

621739458739458378621739458378739458 126358947358947207126358947207358947

【备选5】计算2009200911 (结果表示为循环小数) 99900999909901 11

因篇幅问题不能全部显示,请点此查看更多更全内容

Copyright © 2019- sceh.cn 版权所有 湘ICP备2023017654号-4

违法及侵权请联系:TEL:199 1889 7713 E-MAIL:2724546146@qq.com

本站由北京市万商天勤律师事务所王兴未律师提供法律服务